
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

VARIABLE-SPEED RESOURCE MOTION IN ANIMATIONS
OF DISCRETE-EVENT PROCESS MODELS

Vineet R. Kamat

Department of Civil and Environmental Engineering
University of Michigan

Ann Arbor, MI 48109-2125, U.S.A.

 Julio C. Martinez

Department of Civil and Environmental Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0105, U.S.A.

ABSTRACT

This paper presents research that addresses the problem of
describing the accurate, variable-speed motion of simula-
tion objects on realistically-shaped trajectories (i.e. paths)
in animations of discrete-event simulation models. The
work puts in place techniques that modelers can use to in-
struct virtual simulation objects to follow any arbitrarily-
shaped velocity profiles while adhering to fixed motion
completion times when traversing along any defined mo-
tion path trajectories. A computation scheme that allows
simulation models to define the general shapes of relevant
velocity profiles and then heuristically scales those profiles
to accommodate communicated activity instance durations
is presented. While allowing animated simulation objects
to be moved with any arbitrarily shaped velocity profiles,
this technique ensures that an object’s temporo-spatial con-
trol rests entirely with the underlying simulation models.

1 INTRODUCTION

Visualization of modeled operations can be of significant
help in the verification and validation of discrete-event
simulation (DES) models (Law and Kelton 2000). This is
especially true in construction where typical decision mak-
ers are experts in their domain but are not generally profi-
cient in simulation itself. Visualization can also provide
decision makers with valuable insight into subtleties of
planned construction operations that are otherwise non-
quantifiable and non-presentable.
 The authors’ recent research efforts have focused on
designing automatic, simulation-driven methods to visual-
ize modeled construction processes and any evolving prod-
ucts in smooth, continuous, dynamic 3D virtual worlds.
Methods have been designed to describe animated 3D
worlds that show how simulated processes are carried out,
using simple parametric text statements and references to
3D CAD models (Kamat and Martinez 2003a). This simple
text animation description language, called VITASCOPE,
is meant to be written out by end-user programmable tools
such as DES systems and allows a computer to create a

dynamic 3D virtual world that shows people, machines,
and/or materials interacting as they perform the modeled
processes.

1.1 Research Motivation

Synthetic, process simulation-driven 3D virtual worlds are
spatially and temporally faithful to the underlying DES
models that author the visualizations. Notwithstanding, the
3D visual representations (i.e. visualizations) of several
modeled processes digress in time and space accuracy from
the corresponding real-world operations due to the inherent
characteristics of DES.
 In DES, the state of a running model changes only at
discrete, but possibly random sets of simulated time points
(Schriber and Brunner 2001). These time points are typi-
cally the start or end of the model’s activities, and it is only
then that a running DES model can communicate with
other processes, or perform other actions such as output to
an animation trace. A DES model is only concerned about
the time instants at which instances of modeled activities
begin or end, and chooses to ignore everything (e.g. rate of
activity performance) that happens in between. The infor-
mation that a running DES model can communicate to ex-
ternal 3D animation methods is thus limited to the start
times and durations of all activity instances that occur in
any simulation run. The animation methods must then use
these limited pieces of discrete information to generate a
smooth, continuous, dynamic 3D virtual world representa-
tion that depicts the modeled activities being performed.
 In any modeled activity that involves motion of simu-
lation entities (e.g. a hauling truck, an airplane taking off),
the only kinetic property that can be computed from the
pieces of communicated activity instance information (i.e.
start time and duration) is the average speed of the simula-
tion entity (e.g. truck, airplane) in that particular activity
instance (e.g. haul dirt, take off). This is precisely the com-
putation existing 3D animation methods perform in de-
scribing the smooth, continuous motion of simulation enti-
ties in virtual worlds.

