
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

A METHODOLOGICAL FRAMEWORK FOR BUSINESS-ORIENTED
MODELING OF IT INFRASTRUCTURE

Ariel Landau
Segev Wasserkrug

Dagan Gilat
Natalia Razinkov

Aviad Sela
Sarel Aiber

IBM Haifa Research Lab

University Campus
Carmel Mountains

Haifa, 31905, ISRAEL

ABSTRACT

The creation of IT simulation models for uses such as ca-
pacity planning and optimization is becoming more and
more widespread. Traditionally, the creation of such mod-
els required deep modeling and/or programming expertise,
thus severely limiting their extensive use. Moreover, many
modern intelligent tools now require simulation models in
order to carry out their function. For these tools to be
widely deployable, the derivation of simulation models
must be made possible without requiring excessive techni-
cal knowledge. Hence we introduce a general methodology
that enables an almost automatic deployment of IT simula-
tion models, based on three fundamental principles: Mod-
eling only at the required level of detail; modeling standard
components using pre-prepared models; and automatically
deriving the application-specific model details. The techni-
cal details underlying this approach are presented. In addi-
tion, a case study, showing the application of this method-
ology to an eCommerce site, demonstrates the applicability
of this approach.

1 INTRODUCTION

The requirement for simulation models for tasks like ca-
pacity planning or optimization, and in particular on-
demand self-optimization, is becoming more and more
widespread. The commercial market nowadays offers a
wide range of software tools for the creation of perform-
ance simulation models (CSIM 19, Arena, AnyLogic,
Simulink, etc.). However, a would-be-creator of these
models is faced with the fact that the creation of (non-
trivial) simulation models on top of these tools often re-
quires quite a deep knowledge in both performance model-
ing and computer programming. In addition, even when the
expertise required for the creation of a simulation model is
available, there is quite often still a need to provide the
model with extensive data, specific to the environment being
modeled. Experience shows that such data is in most cases
extremely difficult to retrieve from actual environments.

The above two shortcomings in the creation of simula-
tion models severely limit their widespread applicability.
In addition, there are currently several intelligent tools
(e.g., Aiber et al. 2004, Levy et al. 2003) that rely on per-
formance simulation models to perform their function.

For example, Aiber et al. (2004) introduces a tool
whose purpose is to enable the configuration of an IT site so
as to optimize business objectives. This task is carried out by
implementing the architecture depicted in Figure 1 below.

 Figure 1: The Business-Objective Driven Optimization
 Architecture

The above architecture defines the following process:

The IT system is simulated, taking into account both the
behavior of system resources (i.e., applications, middle-
ware, hardware), the incoming traffic (i.e., client requests),

Situations
AMIT

Generate
Traffic

Events Situations

System
User

Behavior
Simulation

Current
Actions
Policy

System
Simulation

Model

Overall Business
Metric

computation
(AMIT/ADI)

Optimizer

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

and a set of configuration parameters that are subject to
optimization. This simulation is then coupled with the
AMIT/ADI rule engine (Adi and Etzion 2002, Adi et al.
2003), for the calculation of the business results (for
each given configuration), and an optimizer, that
searches for the best possible configuration. For more
details see Aiber et al. (2004).

Tools such as the one outlined above, for which per-
formance simulation models are mandatory, will not be
widely deployable unless a way is found to produce the re-
quired performance simulation models without requiring
too much modeling or programming knowledge on the side
of the deployer.

In this paper, a general methodology is introduced,
aimed at enabling a simple, non-programmatic, and almost
automatic generation and deployment of IT simulation
models, with particular emphasis on eCommerce environ-
ments. In addition, a case study showing the application of
this methodology to an eCommerce site, demonstrates the
value and applicability of this approach.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews some related work. In Section 3, an
outline of the proposed methodology is given, followed by a
detailed technical discussion of the model creation process.
Section 4 presents a modeling and validation case study,
where the concepts discussed in the paper are illustrated. Fi-
nally, the article concludes with a summary in section 5.

