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ABSTRACT 

This paper presents research that addresses the problem of 
describing the accurate, variable-speed motion of simula-
tion objects on realistically-shaped trajectories (i.e. paths) 
in animations of discrete-event simulation models. The 
work puts in place techniques that modelers can use to in-
struct virtual simulation objects to follow any arbitrarily-
shaped velocity profiles while adhering to fixed motion 
completion times when traversing along any defined mo-
tion path trajectories. A computation scheme that allows 
simulation models to define the general shapes of relevant 
velocity profiles and then heuristically scales those profiles 
to accommodate communicated activity instance durations 
is presented. While allowing animated simulation objects 
to be moved with any arbitrarily shaped velocity profiles, 
this technique ensures that an object’s temporo-spatial con-
trol rests entirely with the underlying simulation models. 

1 INTRODUCTION 

Visualization of modeled operations can be of significant 
help in the verification and validation of discrete-event 
simulation (DES) models (Law and Kelton 2000). This is 
especially true in construction where typical decision mak-
ers are experts in their domain but are not generally profi-
cient in simulation itself. Visualization can also provide 
decision makers with valuable insight into subtleties of 
planned construction operations that are otherwise non-
quantifiable and non-presentable.  
 The authors’ recent research efforts have focused on 
designing automatic, simulation-driven methods to visual-
ize modeled construction processes and any evolving prod-
ucts in smooth, continuous, dynamic 3D virtual worlds. 
Methods have been designed to describe animated 3D 
worlds that show how simulated processes are carried out, 
using simple parametric text statements and references to 
3D CAD models (Kamat and Martinez 2003a). This simple 
text animation description language, called VITASCOPE, 
is meant to be written out by end-user programmable tools 
such as DES systems and allows a computer to create a 
 
 

dynamic 3D virtual world that shows people, machines, 
and/or materials interacting as they perform the modeled 
processes. 

1.1 Research Motivation 

Synthetic, process simulation-driven 3D virtual worlds are 
spatially and temporally faithful to the underlying DES 
models that author the visualizations. Notwithstanding, the 
3D visual representations (i.e. visualizations) of several 
modeled processes digress in time and space accuracy from 
the corresponding real-world operations due to the inherent 
characteristics of DES. 
 In DES, the state of a running model changes only at 
discrete, but possibly random sets of simulated time points 
(Schriber and Brunner 2001). These time points are typi-
cally the start or end of the model’s activities, and it is only 
then that a running DES model can communicate with 
other processes, or perform other actions such as output to 
an animation trace. A DES model is only concerned about 
the time instants at which instances of modeled activities 
begin or end, and chooses to ignore everything (e.g. rate of 
activity performance) that happens in between. The infor-
mation that a running DES model can communicate to ex-
ternal 3D animation methods is thus limited to the start 
times and durations of all activity instances that occur in 
any simulation run. The animation methods must then use 
these limited pieces of discrete information to generate a 
smooth, continuous, dynamic 3D virtual world representa-
tion that depicts the modeled activities being performed. 
 In any modeled activity that involves motion of simu-
lation entities (e.g. a hauling truck, an airplane taking off), 
the only kinetic property that can be computed from the 
pieces of communicated activity instance information (i.e. 
start time and duration) is the average speed of the simula-
tion entity (e.g. truck, airplane) in that particular activity 
instance (e.g. haul dirt, take off). This is precisely the com-
putation existing 3D animation methods perform in de-
scribing the smooth, continuous motion of simulation enti-
ties in virtual worlds. 
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 In particular, the motion of a simulation entity is de-
picted by transforming (i.e. moving) the pertinent instanti-
ated CAD model of the entity at the computed average ve-
locity. The simulation entity-representing CAD model is 
smoothly and linearly interpolated on a 3D trajectory that 
represents that entity’s motion path (e.g. haul road, run-
way) in the communicated activity instance. Thus, a virtual 
airplane taking off appears to travel down a runway at a 
constant (average) speed for the activity instance’s sam-
pled time duration (i.e. runway occupancy time). Similarly, 
a loaded truck hauling dirt on a virtual earthmoving jobsite 
travels at a constant speed for the entire duration of the 
haul regardless of the grades on the 3D motion trajectory 
(i.e. virtual haul road) it travels on. 
 The temporal and spatial accuracy of simulation 
model-generated dynamic 3D virtual worlds is commensu-
rate with the detail of the communicated information from 
which the visualizations are created. The existing anima-
tion scheme is faithful to DES in that animated activity in-
stances inside a 3D virtual world begin and end at the exact 
time instants dictated by the visualization-authoring simu-
lation models, with smooth, continuous, “constant-speed” 
intermediate motion of the involved virtual entities (i.e. 
simulation objects). Such visualization of simulation ob-
jects performing the modeled (and communicated) tasks at 
constant speed is often sufficient to verify and validate 
several DES models (Kamat and Martinez 2003b). 
 However, the depicted constant velocity profiles of 
moving virtual simulation objects are not an accurate repre-
sentation of reality. For instance, an airplane taking off on a 
runway obviously does not travel at a constant velocity. In-
stead, as figure 1(a) presents, the airplane continuously ac-
celerates as it races down a runway and takes-off. Similarly, 
as figure 1(b) presents, the typical velocity profile of a truck 
that hauls dirt is a function of several disparate factors such 
as engine power, load being hauled, and the rolling resis-
tance and grade of haul road segments. Due to the limited 
operational information available from underlying DES 
models, existing methods of animating simulated processes 
are, however, unable to adopt such realistic velocity profiles 
in describing the motion of virtual simulation entities. In-
stead, commensurate with the available pieces of informa-
tion, simulation objects are assumed to be moving at con-
stant, average speeds with straight-line velocity profiles such 
as those superimposed on figures 1(a) and 1(b). 