Kamat and

 In particular, the motion of a simulation entity is de-
picted by transforming (i.e. moving) the pertinent instanti-
ated CAD model of the entity at the computed average ve-
locity. The simulation entity-representing CAD model is
smoothly and linearly interpolated on a 3D trajectory that
represents that entity’s motion path (e.g. haul road, run-
way) in the communicated activity instance. Thus, a virtual
airplane taking off appears to travel down a runway at a
constant (average) speed for the activity instance’s sam-
pled time duration (i.e. runway occupancy time). Similarly,
a loaded truck hauling dirt on a virtual earthmoving jobsite
travels at a constant speed for the entire duration of the
haul regardless of the grades on the 3D motion trajectory
(i.e. virtual haul road) it travels on.
 The temporal and spatial accuracy of simulation
model-generated dynamic 3D virtual worlds is commensu-
rate with the detail of the communicated information from
which the visualizations are created. The existing anima-
tion scheme is faithful to DES in that animated activity in-
stances inside a 3D virtual world begin and end at the exact
time instants dictated by the visualization-authoring simu-
lation models, with smooth, continuous, “constant-speed”
intermediate motion of the involved virtual entities (i.e.
simulation objects). Such visualization of simulation ob-
jects performing the modeled (and communicated) tasks at
constant speed is often sufficient to verify and validate
several DES models (Kamat and Martinez 2003b).
 However, the depicted constant velocity profiles of
moving virtual simulation objects are not an accurate repre-
sentation of reality. For instance, an airplane taking off on a
runway obviously does not travel at a constant velocity. In-
stead, as figure 1(a) presents, the airplane continuously ac-
celerates as it races down a runway and takes-off. Similarly,
as figure 1(b) presents, the typical velocity profile of a truck
that hauls dirt is a function of several disparate factors such
as engine power, load being hauled, and the rolling resis-
tance and grade of haul road segments. Due to the limited
operational information available from underlying DES
models, existing methods of animating simulated processes
are, however, unable to adopt such realistic velocity profiles
in describing the motion of virtual simulation entities. In-
stead, commensurate with the available pieces of informa-
tion, simulation objects are assumed to be moving at con-
stant, average speeds with straight-line velocity profiles such
as those superimposed on figures 1(a) and 1(b).

This assumption (and portrayal) of constant-speed en-
tity motion can often hinder the validation of modeled
processes in cases where the relative segmental speeds of
moving simulation entities and/or their accelera-
tion/deceleration influence their evolution and inter-object
interactions in a modeled and visualized system (e.g. air-
port, earthmoving jobsite). In addition, such constant-speed
visualization of modeled processes can frequently fail to
elicit credibility for simulation models, especially from
domain experts and decision makers who are not familiar

 Martinez

(a) Airplane on Take-Off Roll

(b) Dumptruck on Haul Road

Figure 1: Typical Velocity Profiles of Real Objects

with the mechanics of DES and/or are skeptic about simu-
lation analyses beforehand.

2 DESCRIBING VARIABLE
SPEED MOTION

The only temporal information about an activity-instance
that a running DES model can communicate to external
processes such as 3D animation methods is that instance’s
start time and its duration. Due to inherent modeling fea-
tures, a DES model can provide no information on the rate
at which the task(s) in any activity instance are performed.
This is unlike Continuous Simulation, where the state of a
model (and hence the rate of activity performance) is con-
tinuously monitored at every time instant using differential
equations of motion (Law and Kelton 2000). The perform-
ance rate of an activity, however, provides precisely the
temporal information needed to describe the velocity pro-
file(s) of simulation object(s) that move (i.e. travel) while
performing the task(s) in a particular activity instance.

