
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

SIMULATION WORLDVIEWS - SO WHAT?

Michael Pidd

Department of Management Science
The Management School

Lancaster University
Lancaster, LA1 4YX, UNITED KINGDOM

ABSTRACT

The simulation pioneers had no choice but to write code if
they wished to conduct a computer simulation. Hence the
early interest in simulation worldviews, which allowed an
application model to be separated from a simulation en-
gine. Nowadays, few simulations are developed this way
and few students are taught the various simulation world-
views, though they figure in many textbooks. Does this
matter, or is an interest in simulation worldviews just a his-
torical curiosity?

1 INTRODUCTION

1.1 Simulation for the People?

I suspect that the vast majority of discrete simulation mod-
els are constructed using what I call VIMS (Pidd 2004) and
Law and Kelton (2000) term Simulation Packages. These
are shrink-wrapped software systems such as Witness,
Simul8, MicroSaint and Automod in which models are
built by point and click using predefined objects for which
the user must supply properties. They require little in the
way of programming and their popularity is evidenced by
their presence in the WSC Exhibition Hall for the last 10
years. Though there is no proper survey evidence to sup-
port this assertion, the proportion of discrete simulation
applications that use a VIMS may be as high as 90%, with
many of the rest being large-scale models developed in the
defence sector. The latter, by contrast, usually involve sig-
nificant programming and may require explicit manage-
ment of the events that comprise the dynamic behaviour of
the simulation. The pros and cons of the two approaches
are discussed at length in Pidd (2004).

Why are VIMS so popular? Because they offer the
prospect of rapid application development by people who
are not computer professionals. Indeed, the vendors of
Simul8 have, from time to time, implied that it could be to
simulation what Excel has been to business modelling.
There is no doubt that a VIMS can be easy to learn, at least

for straightforward applications, as most simulation in-
structors will testify. However, it is also true that a VIMS
can run out of power when faced with large and complex
applications. This, of course, may not matter for routine
business applications in which the 80:20 rule may apply:
that is, a simple model may be good enough. After all, few
senior managers would invest very large sums in a one-off
capital development based on a complicated stochastic
analysis with wide and overlapping confidence intervals.
Approximate models are often good enough, and VIMS are
good enough for approximate models.

1.2 Inside a VIMS

1.2.1 Machine and Task Networks

Figure 1 shows the logical composition of a typical VIMS.
It presents a user interface that exploits the API of what-
ever operating system is in place (usually a version of
Windows™). Within this, the user will be allowed to de-
velop a model, to edit an existing model, to run a model
and to conduct controlled experiments. The latter usually
allows at least some statistical analysis, and allows the ex-
port of results files in some suitable, external format. Mod-
els are constructed by selecting icons that represent fea-
tures of the system being simulated and these are linked
together onscreen, and parameterised using property
sheets. This is fine if the objects provided are a good fit for
the application. However, the default logic provided by the
simulator may be inadequate to model the particular inter-
actions of specific business processes. To allow customisa-
tion, most VIMS provide a coding language in which inter-
actions can be programmed. Some offer links with general-
purpose programming languages (e.g., Visual Basic). Oth-
ers incorporate simulation quasi-languages that permit little
beyond the assignment of attributes, the definition of if
statements, loops and limited access to component proper-
ties. Some of the limitations of these languages and their
part in VIMs are discussed in Melao and Pidd (2004).

Pidd

Figure 1: Inside a Typical VIMS

Underneath the user interface is a generic simulation

model that is presented to the user in one of two ways,
sometimes both. The most common way, as seen in Wit-
ness and similar packages, is that of a machine network in
which parts flow from work station to work station. For
example, a part may go to a lathe, then through a washer,
then to an inspection point and then into a shrink wrapper
..etc. A work station may well be able to carry out more
than a single task and may be able to cope with more than
a single type of part. As parts flow through the network,
they sit at a work station for a time, possibly stochastic, of-
ten known as the cycle time. As a result of their interaction
with the work station during the cycle time, the parts
change state. Parts are routed through the machine network
and each machine must be parameterised by the comple-
tion of a sheet that specifies its predefined properties.

By contrast, systems such as MicroSaint offer a task
network that represents the sequence of tasks through
which the main entities of the simulation will flow. Thus,
passengers may disembark from an aircraft, may walk to
immigration, may be processed in immigration, walk to the
baggage hall ..etc. Each task requires resources for its
completion and tasks may compete for resources. The re-
sources required, and the conditions governing the start of
the task are specified in a property sheet, along with the
consequences of the task.

Of course, these two types of VIMS network are
equivalent; much as the dual formulation of a mathematical
programming problem is equivalent to its primal. That is,
with suitable imagination, an application that appears to be
a sequence of tasks may be modelled as a machine network
and vice versa – however, choosing a horse for the right
course can make life much easier.