This assumption (and portrayal) of constant-speed en-
tity motion can often hinder the validation of modeled 
processes in cases where the relative segmental speeds of 
moving simulation entities and/or their accelera-
tion/deceleration influence their evolution and inter-object 
interactions in a modeled and visualized system (e.g. air-
port, earthmoving jobsite). In addition, such constant-speed 
visualization of modeled processes can frequently fail to 
elicit credibility for simulation models, especially from 
domain experts and decision makers who are not familiar  
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(a) Airplane on Take-Off Roll 

 

 
(b) Dumptruck on Haul Road 

Figure 1: Typical Velocity Profiles of Real Objects 
 

with the mechanics of DES and/or are skeptic about simu-
lation analyses beforehand. 

2 DESCRIBING VARIABLE 
SPEED MOTION 

The only temporal information about an activity-instance 
that a running DES model can communicate to external 
processes such as 3D animation methods is that instance’s 
start time and its duration. Due to inherent modeling fea-
tures, a DES model can provide no information on the rate 
at which the task(s) in any activity instance are performed. 
This is unlike Continuous Simulation, where the state of a 
model (and hence the rate of activity performance) is con-
tinuously monitored at every time instant using differential 
equations of motion (Law and Kelton 2000). The perform-
ance rate of an activity, however, provides precisely the 
temporal information needed to describe the velocity pro-
file(s) of simulation object(s) that move (i.e. travel) while 
performing the task(s) in a particular activity instance. 
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2.1 Hypothetical Hybrid  