Kamat and Martinez

2.1 Hypothetical Hybrid

Animation Approach

In order to describe variable-speed motion of virtual DES
objects then, the first possible technique that was explored
was to describe a parallel continuous simulation system
that would tightly integrate with the methods of animating
DES models in 3D. In particular, the authors considered
the possibility of externally formulating an in-context
simulation object’s pertinent kinetic properties (e.g. nomi-
nal acceleration/deceleration, maximum permitted veloc-
ity) and using that information along with each communi-
cated activity instance (i.e. start time and duration). During
visualization, the integrated continuous simulation mecha-
nism would use the formulated kinetic properties to com-
pute the involved simulation object’s velocity profile (i.e.
its temporal evolution) beginning at the indicated activity
instance start time.
 This hybrid animation approach is, however, impossi-
ble to achieve in a DES framework. In particular, such a
strategy would only work if a DES model communicated
an activity instance’s start time and enforced no restrictions
on when it ended. That information (i.e. activity instance
end time) could then be determined in real-time as the in-
volved simulation object’s temporal evolution was com-
puted continuously during visualization. A DES model
must, however, explicitly enforce a communicated activity
instance’s end time (i.e. its duration). This is obvious be-
cause the start of instance(s) of other simulation model ac-
tivities (often involving the object that is in context in the
current activity instance) is explicitly tied to the comple-
tion of the current communicated activity instance. Once
instantiated, any instance of such a successive activity will
attempt to exclusively manipulate the in-context virtual
simulation object to visually describe the performance of
that latter communicated task.
 The hypothetical continuous simulation system com-
puting the simulation object’s temporal evolution in the in-
stance of the previous activity would, however, be unable
to guarantee the completion of its motion at the exact pre-
cise instant at which the successive activity starts. Stated
differently, it is mathematically impossible to externally
formulate kinetic object properties and compute a unique,
valid, continuous velocity profile using a set of differential
equations if the motion start and end times (i.e. the lower
and upper bound of the integration interval) and the dis-
tance traversed (i.e. the area under the resulting curve) are
both explicitly enforced.

This is however the case in DES. As such, any compu-
tation scheme (for visualizing simulated processes) that
wrests the temporal and spatial control of simulation ob-
jects away from the underlying DES models cannot portray
the modeled operations correctly in dynamic 3D virtual
worlds. The description of any arbitrary velocity profiles to
be applied to mobile simulation objects during animation
must thus be sought from the DES models that author visu-
alizations. However, a DES model obviously does not en-
capsulate any such information (e.g. an object’s kinetic
properties) simply because the rate of performing any
modeled activity is generally irrelevant to the model from
the simulation analysis perspective.

2.2 Time-Based Scaling of
Velocity Profile Shapes

In order to visually describe variable speed motion of ani-
mated simulation objects then, the authors devised a
unique computation scheme that prudently shares the re-
sponsibility of describing a moving simulation object’s ar-
bitrary velocity profile between the underlying DES model
and the 3D animation methods. In particular, the general
shape of the velocity profile to be applied to a moving ob-
ject is sought from the visualization-authoring DES model.
The shape of this general profile can be explicitly defined
(and input into a DES model) by a modeler, or it can be the
result of computations performed within a running model.
 Then, at each communicated activity instance, the
animation methods heuristically scale (up or down) the
previously defined velocity profile in such a way that the
mobile simulation object to which it is applied traverses an
indicated motion path in a time interval that is exactly
equal to the communicated activity instance duration. This
flexible technique allows for two vital things. 1) Any arbi-
trarily shaped velocity profile resulting from any DES
model-defined or externally performed computation can be
explicitly applied to a moving simulation object, and 2) the
temporo-spatial control of all simulation objects remains
entirely with the underlying simulation model since the
animation methods merely scale a defined velocity profile
to fit the duration of a communicated activity instance.
 For any defined motion path trajectory, a simulation
model defines the shape of a desired object velocity profile
by specifying an arbitrary number of velocity-distance
pairs. The specified velocity values can span any positive
numerical range and the corresponding indicated distances
are the percentile (0 to 100) arc lengths along the path.
The shape of the profile is deduced by plotting the path’s
percentile arc distance on the abscissa and the correspond-
ing velocity values on the ordinate. This is graphically pre-
sented in figure 2. No limitations are placed on this defini-
tion except that the distance value in the last specified
velocity-distance pair must equal 100 percent (i.e. the cur-
rent path’s total arc length).
 As a first pre-processing step, the defined velocity ver-
sus percentile distance profile is converted to a velocity
versus actual distance curve. As figure 3(a) depicts, this is
accomplished by simply replacing the percentile arc
lengths on the abscissa by the corresponding actual arc dis-
tances for the current path. The specified velocity values
are left unchanged. The total time To, required to traverse