In addition, whatever the vendors may claim, there are
very, very few (if any) real applications that can be fully
developed just by the completion of property sheets. In-
stead, each VIMS provides its own simulation language,
which is used to capture those aspects of the situation that
are not easy to represent in a property sheet (e.g. after 4:00
pm, only jobs judged as urgent will be processed, other-
wise the machine is cleaned).
1.2.2 A Generic Model

Inside every VIMS is a generic simulation model that is not
usually available to the user. In essence, the generic model
takes the network diagram as data, much as GPSS (Gordon
1969) was designed to take a series of punched cards that
were then interpreted by GPSS. Thus, if it were thought de-
sirable, a VIMS on-screen network could be replaced by a
series of verbal commands each of which carries attribute
data to represent the property sheets. The generic model as-
sumes that simulation entities change state and it reads the
network description to define the sequence of those states
and the conditions that govern them. The code fragments, in
whatever simulation language, are then used to modify the
standard generic model in some way or other.

One suitably parameterised, the generic model is run by
a simulation executive, which sequences and schedules the
tasks that define the application model. Like the generic
model, the simulation executive is also hidden from the user.
Hence, the form of the simulation executive is rarely re-
vealed by the VIMS vendors, who are keen to present their
software as easy to use and also powerful. How the simula-
tion runs is deemed to be of little concern to the users.

2 SIMULATION EXECUTIVES
AND WORLDVIEWS

Hollocks (2004) provides a fascinating account of the early
days of discrete simulation in UK industry. It seems that
the idea of simulation executives and worldviews emerged
from intelligent thinking about practical experiences.

The first discrete simulations were executed by hand,
with game boards and people acting as if they were the
machines and entities of the simulation. This permitted the
modelling of relatively simple applications and the simula-
tions were slow to execute and, therefore, allowed limited
experimentation and replication. Before too long, people
replaced these games with simple computer programs that
were written using the only available software technology
– the flipping of switches and, slightly later, the writing of
machine code and assembler. Needless to say, such pro-
gramming was slow and error-prone and required detailed
knowledge that was in short supply. Eventually, general
purpose programming languages appeared and they eased
the task of program development.

At some point in this process, the simulation applica-
tion developers and programmers realised that many of
their simulations had the same structure – entities changed
state through time, as enabled by available resources. The
nature of the entities and resources and the sequence of
state changes would vary from application to application,
but underneath were entities, resources and state changes
through time. This is analogous to the need of busy people
to organise their lives with a diary system in which future
commitments can be entered and, periodically, checked to

Pidd

see what commitments need to be met. Thus, the concept
of simulation worldview (Kiviat 1969a, 1969b) became of
great concern to developers of simulation software.

Hence there emerged the separation of function that
characterises most well written discrete event simulation
programs. As shown in Figure 2, there is

1. A general purpose simulation executive that can

be called by
2. An application program that complies with the

rules of the executive

Figure 2: Executive and Application

The executive’s job is to keep track of any future

commitments in its diary and to remind the application
program when, in simulation time, a particular state change
is due. The rules by which the application communicates
with the executive represent and comprise what has come
to be known as a simulation world-view. In the lexicon of
contemporary computing, they define the architecture that
allows the application components and executive compo-
nents to interoperate. Without a clearly specified architec-
ture, the interoperation is impossible.

3 THREE PHASE SIMULATION

It can be confusing when simulation worldviews are dis-
cussed in general and very abstract terms; hence this sec-
tion includes a brief review of one such worldview – the
three phase approach.

Pidd (2004) provides a detailed account of the work-
ings of the three phase worldview developed by Tocher
(1963) and his colleagues in the UK steel industry. Sadly,
many US-based writers do not understand how a three
phase simulation operates and confuse it with what is usu-
ally known as activity scanning. Hence, a short summary is
needed here. I can present cogent arguments about why a
three phase approach is preferable to the other worldviews,
but I suspect that my real preference is based on my initial
simulation education as well. Hence I shall make no real
attempt to argue that a three phase approach is best –
though it is!

In essence, the three phase approach recognises that a
simulation entity will change state if, and only if, defined
conditions are met. These conditions can be divided into two
groups: those that depend only on the passage of time and
those that depend on other conditions in the simulation.