Animation Approach 

In order to describe variable-speed motion of virtual DES 
objects then, the first possible technique that was explored 
was to describe a parallel continuous simulation system 
that would tightly integrate with the methods of animating 
DES models in 3D. In particular, the authors considered 
the possibility of externally formulating an in-context 
simulation object’s pertinent kinetic properties (e.g. nomi-
nal acceleration/deceleration, maximum permitted veloc-
ity) and using that information along with each communi-
cated activity instance (i.e. start time and duration). During 
visualization, the integrated continuous simulation mecha-
nism would use the formulated kinetic properties to com-
pute the involved simulation object’s velocity profile (i.e. 
its temporal evolution) beginning at the indicated activity 
instance start time. 
 This hybrid animation approach is, however, impossi-
ble to achieve in a DES framework. In particular, such a 
strategy would only work if a DES model communicated 
an activity instance’s start time and enforced no restrictions 
on when it ended. That information (i.e. activity instance 
end time) could then be determined in real-time as the in-
volved simulation object’s temporal evolution was com-
puted continuously during visualization. A DES model 
must, however, explicitly enforce a communicated activity 
instance’s end time (i.e. its duration). This is obvious be-
cause the start of instance(s) of other simulation model ac-
tivities (often involving the object that is in context in the 
current activity instance) is explicitly tied to the comple-
tion of the current communicated activity instance. Once 
instantiated, any instance of such a successive activity will 
attempt to exclusively manipulate the in-context virtual 
simulation object to visually describe the performance of 
that latter communicated task. 
 The hypothetical continuous simulation system com-
puting the simulation object’s temporal evolution in the in-
stance of the previous activity would, however, be unable 
to guarantee the completion of its motion at the exact pre-
cise instant at which the successive activity starts. Stated 
differently, it is mathematically impossible to externally 
formulate kinetic object properties and compute a unique, 
valid, continuous velocity profile using a set of differential 
equations if the motion start and end times (i.e. the lower 
and upper bound of the integration interval) and the dis-
tance traversed (i.e. the area under the resulting curve) are 
both explicitly enforced. 

This is however the case in DES. As such, any compu-
tation scheme (for visualizing simulated processes) that 
wrests the temporal and spatial control of simulation ob-
jects away from the underlying DES models cannot portray 
the modeled operations correctly in dynamic 3D virtual 
worlds. The description of any arbitrary velocity profiles to 
be applied to mobile simulation objects during animation 
must thus be sought from the DES models that author visu-
alizations. However, a DES model obviously does not en-
capsulate any such information (e.g. an object’s kinetic 
properties) simply because the rate of performing any 
modeled activity is generally irrelevant to the model from 
the simulation analysis perspective. 

2.2 Time-Based Scaling of  
Velocity Profile Shapes 

In order to visually describe variable speed motion of ani-
mated simulation objects then, the authors devised a 
unique computation scheme that prudently shares the re-
sponsibility of describing a moving simulation object’s ar-
bitrary velocity profile between the underlying DES model 
and the 3D animation methods. In particular, the general 
shape of the velocity profile to be applied to a moving ob-
ject is sought from the visualization-authoring DES model. 
The shape of this general profile can be explicitly defined 
(and input into a DES model) by a modeler, or it can be the 
result of computations performed within a running model. 
 Then, at each communicated activity instance, the 
animation methods heuristically scale (up or down) the 
previously defined velocity profile in such a way that the 
mobile simulation object to which it is applied traverses an 
indicated motion path in a time interval that is exactly 
equal to the communicated activity instance duration. This 
flexible technique allows for two vital things. 1) Any arbi-
trarily shaped velocity profile resulting from any DES 
model-defined or externally performed computation can be 
explicitly applied to a moving simulation object, and 2) the 
temporo-spatial control of all simulation objects remains 
entirely with the underlying simulation model since the 
animation methods merely scale a defined velocity profile 
to fit the duration of a communicated activity instance. 
 For any defined motion path trajectory, a simulation 
model defines the shape of a desired object velocity profile 
by specifying an arbitrary number of velocity-distance 
pairs. The specified velocity values can span any positive 
numerical range and the corresponding indicated distances 
are the percentile (0 to 100) arc lengths along the path.   
The shape of the profile is deduced by plotting the path’s 
percentile arc distance on the abscissa and the correspond-
ing velocity values on the ordinate. This is graphically pre-
sented in figure 2. No limitations are placed on this defini-
tion except that the distance value in the last specified 
velocity-distance pair must equal 100 percent (i.e. the cur-
rent path’s total arc length). 
 As a first pre-processing step, the defined velocity ver-
sus percentile distance profile is converted to a velocity 
versus actual distance curve. As figure 3(a) depicts, this is 
accomplished by simply replacing the percentile arc 
lengths on the abscissa by the corresponding actual arc dis-
tances for the current path. The specified velocity values 
are left unchanged. The total time To, required to traverse 
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Figure 2: Definition of Velocity Profile Shape 