2 RELATED WORK

As mentioned in the introduction, there are several commer-
cially available products for the construction of general pur-
pose performance simulation models (CSIM 19, Arena,
AnyLogic, Simulink, etc.). The development of IT simulation
models using these products usually requires extensive mod-
eling and programming knowledge. In addition, issues re-
lated to the derivation of application-specific information are
beyond their scope. Some modeling tools, such as HyPer-
formix IPS Optimizer, include pre-prepared models, thus re-
ducing the amount of modeling expertise required.

As for algorithms for automatic derivation of applica-
tion-specific models, we can mention the Customer Behavior
Model Graph, or CBMG, method (Menascé and Almeida
2000), which defines a process for the automatic derivation
of website client behavior models out of website access logs.

3 THE MODELING METHODOLOGY

The present section introduces a modeling methodology
that enables a non-programmatic and almost automatic
creation and deployment of IT simulation models. The
methodology is based on the following three principles:

• Modeling only at the required level of detail:

Depending on the actual use, models containing
different levels of detail may suffice. It would be
highly desirable that generated models include all
the necessary details, but not more than the re-
quired detail. For example, one of the chief appli-
cations for the models created following our
methodology is the assessment of the impact of
decisions at the IT level on certain pre-defined ob-
jectives, and in particular, business objectives,
There may be cases in which a detailed model of a
specific middleware or hardware, though present
in the modeled environment may not be required.
Therefore, pre-prepared model components, or
building blocks (to be discussed in greater detail
in the next paragraph), may be implemented at
several levels of detail, ranging from implementa-
tions containing very detailed queuing and re-
source-usage models, to “black box”, or func-
tional, models.

• Creating pre-prepared models of standard
components: To enable the creation of models of
IT topologies in a simple, non-programmatic
manner, given an IT site, standard components of
the IT (e.g., middleware, operating systems and
hardware) are modeled using a set of pre-prepared
building blocks. Following this approach, for each
type of IT component, a generic model is created
in advance, which can be reused across different
sites and infrastructures. It’s worth noting that
since we attempt to create models containing only
the required level of detail, a single building block
may happen to contain several tiers of a system,
and in some cases, contain all the standard com-
ponents of the modeled system.

• Automatically deriving application-specific
models: Models of IT topologies, created by as-
sembling the building blocks described in the pre-
vious paragraph, model only hardware resources
and standard middleware, and do not contain any
information about particular applications running
on top of this middleware. In addition, unlike a
description of the IT topology, which in many
cases can be obtained from human sources, this
performance-related application-dependent infor-
mation is usually not explicitly known. For this
reason, the methodology defines a set of high-
level application-specific model specifications.
Models satisfying these specifications are gener-
ated automatically, using machine learning algo-
rithms and statistical techniques.

The modeling methodology also defines a two-stage

process for the generation of IT simulation models: A first
stage, where a topological IT model is built by assembling
building blocks (e.g., using a drag-and-drop GUI), and a
second stage, consisting of the deployment of application-
specific automatic model-learning algorithms. The models

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

required for both stages, namely pre-prepared building
blocks and application-specific models, will be next dis-
cussed in detail.

3.1 Pre-Prepared Building Blocks

Pre-prepared building blocks are re-usable models of
hardware resources and standard middleware that are
coded in advance, and are used in the assembly of topo-
logical IT models.

From a conceptual point of view, we have divided pre-
prepared building blocks into several categories. This is
mainly motivated by the intention to ease the process of
model creation and management. We discriminate between
blocks that model aspects of the actual system, and blocks
that, while not representing any objects in the system, fa-
cilitate the connection of the model to the external world.
Blocks of the first kind are further classified into blocks
that model physical behavior, and those that model logical
(or algorithmic) behavior. They match the “System Simu-
lation Model” and “System User Behavior Simulation”
components of the architecture depicted in Figure 1 above.
Other blocks include those that collect and process infor-
mation generated by a simulation, thereby matching the
“AMIT” and “Overall Business Metric Computation”
components in Figure 1, and those that act on the model,
e.g., update the IT topology, configure policy parameters,
etc., which correspond to the “Current Action Policy”
and “Optimizer” components in Figure 1.

Having this in mind, we have defined the following
building-block categories:

• Core infrastructure: These blocks model the

cost (in terms of time spent in the system) of per-
forming operations in the modeled environment,
e.g., performing a database request, serving an
HTTP at a J2EE application server, etc. Examples
of core-infrastructure building blocks include
hardware resource models, such as CPUs and
disks, and middleware models, e.g., models of
web, application, or database servers.