d Martinez
Kamat an

Figure 2: Definition of Velocity Profile Shape

this converted profile in its unmodified form can then be
given by the following equation:

n

n

oooo

o

n

ooo
o

TTTT

V
S

V
S

V
S

V
ST

...

...

321

321

321

+++=

+++=
 (1)

As figure 3(a) indicates, V are the av-

erage velocities at which the respective path segments
are traversed. In the case of this converted,

unmodified curve, the total original travel time works out
to be 195.66 seconds. Now, for any communicated activity
instance of duration T

noooo VVV ,...,,
321

nSSSS ,...,, 321

i (say 150 seconds), the described
velocity profile is segmentally scaled up or down such that
a simulation object traveling that path with the resulting
modified (i.e. scaled) velocities reaches the end of the path
in exactly Ti time units. This is graphically depicted in fig-
ure 3(b). This scaling procedure can be described as:

)...()...(

)...()...(

321321

321321

nn

nn

oooo
o

i
iiii

o

oooo

i

iiii

TTTT
T
T

TTTT

T
TTTT

T
TTTT

+++=+++∴

+++
=

+++









+







+







+








=

o

i
o

o

i
o

o

i
o

o

i
o T

TT
T
TT

T
TT

T
TT

n
...

321
 (2)

The underlying assumption that is made in segmen-

tally scaling the original converted velocity profile (figure

3(a)) to accommodate the currently specified activity in-
stance duration (figure 3(b)) is that:









=

o

i
oi T

TTT
11

,








=

o

i
oi T

TTT
22

, …








=

o

i
oi T

TTT
nn

(3)

 With this assumption, the equation that distributes the
communicated activity instance duration over the different
velocity segments can be written as:

n

n

i

n

iii

iiiii

V
S

V
S

V
S

V
S

TTTTT

...

...

321

321

321 +++=

+++=
 (4)

 The fact that:

 1

1

1

i
i V

ST =
, 2

2

1

i
i V

ST =
, … n

n
i

i V
ST 1=

(5)

provides the basis for computing the average segmental ve-
locitiesV , from which the scaled, modified,
activity instance-specific velocity profile can be con-
structed (figure 3(b)). A simulation object that follows this
modified velocity profile is guaranteed to traverse the path
in the exact communicated activity instance duration T

niiii VVV ,...,,
321

i.
The following section presents the implementation of

the described computation scheme. The implementation is
a powerful tool that allows engineers to accurately describe
the 3D motion of virtual DES objects on realistic-looking,
smoothly-curved motion trajectories.

3 PATHFINDER

The algorithms that allow engineers to define flexible,
smooth, curved motion path trajectories and then move vir-
tual simulation objects on those trajectories with desired
velocity profiles are implemented as a powerful software
tool named PathFinder. This tool has been designed as an
extension to the VITASCOPE visualization system.
VITASCOPE is a user-extensible 3D animation language
designed specifically for visualizing simulated processes
(particularly construction operations) in smooth, continu-
ous, dynamic 3D virtual worlds.

In particular, the PathFinder add-on defines parametric
text animation language statements that allow the definition
and manipulation of smooth, curved motion trajectories of
arbitrarily complex shapes. PathFinder also implements
statements that allow simulation models to 1) specify a de-
fault per-path arbitrary velocity profile shape, and 2) over

Kamat and Martinez

(a) Original Velocity Profile

(b) Adjusted Velocity Profile

Figure 3: Derivation of Time-Scaled Velocity Profiles

Kamat and Martinez

ride (if necessary) the de fault velocity profile shape for any
communicated instance of simulation object motion.