 
this converted profile in its unmodified form can then be 
given by the following equation: 
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As figure 3(a) indicates, V are the av-

erage velocities at which the respective path segments 
are traversed. In the case of this converted, 

unmodified curve, the total original travel time works out 
to be 195.66 seconds. Now, for any communicated activity 
instance of duration T

noooo VVV ,...,,
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i (say 150 seconds),  the described 
velocity profile is segmentally scaled up or down such that 
a simulation object traveling that path with the resulting 
modified (i.e. scaled) velocities reaches the end of the path 
in exactly Ti time units. This is graphically depicted in fig-
ure 3(b). This scaling procedure can be described as: 
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The underlying assumption that is made in segmen-

tally scaling the original converted velocity profile (figure 
 

3(a)) to accommodate the currently specified activity in-
stance duration (figure 3(b)) is that: 
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 With this assumption, the equation that distributes the 
communicated activity instance duration over the different 
velocity segments can be written as: 
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provides the basis for computing the average segmental ve-
locitiesV , from which the scaled, modified, 
activity instance-specific velocity profile can be con-
structed (figure 3(b)). A simulation object that follows this 
modified velocity profile is guaranteed to traverse the path 
in the exact communicated activity instance duration T

niiii VVV ,...,,
321

i. 
The following section presents the implementation of  

the described computation scheme. The implementation is 
a powerful tool that allows engineers to accurately describe 
the 3D motion of virtual DES objects on realistic-looking, 
smoothly-curved motion trajectories. 

3 PATHFINDER 

The algorithms that allow engineers to define flexible, 
smooth, curved motion path trajectories and then move vir-
tual simulation objects on those trajectories with desired 
velocity profiles are implemented as a powerful software 
tool named PathFinder. This tool has been designed as an 
extension to the VITASCOPE visualization system. 
VITASCOPE is a user-extensible 3D animation language 
designed specifically for visualizing simulated processes 
(particularly construction operations) in smooth, continu-
ous, dynamic 3D virtual worlds. 

In particular, the PathFinder add-on defines parametric 
text animation language statements that allow the definition 
and manipulation of smooth, curved motion trajectories of 
arbitrarily complex shapes. PathFinder also implements 
statements that allow simulation models to 1) specify a de-
fault per-path arbitrary velocity profile shape, and 2) over 
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(a) Original Velocity Profile 

 
(b) Adjusted Velocity Profile 

Figure 3: Derivation of Time-Scaled Velocity Profiles 
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ride (if necessary) the de fault velocity profile shape for any 
communicated instance of simulation object motion. 

In addition, PathFinder also implements terrain-
following techniques that help orient moving objects cor-
rectly in 3D, and the velocity profile scaling methods that 
heuristically resize the current velocity profile shape to ac-
commodate the duration of a communicated activity in-
stance. PathFinder thus presents the technologies that allow 
engineers to accurately describe the 3D motion of virtual 
discrete-event simulation objects on realistic-looking, 
smoothly-curved motion trajectories. 
 Figure 4 presents an animation trace with statements 
that define a smooth motion trajectory and then move an ob-
ject over it with an indicated velocity profile. We define mo-
tion trajectories in 2D planar resolutions by specifying a se-
ries of 2D (i.e. x and z coordinate only) control points and 
then manipulate (if needed) the shape of the resultant spline 
curve by adjusting the tension, continuity, and/or bias of one 
or more knots (i.e. control points). A default velocity profile 
(if any) can also be specified as part of a path’s definition. In 
the absence of an explicitly indicated velocity curve for a 
path, PathFinder assumes a default, constant-speed profile 
for objects that traverse that path. The defined 2D trajectory 
is then superimposed on the 3D terrain model that represents 
the underlying simulated system’s landscape. 

