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ABSTRACT 

We build upon our previous work (Hazy and Tivnan 2003) 
to represent organizations as a network of agents, tasks, re-
sources and knowledge (Krackhardt and Carley 1998) to 
explore the emergent effects of agent interactions on or-
ganizational outcomes.  To do this, we define agents in the 
context of their position in the network, describe the 
agent’s symbolic representation of its position in the net-
work, and develop a probabilistic function associated with 
each agent that acts locally to change the network.  We 
conclude with a brief overview of our research in this area 
to date and the usefulness of this network representation. 

1 THEORETICAL BASIS 

As a starting point, we accept the axiomatic definition of 
an organization often used in computational organizational 
theory and modeling (Carley and Prietula 1994).  This 
axiomatic base can be summarized as: “organizations are 
viewed as collections of intelligent agents who are cogni-
tively restricted, task oriented, and socially situated” (p.56) 
and is known as ACTS theory.  In addition, we adopt a 
precise description of an organization as a connected net-
work linking agents, tasks, resources, and knowledge, each 
type of node is called a different color (Carley, Ren, and 
Krackhardt 2000). 
 This description is known as the PCANS or meta-
matrix representation (Krackhardt and Carley 1998 and 
Tsvetovat and Carley 2003).  In this representation, all 
knowledge relevant to collective activities is represented as 
knowledge nodes external to agents.  Agents access knowl-
edge nodes through network connections. They also access 
resources, are assigned tasks, and communicate with other 
agents through network connections.  First order links con-
nect a node with its neighbors.  Links of a neighbor to other 
nodes are called second order connections. 
 Although the meta-matrix representation (Krackhardt 
and Carley 1998) describes the network at a point in time, 

  

it does not provide a mechanism to change the network 
over time.  It implicitly assumes homogeneous and inactive 
agents embedded in a network of connections they cannot 
change. Other work has developed the ACTS theory by 
studying the action of agents in a particular task environ-
ment (Carley and Prietula 1994). In these studies, the 
agent’s PCANS network is assumed to change, but the 
mechanism is not explicitly represented (Carley et al. 
2000).  This work is intended to bridge the gap between 
these streams of research and describe explicitly, in a man-
ner consistent with both PCANS and ACTS theory, how 
the action of agents changes the network over time. 

 

2 BRIDGE BETWEEN PCANS  
AND ACTS THEORY 

To bridge the gap between PCANS and ACTS theory, we 
define an intelligence mechanism within each agent.  This 
mechanism takes as an input its current network state 
(i.e., its first and second order connections to other 
agents, to tasks, to resources and to knowledge).  Based 
upon a set of heuristic rules, the agent is then able to 
change the network connections in its local environment.  
When one considers the space of all agents, tasks, re-
sources and knowledge, together with all possible con-
nections, then the subset of active connections represents 
the organization at a point in time.   
 For this analysis, each agent is assumed to be embed-
ded in a network that defines the collective social situation.   
As such, each agent can potentially be directly connected 
to all other agents, all tasks, all resources, and all knowl-
edge components. The links to these nodes are called first 
order connections.  The agent’s second order connections 
are all of the connections of a neighboring node to other 
nodes that are accessible by the agent through a first order 
connection.  As such, the number of nodes accessible 
through an agent’s first and second order links can become 
quite large.  In reality, however, each agent is connected 
only to a subset of other agents, tasks, resources and 
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knowledge, and these nodes are likewise connected to a 
subset of all possibilities.   Therefore, an agent’s network 
connections are smaller in practice.  For these purposes we 
define an agent as a node at the nexus of its network con-
nections with other agents, tasks, resources and knowledge.  
Agent nodes are distinguished from other nodes by having 
agency, defined to be the active ability to change its net-
work connections.  Agent intelligence is the mechanism 
that enables choices with respect to agency. 

3 AN AGENT’S INTERNAL  
REPRESENTATION OF  
ITS LOCAL NETWORK 

To develop the mathematical model for agent intelligence, 
we follow and generalize the formulation of Chang and 
Harrington (2002).  We consider a collective consisting of 
M agents operating as a social system.  As a point of depar-
ture, rather than simply assuming that individuals engage 
in an operation decomposable into N tasks as Chang and 
Harrington do, we assume each agent, i ε {1, 2, 3, …, M} 
participates in collective activity that can be broken down 
into S tasks, utilizing R resources, taking advantage of K 
knowledge components and interacting with M-1 other 
agents.   Like Chang and Harrington (2002), we assume 
that there are several different methods that can be used by 
the agent for each task.  However, we also assume that 
there are several methods that can be used with each re-
source and each component of knowledge.  In addition, we 
assume there are several methods that can be used for each 
interaction with each other agent.  The method chosen by 
an agent for performing each task, using each resource, in-
terpreting each component of knowledge or engaging each 
agent interaction is represented by a series of d bits (0 or 
1). We define d to equal one plus the number of colors for 
possible second order connections.  Further, because the 
knowledge resources and tasks are represented as external 
to the agent, each method is considered in the context of 
the network connections available to the agent.  Specifi-
cally, for a particular interaction we assume that each 
method is fully characterized by the first and second order 
connections available to the agent in the interaction.   
 For simplicity, rather than differentiating among inter-
actions with tasks, resources, knowledge and other agents, 
we will call each of these an interaction.  As such there are 
at most 2d possible methods for each interaction.   In prac-
tice the number of methods may be significantly smaller as 
many combinations are not meaningful.  Further, we define 
total number of possible interactions as  
 