In addition, PathFinder also implements terrain-
following techniques that help orient moving objects cor-
rectly in 3D, and the velocity profile scaling methods that
heuristically resize the current velocity profile shape to ac-
commodate the duration of a communicated activity in-
stance. PathFinder thus presents the technologies that allow
engineers to accurately describe the 3D motion of virtual
discrete-event simulation objects on realistic-looking,
smoothly-curved motion trajectories.
 Figure 4 presents an animation trace with statements
that define a smooth motion trajectory and then move an ob-
ject over it with an indicated velocity profile. We define mo-
tion trajectories in 2D planar resolutions by specifying a se-
ries of 2D (i.e. x and z coordinate only) control points and
then manipulate (if needed) the shape of the resultant spline
curve by adjusting the tension, continuity, and/or bias of one
or more knots (i.e. control points). A default velocity profile
(if any) can also be specified as part of a path’s definition. In
the absence of an explicitly indicated velocity curve for a
path, PathFinder assumes a default, constant-speed profile
for objects that traverse that path. The defined 2D trajectory
is then superimposed on the 3D terrain model that represents
the underlying simulated system’s landscape.

Simulation objects can obviously override a path’s de-
fault profile during an activity instance (i.e. motion) com-
munication. This can, for instance, allow simulation mod-
els to specify a unique velocity profile that is a function of
the properties (e.g. engine power, loaded mass) of the in-

context simulation object (e.g. dumptruck) in a communi-
cated instance of an activity (e.g. haul dirt). When a simu-
lation object is instructed to move on a particular path in
the specified simulation time units, the current (path de-
fault or object overridden) velocity profile is appropriately
scaled such that the time to traverse the path with that pro-
file is equal to the communicated activity instance dura-
tion. The simulation object then traverses the superimposed
3D path trajectory while following the terrain surface as
closely as possible.

Figure 5 presents a strip of animation snapshots taken
during the visualization of the motion statement from the
animation trace in figure 4. The 3D projection of the de-
scribed 2D trajectory passes through highly uneven terrain.
However, as the snapshots depict, PathFinder’s terrain-
following algorithms ensure that the object (i.e. dozer) is
correctly oriented on the terrain as it travels the path with the
scaled velocity profile. The snapshots presented are not suc-
cessive computer frames observed during visualization. The
discretely captured frames are displayed in a filmstrip format
merely to depict a sense of motion. The smooth motion of
the dozer during visualization and its non-constant velocity
cannot be fully captured in static snapshots. Only the anima-
tion can convey that information.

3.1 Describing Object Motion
with Terrain-Following

Defined and modified 2D motion path trajectories are con-
verted to their 3D representation by projecting them onto