Simulation objects can obviously override a path’s de-
fault profile during an activity instance (i.e. motion) com-
munication. This can, for instance, allow simulation mod-
els to specify a unique velocity profile that is a function of 
the properties (e.g. engine power, loaded mass) of the in- 
 

context simulation object (e.g. dumptruck) in a communi-
cated instance of an activity (e.g. haul dirt). When a simu-
lation object is instructed to move on a particular path in 
the specified simulation time units, the current (path de-
fault or object overridden) velocity profile is appropriately 
scaled such that the time to traverse the path with that pro-
file is equal to the communicated activity instance dura-
tion. The simulation object then traverses the superimposed 
3D path trajectory while following the terrain surface as 
closely as possible. 

Figure 5 presents a strip of animation snapshots taken 
during the visualization of the motion statement from the 
animation trace in figure 4. The 3D projection of the de-
scribed 2D trajectory passes through highly uneven terrain. 
However, as the snapshots depict, PathFinder’s terrain-
following algorithms ensure that the object (i.e. dozer) is 
correctly oriented on the terrain as it travels the path with the 
scaled velocity profile. The snapshots presented are not suc-
cessive computer frames observed during visualization. The 
discretely captured frames are displayed in a filmstrip format 
merely to depict a sense of motion. The smooth motion of 
the dozer during visualization and its non-constant velocity 
cannot be fully captured in static snapshots. Only the anima-
tion can convey that information. 

3.1 Describing Object Motion  
with Terrain-Following 

Defined and modified 2D motion path trajectories are con-
verted to their 3D representation by projecting them onto 
 

 
Figure 4: Moving Simulation Objects on Defined Motion Paths 
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Figure 5: Animation Snapshots of Terrain-Followed Object Motion 
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the 3D terrain model that describes the simulated system’s 
landscape. At any instant, a moving object’s current, ad-
justed velocity profile dictates the downstream distance on 
a path at which it is currently located. Given the current 
downstream distance, the object’s planar position (i.e. x 
and z coordinate) is determined by parametrically retriev-
ing (on the defined 2D path) the point which corresponds 
to that arc length (i.e. downstream distance). Then, the ob-
ject’s current yaw is calculated by simply computing the 
tangent (in the 2D plane) to the curved path trajectory at 
that determined position (i.e. x and z coordinate). 
 To determine the 3D position of the object inside the 
virtual world, the computed planar position point is pro-
jected on the 3D terrain model of the simulated system’s 
landscape i.e. on the superimposed 3D path. This is accom-
plished by retrieving the elevation (i.e. height) of the terrain 
model at that horizontal plane location i.e. we retrieve the y 
coordinate of the terrain point that corresponds to the x and z 
values of determined 2D position. This describes the travel-
ing object’s current 3D position at that time instant. Since 
this computation is performed dynamically at visualization 
run-time, the 2D path’s 3D projection always drapes the ter-
rain surface even if its shape deforms during animation i.e. 
the procedure always retrieves the current terrain elevations 
(heights) below 2D position points. 
 Given the 3D position and yaw of the moving object 
on the terrain surface, the goal of terrain-following is to 
now orient that object correctly (i.e. compute the pitch and 
roll) such that its virtual contact points (e.g. a truck’s tires) 
all touch the terrain’s surface as closely as possible. To 
keep moving objects correctly oriented on a terrain’s sur-
face, it is necessary to find the locations where that ob-
ject’s contact points touch the virtual terrain. This can be 
done using geometric collision detection techniques. How-
ever, this is inefficient because general collision detection 
inherently involves more complex, CPU-intensive compu-
tations than merely computing an object’s terrain contact 
points (Barrus and Waters 1997). 
 To enforce terrain-following in a moving simulation 
object, we adopt a generalized technique that systemati-
cally computes that object’s pitch and roll by projecting its 
contact points on the terrain model in a manner similar to 
that used in computing the 3D position. In particular, the 
2D positions corresponding to an object’s surface contact 
points (e.g. tires, crawler edges) are projected onto the 3D 
terrain model to determine the positions where they inter-
sect the surface. 
 The pitch of the object is calculated first by determin-
ing the mean terrain elevation (i.e. height) along the ob-
ject’s front and rear edges. In particular, the mean eleva-
tion along the front edge can now be obtained by simply 
averaging the y coordinates (i.e. heights) of the calculated 
front contact points (e.g. front tires). The mean elevation at 
the object’s rear edge is similarly the average of the y co-
ordinates of the rear contact points. The object’s pitch at 
that animated instant is then given by the direction (i.e. 
vertical orientation) of the 3D vector constructed by join-
ing the computed mean elevation points at the object’s 
front and rear edges. 
 The side roll of the object is finally calculated using an 
exactly similar procedure. In particular, the side roll is 
given by the direction of the vector constructed from the 
mean elevation positions along the object’s left and right 
edges. These individual computation steps are obviously 
not visible during an animation. At each animated instant, 
the object is drawn on the screen in its final, fully-oriented 
position. PathFinder thus computes a moving object’s ac-
curate 3D configuration by prudently synthesizing inputs 
from the defined 2D motion path trajectory and the terrain 
model on which the simulated operations are animated. 