• Environmental modifiers: These blocks intend
to model logical features of an actual environ-
ment, such as routing, load-balancing or dynamic
bandwidth-allocation policies, so that their impact
on the system’s overall performance can be ulti-
mately assessed. They are also used to model ob-
jects that are essential to the environment, but are
not part of the IT environment, e.g., an input
model, or a client-traffic generator. Unlike core-
infrastructure blocks, environmental modifiers in-
tend to capture the functional behavior of the
modeled objects, disregarding the performance
cost of going through any system resources.
• Monitors: These blocks interact with other model
objects through an instrumentation interface. They
receive primitive modeled events, such as the start
or the completion of a client transaction, perhaps
together with additional information about the
transaction, such as the transaction’s amount
where applicable, or the identity of the client per-
forming the transaction. Monitors act as transla-
tors between these primitive events, and business
objectives such as the operating profit generated
by an eCommerce website. To this end, a monitor
will typically implement, or be a wrapper of, a
situation manager, or a complex-event-processing
or business-rule engine.

• Actors: These blocks modify configurable pa-
rameters of model objects, such as those parame-
ters on which an optimization is based, or the
whole model, e.g., through the creation or re-
moval of model components, connections, etc.

3.2 Automatically-Created Application-Specific
Models

The automatically-created application-specific models pro-
vide site-specific information required by the IT topologi-
cal models, defined above.

We have defined the following application-specific
models: the user-behavior model, the user-attribute model,
the tier-level message breakdown, and tier-specific re-
source-requirement models. They were created in the con-
text of models for an eCommerce website. However, they
can be easily adapted to other domains (e.g., messaging
applications). The models, as well as the automatic algo-
rithms used to derive them, will be now discussed in detail.

3.2.1 User Behavior Model

The user-behavior model is a model of traffic patterns of
client requests submitted to an eCommerce website. These
patterns are modeled using a set of Markovian state-
transition graphs, augmented with a set of client clusters.

The derivation of the Markovian transition graphs is
based on the Customer Behavior Model Graph (CBMG)
method (Menascé and Almeida 2000). This method as-
sumes the existence of a finite number of known client-
request types, and that actual client requests can be natu-
rally grouped into sessions. Sessions are then interpreted as
traversals of a Markovian state-transition graph whose
nodes are client-request types. The definition of a distance
between sessions permits the application of standard clus-
tering algorithms, such as the k-means clustering algorithm
(Everitt 1980), yielding a small number of state-transition
graphs. These graphs are seen as representing different cli-
ent-session types. Figure 2 below shows an example of
such a transition graph.

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

 Figure 2: Example of a CBMG, for a Given Session
 Type

The user-behavior model then groups simulated clients

into clusters, according to the frequency with which each
of them initiates sessions belonging to the different client-
session types. This clustering process yields a set of prob-
ability distributions (having the set of client-session types
as their sample space), and a function that assigns one of
these distributions to each simulated client.

The user-behavior model is automatically derived by
applying the CBMG derivation algorithm (Menascé and
Almeida 2000) and k-means clustering algorithm (Everitt
1980) to web logs of the modeled environment.

3.2.2 User Attribute Model

The user-attribute model captures data that accompanies
each incoming client request, which is relevant to the com-
putation of business objectives. An example of this is the
actual amount of a purchase transaction. Unlike the user-
behavior model, which models the arrival process of client
requests, the user-attribute model deals with parameters of
these client requests on which the rules for computing the
business objectives are based.

The model is composed of a set of client clusters, and,
for each cluster, a set of attribute-generating probability
distributions. Clients are clustered according to similarity
of attributes, where similarity means closeness of probabil-
ity distributions. Standard statistical tests such as chi-
squared can thus be applied for measuring this similarity.
Table 1 below shows an example of a user-attribute model,
based on three abstract attributes (A, B, and C), and com-
posed of three clusters (C1, C2, and C3).