 N = (M-1) + S + R + K. (1) 

 
Thus, in any time period, t, an agent, i, and its interactions, 
is fully characterized by a binary N x d matrix, called the 
agent’s “methods matrix”.   We denote the methods matrix 
at time t by  
 
 zi

 ( t ) ε {0,1}N  x  d. (2) 
 

Equation (2) can be decomposed so that 
   
 zi ( t ) ε (zi

1
 ( t ),…,zi

N
 ( t )) ε {0,1}N, (3) 

 
and   
 
 zi

h
 ( t ) ε  (zi

h,1(t),…,zi
h,d(t)) ε  {0,1}d. (4) 

 
Equations (3) and (4) are agent i’s current method in inter-
action h ε  {1,…N}.   Again, as adapted from Chang and 
Harrington (2002, p. 7), looking at an example where there 
are six other agents, six tasks, six resources and six knowl-
edge components (i.e., from Equation (1), there are N = 24 
possible interactions, and d = 5 bits describing the method 
of interaction).  An example of Equation (2), the methods 
matrix, appears in Figure 1. 
 

Interaction (h): #1 #2 #3  #24 
Interaction method (zi

h
 (t)): 1 0 1 … 1 

 1 0 0  1 
 0 1 0  1 
 1 0 1  0 
 1 1 0  1 

                              ←         zi(t)               → 
Figure 1: An Example of the Methods Matrix 

 
What is shown is that for each one of twenty-four possible 
interactions, h, whether with a task, a resource, a compo-
nent of knowledge or another agent, one method of 32 = 2d 

= 25 available options is chosen.  Given the interactions are 
completely described by a methods vector of 120 (= 24 x 
5) bits, there are 2120 possible bit configurations overall 
(Chang and Harrington 2002: 7-8).  Even though in prac-
tice this number is much smaller as many combinations are 
redundant or meaningless, the need for a cognitively re-
stricted agent (Carley and Prietula 1994) to use simplifying 
heuristics to manage these interactions is apparent. 

4 INTERACTION METHODS DEFINED 

We define the agent’s method for each of its N interactions 
in the context of the PCANS meta-matrix.  As shown in 
Table 1, for each interaction, the five bits describing the 
agent’s method are defined as follows: the first bit indi-
cates whether a first order connection exists between the 
focal agent and the relevant object.  The second through 
fifth bits indicate whether the second order connections to 
other agents, tasks, resources or knowledge nodes can be 
accessed through the first order connection (i.e., whether 
the first order connection is strong enough to provide visi-
bility into the next layer of the network). 
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Table 1: Method Bit Definitions 
1 2 3 4 5 

First 
Order 
Link 

 

  

1=Yes 
0=No 

Access 
to   
Second 
Order 
Link to 
Agents 

1=Yes 
0=No 

Access 
to    
Second 
Order 
Link to 
Tasks 

1=Yes 
0=No 

Access   
to        
Second 
Order 
Link to 
Resources 

1=Yes 
0=No 

Access       
to          
Second    
Order    
Link to   
Knowledge 

1=Yes 
0=No 

 
 As an example, for an interaction with another agent, 
if bit #1 = 1, there is a connection between the focal agent 
and another remote agent.  If bit #2 = 1, then the focal 
agent has visibility into the remote agent’s connections to 
other agents.  Any heuristic rules governing the agent’s 
network interaction can use information about second or-
der connections.  A possible rule would determine when 
the agent can create a first order connection to augment a 
second order connection, that is, create a connection with a 
friend of a friend.  However, if bits # 3, 4 and 5 = 0, the fo-
cal agent has no visibility into the neighbor’s second order 
links to tasks, resources and knowledge.  As such, the 
agent does not have access to its friend’s tasks, resources 
or knowledge.  The method for the first order connection is 
limited to the social connections of the neighbor, a purely 
social tie.  
 This representation embodies information within each 
agent about its local network.  As such it provides the po-
tential for agent action based upon both first and second 
order connections. 