4 FUTURE WORK 

The variable speed motion of simulation objects traversing 
motion trajectories during the performance of communicated 
activity instances is purely based on kinetics. In particular, 
no physical constraints (e.g. mass of an object, its locomo-
tive power, grades of the terrain, gravity) are considered in 
the computation that describes the simulation object motion. 
Any depicted 3D process (e.g. a loaded truck continuously 
accelerating uphill a steep haul road) is a faithful representa-
tion of the information communicated by an underlying DES 
model regardless of whether that process (accelerating when 
traveling uphill loaded) can be accomplished in real life. 
Methods that can provide such feedback on physically-
impossible simulated processes during visualization can, 
however, be of significant help within a framework intended 
to validate modeled (and animated) processes. Future work 
can explore techniques of designing such methods by incor-
porating dynamic physical variables in computing the mo-
tions of simulation objects. 
 In addition, the time-based velocity profile shape scal-
ing techniques designed in this work assume the profiles to 
be composed of piecewise-linear segments. This guides the 
procedure used in scaling the original defined profiles to 
accommodate communicated activity instance durations. 
However, typical velocity profiles generally exhibit curva-
ture, particularly in the acceleration and deceleration 
phases of a moving object. Future work can explore tech-
niques of defining such curved velocity profiles and design 
methods for heuristically scaling them to accommodate 
different motion completion times. 

5 CONCLUSION 

The presented research extends the state-of-the-art of sci-
entific 3D visualization of DES modeled processes. The 
work puts in place the techniques that engineers can use to 
instruct virtual simulation objects to follow any arbitrarily-
shaped velocity profiles while adhering to fixed motion 
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completion times when traversing along any defined mo-
tion path trajectories. 
 Discrete-event simulation models, by their very nature, 
are unconcerned about the rate at which activities in a 
model are performed. They only enforce the time instants 
at which activity instances start and end. Since the tem-
poro-spatial control of virtual simulation objects cannot be 
wrested away from DES models, any information that de-
fines an object’s variable velocity profile must originate 
within an underlying DES model. A computation scheme 
that allows DES models to define the general shapes of 
relevant velocity profiles and then heuristically scales 
those profiles to accommodate communicated activity in-
stance durations performs well in a framework for animat-
ing DES models. 
 Such a technique not only allows simulation objects to 
be moved with any arbitrarily shaped velocity profiles, but 
also ensures that their temporo-spatial control rests entirely 
with the underlying DES models. The visually accurate 
animation results we obtain prove that this is not only pos-
sible, but also very effective in convincingly presenting 
modeled operations in dynamic 3D virtual worlds. 
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