Model derivation is based on standard automatic dis-
tribution fitting and clustering algorithms (Brownlee 1965,
Everitt 1980). First, for each simulated client, a probability
distribution for each relevant attribute is derived from ac-
tual measured data. Simulated clients are then clustered ac-
cording to the distance between these probability distribu-
tions, as measured by some standard statistical similarity
test such as chi-squared. The centroid of each cluster is the
set of attribute-generating probability distributions that is
attached to it.

Table 1: Example of a User Attribute Model

C1 A=20 to 30
Unif. distr.

B= Man/Woman
(50%/50%)

C=‘gold’

C2 A=Normal
µ=50 σ=10

B= Man/Woman
(40%/60%)

C=‘platinum’

C3 A=20 to 40
Unif. distr.

B= Man/Woman
(65%/35%)

C=‘gold’
/‘regular’
(50%/50%)

Relevant user attributes usually appear as part of

HTTP client requests. The user-attribute model is auto-
matically generated from logs and database values on the
customer’s site, following the process just described.

3.2.3 Tier-Level Message Breakdown Model

The tier-level message breakdown model breaks down in-
coming client requests (as modeled by the user-behavior
model), into invocations of methods and services at the dif-
ferent components of a multi-tier web application, e.g., in
the context of a J2EE web application, Servlets, JSPs,
EJBs and database requests.

The tier-level message breakdown of each client-
request type is modeled by a probabilistic graph, whose
nodes are services and methods that are invoked. Figure 3
below shows an example of such a breakdown graph.

Figure 3: Example of a Tier-Level Message Breakdown
Model Graph

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

In this graph, each node represents a method call; differ-
ent colors and shades are used to represent nodes of different
system tiers. Vertical edges represent caller/callee flows, i.e.,
an invocation of a method within another method, while
horizontal edges represent consecutive flows, i.e., a sequence
of method invocations that take place in a specified order.

Solid edges in the tier-level message breakdown graph
represent deterministic edges, while dotted lines represent
probabilistic edges. In the particular example of Figure 3,
the dotted circular line, which is a recursive sequential call,
is supplied with the random variable N, that establishes the
number of loop iterations, i.e., how many times this edge is
to be taken. The other dotted line is the “default edge”,
namely, the edge that is taken if no other edge (exiting
from the same node) is taken.

Breakdowns of individual client request are collected
by tracing and monitoring tools (Intel’s VTune Enterprise
Analyzer, IBM’s Tivoli Monitoring for Transaction Per-
formance). Tier-level message breakdown graphs are then
built by applying business-process analysis (Golani and
Pinter 2003) and distribution fitting (Brownlee 1965) algo-
rithms to a log of individual broken-down client requests.

3.2.4 Tier-Specific Resource Requirement Model

The tier-specific resource-requirement models are models
of the resource level (e.g. CPU, disk) service times (i.e. the
net usage time of each resource) of each tier-level request.

For tiers where a detailed queuing-network building
block has been implemented, service times required at in-
dividual resources, for the completion of each tier-level
service-request type, are first measured at the website in
isolation, using monitoring tools such as Intel’s VTune En-
terprise Analyzer or IBM’s Tivoli Monitoring for Transac-
tion Performance. Distribution functions for these service
times are then automatically generated by applying statisti-
cal fitting methods (Brownlee 1965). The resource-
requirement model so obtained is then tested and validated
against real website loads. If necessary, load-dependent
corrections, or burstiness factors (Menascé and Almeida
2002), are introduced.

For tiers where a black-box building block is consid-
ered sufficient, Bayesian-network learning algorithms
(Ghahramani 1998) are applied, to derive a response time
function for each request type, depending on the state of
the modeled component. Our Bayesian-network learning
algorithm assumes that the state of a modeled component
changes only when a request is received, or when a request
has been serviced and is returned. The component’s state is
therefore uniquely defined by the set of pending (i.e., re-
ceived and not yet returned) requests. The algorithm re-
ceives as input an entry/exit log of requests to the modeled
tier, and produces two functions:

• A response-time function f (R, θ), which depends

on the state θ of the modeled component, and for
each pending request R, returns the time that re-
mains till the request is to be returned.

• A state-transition function g (R, θ), that computes
the new machine-state θ’ of the modeled compo-
nent as a function of the previous machine-state θ,
and the request R, that either has just arrived, or
has been just returned.