3.1 Bs

Some operations have a starting or finishing time that can
be predicted in advance. These can therefore be scheduled
as if they were appointments being entered into a diary,
and these are known as Bs. Originally they were called B
activities, which was an abbreviation for Book-keeping ac-
tivities or Bound activities, the term ‘bound’ indicating that
they were bound to happen at some specified time, and the
term ‘book-keeping’ that they might used for keeping regu-
lar records (for example of queue lengths). Some people
refer to B events instead, and to avoid confusion they are
called Bs here. As a general rule, to which there are some
exceptions, when a simulation includes an activity that
takes some defined time, the end of that activity is mod-
elled by a B. Hence, the usual effect of a B is to release re-
sources and entities. For example, when the machining of a
part is finished, this is modelled as B, which releases the
part for the next stage of its route and releases the machine
for its next task.

Because these Bs can be directly scheduled, the simu-
lation executive can precisely control when they will occur
by ensuring that they are executed when the simulation
clock reaches the correct time. Hence, each B must have an
entry in the event calendar which serves as a reminder to
the executive to take some action. A suitable analogy for
this would be a central heating controller in which the start
time for the heating is set at, say, 6.30 am. When the clock
of the controller reaches 6.30 am, it triggers the central
heating system into life.

3.2 Cs

Operations that are not Bs are regarded as Cs. This was
originally an abbreviation for Conditional activity or Co-
operative activity, the idea being that such activity is not
dependent on the simulation clock but must wait until the
conditions are right or until some other entity is ready to
co-operate in the task. As with Bs, some people refer to C
events instead, and so the term C will be used here. The
simulation executive has no direct say in when these Cs
will occur, for this will depend on the states of the entities
and resources in the simulation. Obviously the executive
has some indirect control, since the main effect of the Bs
(which it does control) is to release entities and resources.

3.3 A Typical Three Phase Executive

The flowchart of Figure 3 shows the operation of a typical
three phase executive. In the A phase, the simulation clock
is moved to the next event time by checking all the Bs that
are currently scheduled. Those Bs that are now due are

Pidd

executed in some defined sequence so as to release re-
sources. The third phase is a C scan in which the Cs are at-
tempted in some defined priority sequence.

Figure 3: A Three Phase Executive

It is important to realise that a three phase executive

processes all the Bs due at some simulation time and then
attempts all the Cs. That is, no Cs are attempted until all the
resources that can be released by the Bs are released. The
effect of a C may be to commit resource and this is done
when the full position of all resources is known – at the end
of the Bs. This avoids the deadlock problems that can plague
discrete simulations in which there is resource contention.

4 DOES ALL THIS MATTER?

Since few simulation models are built in ways that require
the modeller to know about the simulation executive and its
worldview, does any of this matter? The answer is ‘probably
not’ if we only need to build a simple model or if we are try-
ing to sell a VIMS on the basis that it will help solve of par-
ticular problem. However, I can conceive of several situa-
tions in which it does matter and will briefly explore each.

4.1 Large-Scale, Hand-Coded Models

As mentioned earlier, some large-scale models are still de-
veloped by writing code in a general purpose programming
language and it is clear that the developers of these simula-
tions do need to attend to their simulation worldviews.
Nothing more will be said about this.

4.2 Simulation Education

Discrete event simulation is taught to a wide range of
groups at several levels. Audiences include students of en-
gineering, business and operational research and they may
be undergraduates or graduate students, or may be taking a
professional post-experience programme. Clearly many of
these need only a superficial introduction to simulation ap-
proaches, but some do need rather more than that.

An analogy will perhaps help illustrate the point. A car
driver does not need to know much about how a car, its en-
gine, its transmission and other features work. Instead, most
people merely learn how to operate a car with some degree
of safety. However, some drivers do need to know much
more than this and other drivers may wish to know more out
of curiosity and doing so may even make them better driv-
ers. Firstly, of those whom need to know more, are those
whose job will involve them advising others about the pur-
chase and use of a car. They don’t need very detailed knowl-
edge, but do need to know more than how to safely drive a
car. Secondly there are those who will become mechanics
and will service cars and fix them when they go wrong. Fi-
nally, there is a small group who will go on to design new
cars and they need very detailed knowledge indeed.

In the simulation world, most people will only learn
roughly how a simulation operates and a few things about
what can go wrong. This probably applies to most business
students, who may never even become competent ‘drivers’
of the simulation packages but may later become clients
for a simulation study. The second group of ‘mechanics’
are those who may need to use a VIMS to solve some par-
ticular problem. Hence they learn how to drive the VIMS,
but also about how to conduct a simulation study and how
to design and analyse simulation experiments. Finally,
there is a small group – probably those specialising in
computer science or operational research, who need to
know how to make simulation software sing and dance.
This final group do need to understand about simulation
worldviews, for then they will understand what can go
wrong in a simulation model and why.