5 MECHANISM OF AGENT INTELLIGENCE:  
METHOD ENACTMENT FUNCTION 

For each agent, for each time step, we define the method 
enactment function (MEF) as follows: under a set of rules 
resident in the agent, either stochastic or deterministic, an 
agent changes its methods of interaction with respect to 
other agents and/or to tasks, resources or knowledge.  
These method changes result in changes to the organiza-
tion’s network either as new network connections or as 
new or transformed resources or knowledge.  When the 
MEF runs during a particular time step, it takes into ac-
count current methods, global rules and agent-specific in-
ternal rules to determine changes to its methods that will be 
in effect at the beginning of the next time step.  As such, 
the MEF represents the impact that interactions between an 
agent and other objects (other agents, resources, tasks, or 
knowledge) have on that agent’s future network connec-
tions. The probabilistic outcome of MEF for step t, that is, 
the subset of the network as updated by the interaction, is 
defined as that agent’s method matrix for time step t+1.  
During each time step, an agent’s method is manifested in 
local change to the organization’s network.  The modified 
network thus becomes the network in effect at the begin-
ning of the next time step.   
 The limitations to methods defined in this function can 
be thought of as a simplified (for these purposes) represen-
tation of the cognitive limitations inherent in an agent’s 
“mental model” of its local environment (Gavetti and 
Levinthal 2000).  In fact, an agent can enact changes 
within the environment in which it is connected, but in 
practice, the agent may be limited to changes allowed 
within its internal rules, rules that are themselves affected 
by the agents existing network connections. 

6 COMPUTATIONAL EMPIRICAL RESULTS 

To explore the potential usefulness of the above theoretical 
formulation we have conducted some initial agent-based 
modeling computational experiments consistent with the 
above under simplified assumptions.   In this section we 
briefly describe some of the emergent results to date. 
 We accept Sallach’s (2003) definition of emergence, 
as the contributing process of organization to multi-level 
systems.  Sallach’s (2003) assertion that social phenomena 
emerge from agent (e.g., individual) interactions provides 
an ontological basis for our research.      
 Agent based modeling consistent with the previously 
described network approach was used to study the implica-
tions of boundary spanning activity on organizational 
learning (Hazy, Tivnan, and Schwandt 2002) and more 
generally, the notion of boundary permeability as a con-
struct in agent-based modeling of complex systems (Hazy, 
Tivnan, and Schwandt 2003).  In these studies involving 
over 11,000 artificial organizations, certain methods were 
fixed for all agents to isolate the factors under study and to 
simplify the analysis.  Initially, agents were connected ran-
domly to tasks and tasks to resources.  As time elapsed, 
new “generations of knowledge” were created, connected 
to various tasks and connected to what were called “out-
sider agents.” Outsider agents remained outside the organi-
zation’s boundary, that is, they did not participate in col-
lective activities.  As agents interacted with one another, 
including with outsider agents, first order connections were 
established whenever a second order connection to a new 
knowledge node became visible to an agent.  In this way, 
new knowledge crossed the boundary (became connected 
to agents engaged in collective activities) and diffused 
broadly within the organization.  Additionally, these local 
agent interactions and resulting information flows produce 
the emergent effect of variation in the social structure of 
organizations, each structure with different fitness, in the 
specific context of the turbulence and complexity of it’s 
the external environment (Siggelkow and Rivkin 2003).    
Stated differently, this process provides an emergent 
mechanism for variation of organizational forms that de-
pends only upon local interactions and does not depend 
upon exogenous design.     
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 Results of the above indicated that the level of bound-
ary spanning activity of agents has a non-linear relation-
ship with collective outcomes such as production and 
number of surviving agents.  Figure 2 provides a sample 
depiction of this non-linear relationship between boundary 
permeability, defined to be the ratio of information transfer 
events by agents outside the organization to interaction 
events by agents inside,  and agent survivability (see Hazy, 
Tivnan and Schwandt 2003 for a detailed discussion of this 
relationship.) 
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Figure 2: Non-Linear Relationship between Boundary 
Permeability and Agent Survivability (Hazy, Tivnan 
and Schwandt 2003) 

 
More boundary permeability increases agent survivability 
at a diminishing marginal rate until it has little incremental 
and eventually a negative effect.  The specific characteris-
tics of this relationship are dependent upon environmental 
turbulence, the initial positive effect of boundary spanning 
being more pronounced with greater turbulence.  These 
computational experiments also demonstrated that when an 
agent could change its local network, that is, become con-
nected to tasks (i.e., perform) previously not assigned, the 
emergent outcome that was observed was an increase in 
organizational production and agent survivability at all 
levels of boundary spanning.    
 In a third study, the effect of differential rewards to 
agents on organizational outcomes was studied in the con-
text of agent learning and collective performance (Hazy, 
Tivnan, and Schwandt Under review).  Results of this 
study showed that when rewards are distributed based upon 
contribution, either to actual production or to the diffusion 
of knowledge that informed production, rather than being 
divided equally among all agents, outcomes improve.    
Because collective outcomes improve, an individual 
agent’s survival potential improves if it participates in pro-
duction or the diffusion of knowledge– essentially, the re-
sult implies that when agents are rewarded for contribu-
tions of either exploitation or exploration collective 
outcomes improve (March 1991).  When rewards are pro-
vided to the agents that provided relevant knowledge to 
other agents, the emergent effect is an increase in organiza-
tional performance and sustainability.  This offers compu-
tational empirical support for: (a) individual fitness value 
of an agent-resident intelligence mechanism that provides 
visibility into the agent’s local network connections and 
promotes the diffusion of knowledge and (b) an increased 
understanding of the emergent relationship between 
boundary spanning individuals, organizational learning and 
organizational performance.  
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