4 A CASE STUDY – MODELING AND
VALIDATING A SPECIFIC ENVIRONMENT

This section details the application of our methodology to
the modeling and validation of a specific eCommerce site.
Our example is based on a three-tier deployment of the
FMStocks trading application.

As the final goal of our model is the optimization of
the IT environment according to business objectives, it is
our aim to validate the model against business objectives
rather than against IT metrics. Since business objectives
are, however, based on IT metrics, the validation of the
model against IT metrics does provide valuable informa-
tion. On the other hand, whenever certain IT metrics prove
to have a negligible impact on business objectives, their
validation becomes irrelevant.

The exposition starts with a description of the actual
IT environment, the input model used, and the business
rules applied. Then, the two-stage model-generation proc-
ess is described: (1) the assembling of an IT model out of
building blocks, including a detailed description of the
building blocks used, and (2) the derivation of application-
specific models. The section ends with a validation of the
simulation model, and a set of conclusions.

4.1 The Actual Environment

The actual environment of our case study is a website run-
ning the FMStocks 2000 application (available online at
<http://www.fmstocks.com>). It consists of three
interconnected computers running the IIS web-server, the
COM+ application server, and the SQLServer database
server, see Figure 4 below. Client traffic was emulated, ac-
cording to the input model described in 4.2

Intel's VTune Enterprise Analyzer was used to meas-
ure roundtrip response times at the web, application and
database tiers.

4.2 Input Model and Business Metrics

The input model consists of a fixed number of simulated
clients; each of them initiates, on average, two sessions on
every 8-hour working day. Thus, for each 1,000 simulated
clients, there's a workload of 250 sessions per hour. The
session-arrival process is a Poisson process, with the ap-
propriate intensity.

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

Figure 4: The Actual Environment

Four client-session types were defined, and a probabil-

ity assigned to each of them: Browse/Buy (33%), Browse
(28%), Check Portfolio (22%), and Buy (17%). We have
defined each session type as a Markovian transition graph.
As an illustration, Figure 5 below shows the graph corre-
sponding to a Browse/Buy session (this is an expanded ver-
sion of the example shown above in Figure2).

(2) Main
page

(3)
Research
Company
page

(4)
Research
company
search

(5)
company
data page

(6)
Purchase
stock
Page

(8 View
Portfolio

(9) View
balance

(7)
Purchase
stock

1.0

1.0

1/3
1/2

1.0

1.0

1/2

1/2

1/2

1.0

1/2

1/3

1/2

1/3

(10) Exit

(1) Login
Page

Figure 5: The CMBG Corresponding to the Browse/Buy
Session Type

User attributes were defined as follows:

• Service Level Agreement (SLA): Platinum (10%

of the clients), gold (40%), and regular (50%).
• Spending Habits: High spenders (monthly spend-

ing amount uniformly distributed between
$100,000 and $125,000 per month, 3% of the cli-
ents), medium spenders ($10,000 to $12,500,
30%), and low spenders ($1,000 to $1,250, 67%).
The client think-time, that is, the time elapsed between
the reply from a request and the submission of a new re-
quest by the same client (within a single session), is uni-
formly distributed between 0.5 and 8 seconds. Finally, if a
request is not answered within a 10-second timeout, the
client session is aborted.

The computation of the business metric is governed by
the following rules:

• For each buy or sell transaction, a commission of

4% of the transaction’s amount, or $25 is col-
lected, whichever is greater.

• Platinum and gold customers pay a daily flat fee
of $50 and $20, respectively.

• Platinum and gold customers are promised an av-
erage response time of one second, and two sec-
onds, respectively. For each 1% deviation from
this contract, the site pays them a penalty of $5.5
and $3.5 respectively.

4.3 The IT Simulation Model

Following our two-stage methodology, the generation of an
IT simulation model for the actual environment consisted
of (1) assembling building blocks into a model of the IT
topology, followed by (2) a stage where the model is com-
plemented with application-specific information. These
two stages will be discussed below.

4.3.1 Building Blocks and IT Topology

The composition of the simulation IT topology model was
based on the following building blocks:

• A CPU building block, implementing a round-

robin queue.
• A disk building block, implementing a first-come-

first-served queue.
• A generic middleware building block that trans-

lates messages it receives from its front end into
messages for a CPU, a disk and/or a lower tier
(the translation is to be specified by application-
specific models, such as the tier-level message
breakdown model, and the tier-specific resource
requirement model).