Figure 4: Moving Simulation Objects on Defined Motion Paths

Kamat and Martinez

Figure 5: Animation Snapshots of Terrain-Followed Object Motion

Kamat and Martinez

the 3D terrain model that describes the simulated system’s
landscape. At any instant, a moving object’s current, ad-
justed velocity profile dictates the downstream distance on
a path at which it is currently located. Given the current
downstream distance, the object’s planar position (i.e. x
and z coordinate) is determined by parametrically retriev-
ing (on the defined 2D path) the point which corresponds
to that arc length (i.e. downstream distance). Then, the ob-
ject’s current yaw is calculated by simply computing the
tangent (in the 2D plane) to the curved path trajectory at
that determined position (i.e. x and z coordinate).
 To determine the 3D position of the object inside the
virtual world, the computed planar position point is pro-
jected on the 3D terrain model of the simulated system’s
landscape i.e. on the superimposed 3D path. This is accom-
plished by retrieving the elevation (i.e. height) of the terrain
model at that horizontal plane location i.e. we retrieve the y
coordinate of the terrain point that corresponds to the x and z
values of determined 2D position. This describes the travel-
ing object’s current 3D position at that time instant. Since
this computation is performed dynamically at visualization
run-time, the 2D path’s 3D projection always drapes the ter-
rain surface even if its shape deforms during animation i.e.
the procedure always retrieves the current terrain elevations
(heights) below 2D position points.
 Given the 3D position and yaw of the moving object
on the terrain surface, the goal of terrain-following is to
now orient that object correctly (i.e. compute the pitch and
roll) such that its virtual contact points (e.g. a truck’s tires)
all touch the terrain’s surface as closely as possible. To
keep moving objects correctly oriented on a terrain’s sur-
face, it is necessary to find the locations where that ob-
ject’s contact points touch the virtual terrain. This can be
done using geometric collision detection techniques. How-
ever, this is inefficient because general collision detection
inherently involves more complex, CPU-intensive compu-
tations than merely computing an object’s terrain contact
points (Barrus and Waters 1997).
 To enforce terrain-following in a moving simulation
object, we adopt a generalized technique that systemati-
cally computes that object’s pitch and roll by projecting its
contact points on the terrain model in a manner similar to
that used in computing the 3D position. In particular, the
2D positions corresponding to an object’s surface contact
points (e.g. tires, crawler edges) are projected onto the 3D
terrain model to determine the positions where they inter-
sect the surface.
 The pitch of the object is calculated first by determin-
ing the mean terrain elevation (i.e. height) along the ob-
ject’s front and rear edges. In particular, the mean eleva-
tion along the front edge can now be obtained by simply
averaging the y coordinates (i.e. heights) of the calculated
front contact points (e.g. front tires). The mean elevation at
the object’s rear edge is similarly the average of the y co-
ordinates of the rear contact points. The object’s pitch at
that animated instant is then given by the direction (i.e.
vertical orientation) of the 3D vector constructed by join-
ing the computed mean elevation points at the object’s
front and rear edges.
 The side roll of the object is finally calculated using an
exactly similar procedure. In particular, the side roll is
given by the direction of the vector constructed from the
mean elevation positions along the object’s left and right
edges. These individual computation steps are obviously
not visible during an animation. At each animated instant,
the object is drawn on the screen in its final, fully-oriented
position. PathFinder thus computes a moving object’s ac-
curate 3D configuration by prudently synthesizing inputs
from the defined 2D motion path trajectory and the terrain
model on which the simulated operations are animated.

4 FUTURE WORK

The variable speed motion of simulation objects traversing
motion trajectories during the performance of communicated
activity instances is purely based on kinetics. In particular,
no physical constraints (e.g. mass of an object, its locomo-
tive power, grades of the terrain, gravity) are considered in
the computation that describes the simulation object motion.
Any depicted 3D process (e.g. a loaded truck continuously
accelerating uphill a steep haul road) is a faithful representa-
tion of the information communicated by an underlying DES
model regardless of whether that process (accelerating when
traveling uphill loaded) can be accomplished in real life.
Methods that can provide such feedback on physically-
impossible simulated processes during visualization can,
however, be of significant help within a framework intended
to validate modeled (and animated) processes. Future work
can explore techniques of designing such methods by incor-
porating dynamic physical variables in computing the mo-
tions of simulation objects.
 In addition, the time-based velocity profile shape scal-
ing techniques designed in this work assume the profiles to
be composed of piecewise-linear segments. This guides the
procedure used in scaling the original defined profiles to
accommodate communicated activity instance durations.
However, typical velocity profiles generally exhibit curva-
ture, particularly in the acceleration and deceleration
phases of a moving object. Future work can explore tech-
niques of defining such curved velocity profiles and design
methods for heuristically scaling them to accommodate
different motion completion times.