4.3 Simulation Research and Development

Of the final group mentioned above, there is a yet smaller
subset who will be the designers and implementers of new
simulation software. If they do not understand the options
open for the internal design of discrete simulation soft-
ware, they are doomed to devise a rather limited offering.
As it happens, the ways in which a simulation model can
be organised and communicate with its executive (its
worldview) are few and none are that difficult to under-
stand. However, the insistence of software vendors on hid-

Pidd

REFERENCES

ing the internal operation and on charging high prices for
their products tends to reinforce the view that the internal
operation of discrete simulation software is open only to
the super-intelligent.

4.4 Simulation Model Reuse and Interoperation

Finally, some sectors – notably defence, but others may
follow – have such large investments in existing simulation
models that they wish to squeeze yet more value out of
them. One way of doing so is to treat existing models as
components that interoperate, possibly as an HLA federa-
tion. Whether this is a good idea or not, is another question
discussed in, for example, Robinson et al (2004). To do so,
though, requires detailed knowledge in several areas.

The first, and most relevant to this paper, is the inter-
nal workings of the simulation and, in particular, the ways
in which simulation events and activities are processed.
Mathewson (1974), writing about program generators, was
surely correct in pointing out that a simulation application
can be equivalently modelled in any of the common simu-
lation worldviews. However, without appropriate skills and
knowledge, this equivalence cannot be guaranteed. Hence,
it would seem wise for anyone attempting model interop-
eration to have a detailed understanding of the different
simulation worldviews – just in case!

Linked to this, and indirectly relevant to the paper, is
the need to provide adaptor wrapper components (Oses et
al 2004) to enable the interoperation of models that were
not designed with such reuse in mind. Terms such as
‘adaptor’ and ‘wrapper’ have an easy feel about them,
which may hide some considerable complexity. It seems
reasonable to argue that correct external modification is
more likely if due heed is paid to internal operation. Hence,
this group, too, requires detailed knowledge of simulation
worldviews and how they are implemented.

5 CONCLUSIONS

The conclusions are probably obvious. In today’s world, in
which most discrete simulations are implemented using
VIMS, it is not sensible to insist that everyone learn about
simulation worldviews when learning about simulation.
Indeed, it is unreasonable to argue that the vast majority of
users need this.

However, there are people who need this knowledge,
typically those specialising in computer science and opera-
tional research. They have the time, the inclination and the
likely career need to gain this knowledge. Some if them
will develop the next generation of simulation software and
others will need to tweak existing software. If they are
convinced, as I am, that a three phase worldview is best, so
much the better.
Gordon G. 1969. System simulation. Prentice-Hall, New
Jersey

Hollocks B. W. 2004. Still simulating after all these years.
Reflections on 40 years in simulation. Proceedings of
the OR Society Simulation Workshop, Birmingham,
March 23-24, Operational Research Society, Birming-
ham.

Kiviat P. J. 1969a. Digital computer simulation: computer
programming languages. Rand Corporation, AD 684
124, Santa Monica, CA.

Kiviat P .J. 1969b. Digital computer simulation: modeling
concepts. Rand Corporation, RM-5378-PR, Santa
Monica, CA.

Law A. M. and W. D. Kelton. 2000. Simulation modeling
and analysis (3rd edition). McGraw-Hill, Boston, MA.

Mathewson S. C. 1974. Simulation program generators.
Simulation, 23, 6, 181-189.

Melao N. and M. Pidd. 2004. Using component technology
to develop a simulation library for business process
modelling. Under revision for Euro Jnl Opl Res.

Oses N., M. Pidd and R. J. Brooks. 2004. Component-based
simulation. In Press, Simulation Practice and Theory.

Pidd M. 2004. Computer simulation in management sci-
ence (5th edition). John Wiley & Sons, Chichester.

Robinson S., R. E. Nance, R. J. Paul, M. Pidd and S. J. E.
Taylor. 2004. Simulation model reuse. Definitions,
benefits and obstacles. In Press, Simulation Practice &
Theory.

Tocher K. D. 1963. The art of simulation. English Univer-
sities Press, London.

AUTHOR BIOGRAPHY

MIKE PIDD is Professor of Management Science and As-
sociate Dean (Research) in Lancaster University Manage-
ment School. He is known for his work in 2 areas: computer
simulation and the complementary use of soft and hard OR.
His text ‘Computer simulation in management science’s is
now in its 5th edition and his books on complementarity in-
clude ‘Tools for thinking’ (in its second edition) and ‘Sys-
tems modelling: theory and practice’. All are published by
John Wiley. For the whole of 2004 he is a Research Fellow
in the UK’s Advanced Institute of Management Research,
funded by the ESRC, examining performance measurement
in the public sector. Email to <M.Pidd@lancaster.
ac.uk>, website at <http://www.lancs.ac.uk/
staff/smamp/>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 288
	02: 289
	03: 290
	04: 291
	05: 292