• A traffic generator building block that simulates the
input model described in the previous subsection.

In addition, response times were monitored at each of

the middleware building blocks, and business metrics
computed following the rules specified above.

The IT simulation model was created by assembling
instances of these building blocks, using XJTek’s Any-
Logic 4.5 (<http://www.xjtek.com/anylogic>)
simulation product. The model consisted of one traffic

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

generator block, and three sets of middleware/CPU/disk
blocks, representing the web, application and database
servers respectively. The simulation model is shown in
Figure 6. The upper diagram shows a model of the whole
system, while the lower diagram shows the internal struc-
ture of generic middleware building block.

Figure 6: The IT Simulation Model

4.3.2 The Application-Specific Models

A tier-level message breakdown model and a tier-specific
resource requirement model were derived from the actual
environment. Since the actual environment was not a real
business environment, the user-behavior model, and the
user-attribute model could not be derived; these models
were in fact provided as input to the environment.

Both application-specific models were derived by run-
ning isolated client sessions, consisting of a fixed sequence
of client requests, and using Intel’s VTune Enterprise Ana-
lyzer to monitor the system's activity. As sessions were run
in isolation, response times were interpreted, as a first ap-
proximation, as actual resource requirements. A correction
procedure aimed at dealing with contentions not accounted
for in our IT topology model was then applied (more de-
tails regarding this technique will be given in 3.5 below).

Table 2 shows some results of these model derivations.
The left side of the table shows average values of some tier-
specific resource-requirement probability distributions. Re-
source requirements for the web server and application
server tiers are CPU average service times, in milliseconds
(no significant disk activity was observed for these tiers).
For the database server tier, there are two columns, showing
CPU and disk average service times respectively.

The right side of the table shows part of the tier-level
message breakdown: Each of the five rightmost columns
represents a task at the web tier. Lower-tier tasks invoked
as a result of the processing of a web-tier task are marked
with an ‘X’ inside the appropriate cell.

Table 2: Average Resource Requirements, and Tier-Level
Message Breakdowns

Web Tier Time LP L VB BS VP
Login Page 9 X
Login 114 X
View Balance 15 X
Buy Stock 22 X
View Portfolio 20 X

App Tier Time (ms) L VB BS VP

Acct.Summary 35 X
Acct.ListPostns 27 X
Acct.VfyLogin 32 X
Broker.BuyStock 110 X
Ticker.VfySymb 17 X

DB Tier Time (ms) L VB BS VP

Acct Summary 0.93 0.01 X
Acct VfyLogin 0.00 0.00 X
Broker Buy 0.94 0.09 X
Position List 3.31 0.97 X
Ticker Price 0.31 0.02 X
Ticker VfySymb 0.35 0.02 X
Xactn Order 0.35 0.02 X
Xactn Type 0.00 0.00 X

4.4 Validation and Tuning Against IT Metrics

Response-time results from the simulation model and the ac-
tual environment were compared, for the input model defined
above, at various workload intensities ranging from 250 to
2000 sessions per hour (a throughput of 2500 sessions per
hour was found to be beyond the system's capacity).

Response times for the database tier turned out to be
comparatively very small, erratic, and highly volatile,
which led us to the (expected) conclusion that, for our par-
ticular environment, we could have ignored the effect of
the database tier at all in our simulation model.

For the web server and the application server, it was
found that the model overestimates response times for rela-
tively low intensities, and underestimates response times
for high intensities. In addition, this gap was found to in-
crease together with the intensity. These were attributed,
on one hand, to the synergetic effects of low, though
steady, input on factors such as caching effects, and on the
other, to burstiness and contention effects not explicitly ac-
counted for in our IT topology model. Following the meth-
odology developed in (Menascé and Almeida 2002), we
introduced two correction factors aimed at closing these
gaps: a negative (i.e., smaller than one) constant factor for
the synergy resulting from having a steady load, and a
positive (i.e., larger than one) burstiness factor, propor-
tional to the workload intensity.