5 CONCLUSION

The presented research extends the state-of-the-art of sci-
entific 3D visualization of DES modeled processes. The
work puts in place the techniques that engineers can use to
instruct virtual simulation objects to follow any arbitrarily-
shaped velocity profiles while adhering to fixed motion

Kamat and Martinez

completion times when traversing along any defined mo-
tion path trajectories.
 Discrete-event simulation models, by their very nature,
are unconcerned about the rate at which activities in a
model are performed. They only enforce the time instants
at which activity instances start and end. Since the tem-
poro-spatial control of virtual simulation objects cannot be
wrested away from DES models, any information that de-
fines an object’s variable velocity profile must originate
within an underlying DES model. A computation scheme
that allows DES models to define the general shapes of
relevant velocity profiles and then heuristically scales
those profiles to accommodate communicated activity in-
stance durations performs well in a framework for animat-
ing DES models.
 Such a technique not only allows simulation objects to
be moved with any arbitrarily shaped velocity profiles, but
also ensures that their temporo-spatial control rests entirely
with the underlying DES models. The visually accurate
animation results we obtain prove that this is not only pos-
sible, but also very effective in convincingly presenting
modeled operations in dynamic 3D virtual worlds.

ACKNOWLEDGMENTS

The presented work has been supported by the National
Science Foundation (NSF) CAREER and ITR programs.
Any opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

Barrus, J. W., and R. C. Waters. 1997. QOTA: A Fast,
Multi-Purpose Algorithm for Terrain Following in
Virtual Environments. In Proceedings of the Second
Symposium on Virtual Reality Modeling Language,
59-64, New York, New York: Association for Com-
puting Machinery.

Kamat, V. R., and J. C. Martinez. 2003a. Automated Gen-
eration of Dynamic, Operations Level Virtual Con-
struction Scenarios. Electronic Journal of Information
Technology in Construction (ITcon), Vol. 8, 65-84.
Available online via <http://www.itcon.org>
[accessed June 20, 2003].

Kamat, V. R., and J. C. Martinez. 2003b. Validating Com-
plex Construction Simulation Models Using 3D Visu-
alization. Systems Analysis Modelling Simulation,
Vol. 43:4, 455-467.

Law, A. M., and W. D. Kelton. 2000. Simulation Modeling
and Analysis, 3rd Ed. New York, NY: McGraw-Hill.

Schriber, T. J., and D. T. Brunner. 2001. Inside Discrete-
Event Simulation Software: How it Works and Why it
Matters. In Proceedings of the 2001 Winter Simulation
Conference, ed. B. A. Peters, J. S. Smith, D. J. Medeiros,
and M. W. Rohrer, 158-168, Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

AUTHOR BIOGRAPHIES

VINEET R. KAMAT is an Assistant Professor in the
Department of Civil and Environmental Engineering at the
University of Michigan. He received his PhD in Civil
Engineering at Virginia Tech in 2003; an MS in Civil
Engineering at Virginia Tech in 2000; and a BE degree in
Civil Engineering from Goa University (Goa, India) in
1998. He designed and implemented the VITASCOPE
visualization system with J. Martinez as part of his doctoral
research. In addition to visualization, his research interests
include discrete event simulation, and decision support
systems for construction. His email and web addresses are
vkamat@umich.edu and <http://www.engin.
umich.edu/~vkamat>.

JULIO C. MARTINEZ is an Associate Professor in the
Via Department of Civil Engineering at Virginia Tech. He
received his PhD in Civil Engineering at the University of
Michigan in 1996; an MSE in Construction Engineering
and Management from the University of Michigan in 1993;
an M.S. in Civil Engineering from the University of
Nebraska in 1987; and a Civil Engineer’s degree from
Universidad Catolica Madre y Maestra (Santiago,
Dominican Republic) in 1986. He designed and
implemented the STROBOSCOPE simulation language
with P. Ioannou and was V. Kamat’s research advisor. In
addition to discrete event simulation, his research interests
include construction process modeling and decision
support systems for construction. His email and web
addresses are <julio@vt.edu> and <http://
strobos.ce.vt.edu>.

mailto:vkamat@umich.edu
mailto:vkamat@umich.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1518
	02: 1519
	03: 1520
	04: 1521
	05: 1522
	06: 1523
	07: 1524
	08: 1525
	09: 1526