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

Table 3 below, shows a partial list of corrective factors
used. The “synergy” factor is constant (i.e., it doesn’t de-
pend on workload intensity). The tabulated “burstiness”
factor is the correction applied to a workload intensity of
250 sessions per hour.

Table 3: Corrective Factors

Tier – Task Synergy Burstiness
WEB – Login Page -20% +2%
WEB – Login - +5%
WEB – View Balance - +5%
WEB – Buy Stock - +10%
WEB – View Portfolio - +10%
APP – Acct.Summary - +4%
APP – Acct.ListPostns -15% +5%
APP – Acct.VfyLogin - +4%
APP – Broker.BuyStock - +4%
APP – Ticker.VfySymb - +4%

Figures 7 and 8 show some response time gaps be-

tween the model and the actual environment, before and
after the burstiness correction, for a subset of the tasks
listed in Table 3. A positive (negative) gap indicates that
model response times overestimate (underestimate) those
of the real environment.

Figure 7: Gaps Between Model and Real Environment
Response Times Before Correction

Figure 8: Gaps Between Model and Real Environment
Response Times After Correction

The final validation of the simulation model was car-

ried out by comparing the overall business metric, as ob-
tained both from the actual environment and from the
simulation model. Figure 9 below shows collected-
commission gaps between the actual environment and the
corrected simulation model. The result shown in each case
is the largest gap observed in a set of three independent
measurements (again, positive gaps indicate that the simu-
lation model overestimates actual results).

Figure 9: Gaps Between Model and Real Environ-
ment Collected Commission (After Correction)

4.5 Conclusions

The validation process has shown that a gap of no more
than 10% exists between our simulation model and our ac-
tual environment, for response times at the web-server and
application-server tier, and for business metrics. No valida-
tion was achieved for response times at the database-server
tier. Nevertheless, it was observed that the database-server
has negligible impact on business metrics, and therefore,
for the defined business objectives, the database tier might
have been ignored.

5 SUMMARY

This paper presented a methodology and a process for
business-oriented performance modeling of IT infrastruc-
tures. The methodology has many potential applications,
ranging from traditional capacity planning to business-
objective driven optimization that focus on high-level
business objectives, rather than more traditional IT metrics.

Our methodology is quite general, and may be applied
to various IT scenarios, including eCommerce sites and
messaging infrastructures. In addition, business objectives
may be defined in an arbitrarily complex manner, which in
turn helps maintaining a clear connection between IT pol-
icy decisions and business-level metrics, such as operating
profit or return on investment. A two-stage process enables
an almost automatic deployment of the modeling solution,
given an IT site. The knowledge on the IT site required for
an actual deployment is minimal.

While the first stage of the process, dealing with com-
position of topological models out of pre-prepared building
blocks, is domain-agnostic, deciding what sets of building
blocks are suitable for pre-preparation in different applica-
tion domains, as well as deciding how much detailed
should be a given building block, are issues that warrant
further research. In contrast, the second stage of the proc-
ess, which deals with the extraction of application-specific
information, is more domain-specific. The paper presented
our choice of models in the context of eCommerce sites.
These models can be easily adapted to related domains,
such as messaging applications. Processes for defining sets
of application-specific models in more dissimilar domains
are worth of being explored.

Landau, Wasserkrug, Gilat, Razinkov, Sela, and Aiber

ACKNOWLEDGMENTS

The authors wish to acknowledge the contribution of
Nathalie Sznajder to the development of the user-input
models for the case study presented in this paper.

REFERENCES

Adi, A., and O. Etzion. 2002. The Situation Manager Rule
Language. In Proceedings of the International Work-
shop on Rule Markup Languages for Business Rules
on the Semantic Web, ed. M. Schroeder, and G. Wag-
ner. CEUR Workshop Proceedings 60: 36-57.

Adi A., O. Etzion, D. Gilat, G. Sharon. 2003. Inference of
Reactive Rules from Dependency Models. In Rules
and Rule Markup Languages for the Semantic Web,
ed. M. Schroeder, and G. Wagner, 49-64. Lecture
Notes in Computer Science 2876, Springer.

Aiber, S., D. Gilat, A. Landau, N. Razinkov, A. Sela, and
S. Wasserkrug. 2004. Autonomic Self-Optimization
According to Business Objectives. In First Interna-
tional Conference on Autonomic Computing, 206-213.
IEEE Computer Society.

Brownlee, K. A. 1965. Statistical Theory and Methodology
in Science and Engineering. 2nd ed. New York: John
Wiley & Sons.

Everitt, B. S. 1980. Cluster Analysis. 2nd ed. New York:
Halsted Press.

Ghahramani, Z. 1998. Learning Dynamic Bayesian Net-
works. In Adaptive Processing of Sequences and Data
Structures, ed. C. L. Giles, and M. Gori, 168-197. Lec-
ture Notes in Computer Science 1387, Springer.

Golani, M., and S. S. Pinter. 2003. Generating a Process
Model from an Audit Log, Business Process Man-
agement 2003: 136-151.

Levy, R. M., J. Nagarajarao, G. Pacifici, M. Spreitzer, A. N.
Tantawi, A. Youssef. 2003. Performance Management
for Cluster Based Web Services. In Integrated Network
Management VIII, ed. G. S. Goldszmidt, and J. Schön-
wälder, 247-261. Kluwer Academic Publishers.

Menascé, D. A., and V. A. Almeida. 2000. Scaling for E-
Business. Upper Saddle River, New Jersey: Prentice
Hall PTR.

Menascé, D. A., and V. A. Almeida. 2002. Capacity Plan-
ning for Web Services. Upper Saddle River, New Jer-
sey: Prentice Hall PTR.

AUTHOR BIOGRAPHIES

ARIEL LANDAU is a research staff member in the IBM
Haifa Research Lab, Israel. Since joining IBM in 1997, he
has been working on performance modeling, performance
monitoring, and dynamic instrumentation projects. He has
an MSc. in Mathematics from the Technion, Israel Institute
of Technology (1997). His e-mail address is <ariel@
il.ibm.com>.
SEGEV WASSERKRUG is a research staff member in
the Active Solutions group of the IBM Haifa Research
Lab, Israel. He leads the development of technologies for
optimizing IT configurations according to business objec-
tives, using hybrid simulation models, advanced optimiza-
tion techniques, and machine learning algorithms. He has
an MSc. in Computer Science, and is studying towards his
Ph.D. in Information Systems Engineering at the Technion,
Israel Institute of Technology. His e-mail address is
<segevw@il.ibm.com>.

DAGAN GILAT, Ph. D., is the Manager of the Active
Solutions group in the IBM Haifa Research Lab, Israel.
He has over 15 years experience in technology research
and development. Previous to IBM, he worked as a
consultant for private and public Israeli companies. His
main interests include simulation, modeling, and advanced
internet technologies. Dr. Gilat studied at the Technion,
Israel Institute of Technology, where he received his Ph.D.
in Information Systems, MSc. in Operations Research,
and BA in Computer Science. His e-mail address is
<dagang@il.ibm.com>.

NATALIA RAZINKOV is a research staff member in the
IBM Haifa Research Lab, Israel. Since joining IBM in
2000, she has been working on active decision making pro-
jects, and performance modeling and monitoring. She has
an MSc. in Computer Science (1995) and a Ph.D. in Auto-
mated Control Systems and Advanced Information Tech-
nologies (1999), both from the National Aerospace Univer-
sity “Kharkov Aviation Institute”, Ukraine. Her e-mail
address is <natali@il.ibm.com>.

AVIAD SELA is a research staff member in the IBM Hai-
fa Research Lab, Israel. Since joining IBM in 1997, he has
been working on speech recognition, signal processing,
and performance modeling projects. He has a BSc. in Me-
chanical Engineering and a BSc. in Computer Science,
both from the Technion, Israel Institute of Technology. His
e-mail address is <sela@il.ibm.com>.

SAREL AIBER is a research staff member in the IBM
Haifa Research Lab, Israel. Since joining IBM in 2002, he
has been working on performance modeling, change detec-
tion and adaptation in a business environment, and busi-
ness rule optimization. He has a BSc. with honors in Com-
puter Science from the University of New South Wales.
His honors thesis is in the area of machine learning. His e-
mail address is <aiber@il.ibm.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 474
	02: 475
	03: 476
	04: 477
	05: 478
	06: 479
	07: 480
	08: 481
	09: 482

