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ABSTRACT 

The creation of IT simulation models for uses such as ca-
pacity planning and optimization is becoming more and 
more widespread. Traditionally, the creation of such mod-
els required deep modeling and/or programming expertise, 
thus severely limiting their extensive use. Moreover, many 
modern intelligent tools now require simulation models in 
order to carry out their function. For these tools to be 
widely deployable, the derivation of simulation models 
must be made possible without requiring excessive techni-
cal knowledge. Hence we introduce a general methodology 
that enables an almost automatic deployment of IT simula-
tion models, based on three fundamental principles: Mod-
eling only at the required level of detail; modeling standard 
components using pre-prepared models; and automatically 
deriving the application-specific model details. The techni-
cal details underlying this approach are presented. In addi-
tion, a case study, showing the application of this method-
ology to an eCommerce site, demonstrates the applicability 
of this approach. 

1 INTRODUCTION 

The requirement for simulation models for tasks like ca-
pacity planning or optimization, and in particular on-
demand self-optimization, is becoming more and more 
widespread. The commercial market nowadays offers a 
wide range of software tools for the creation of perform-
ance simulation models (CSIM 19, Arena, AnyLogic, 
Simulink, etc.). However, a would-be-creator of these 
models is faced with the fact that the creation of (non-
trivial) simulation models on top of these tools often re-
quires quite a deep knowledge in both performance model-
ing and computer programming. In addition, even when the 
expertise required for the creation of a simulation model is 
available, there is quite often still a need to provide the 
model with extensive data, specific to the environment being 
modeled. Experience shows that such data is in most cases 
extremely difficult to retrieve from actual environments.  

The above two shortcomings in the creation of simula-
tion models severely limit their widespread applicability. 
In addition, there are currently several intelligent tools 
(e.g., Aiber et al. 2004, Levy et al. 2003) that rely on per-
formance simulation models to perform their function.  

For example, Aiber et al. (2004) introduces a tool 
whose purpose is to enable the configuration of an IT site so 
as to optimize business objectives. This task is carried out by 
implementing the architecture depicted in Figure 1 below. 

 

 
   Figure 1: The Business-Objective Driven Optimization  
   Architecture 

 
The above architecture defines the following process: 

The IT system is simulated, taking into account both the 
behavior of system resources (i.e., applications, middle-
ware, hardware), the incoming traffic (i.e., client requests), 
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and a set of configuration parameters that are subject to 
optimization. This simulation is then coupled with the 
AMIT/ADI rule engine (Adi and Etzion 2002, Adi et al. 
2003), for the calculation of the business results (for 
each given configuration), and an optimizer, that 
searches for the best possible configuration. For more 
details see Aiber et al. (2004). 

Tools such as the one outlined above, for which per-
formance simulation models are mandatory, will not be 
widely deployable unless a way is found to produce the re-
quired performance simulation models without requiring 
too much modeling or programming knowledge on the side 
of the deployer. 

In this paper, a general methodology is introduced, 
aimed at enabling a simple, non-programmatic, and almost 
automatic generation and deployment of IT simulation 
models, with particular emphasis on eCommerce environ-
ments. In addition, a case study showing the application of 
this methodology to an eCommerce site, demonstrates the 
value and applicability of this approach. 

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews some related work. In Section 3, an 
outline of the proposed methodology is given, followed by a 
detailed technical discussion of the model creation process. 
Section 4 presents a modeling and validation case study, 
where the concepts discussed in the paper are illustrated. Fi-
nally, the article concludes with a summary in section 5.  

2 RELATED WORK 

As mentioned in the introduction, there are several commer-
cially available products for the construction of general pur-
pose performance simulation models (CSIM 19, Arena, 
AnyLogic, Simulink, etc.). The development of IT simulation 
models using these products usually requires extensive mod-
eling and programming knowledge. In addition, issues re-
lated to the derivation of application-specific information are 
beyond their scope. Some modeling tools, such as HyPer-
formix IPS Optimizer, include pre-prepared models, thus re-
ducing the amount of modeling expertise required. 

As for algorithms for automatic derivation of applica-
tion-specific models, we can mention the Customer Behavior 
Model Graph, or CBMG, method (Menascé and Almeida 
2000), which defines a process for the automatic derivation 
of website client behavior models out of website access logs. 

3 THE MODELING METHODOLOGY 

The present section introduces a modeling methodology 
that enables a non-programmatic and almost automatic 
creation and deployment of IT simulation models. The 
methodology is based on the following three principles: 

 
• Modeling only at the required level of detail:   

Depending on the actual use, models containing 
different levels of detail may suffice. It would be 
highly desirable that generated models include all 
the necessary details, but not more than the re-
quired detail. For example, one of the chief appli-
cations for the models created following our 
methodology is the assessment of the impact of 
decisions at the IT level on certain pre-defined ob-
jectives, and in particular, business objectives, 
There may be cases in which a detailed model of a 
specific middleware or hardware, though present 
in the modeled environment may not be required. 
Therefore, pre-prepared model components, or 
building blocks (to be discussed in greater detail 
in the next paragraph), may be implemented at 
several levels of detail, ranging from implementa-
tions containing very detailed queuing and re-
source-usage models, to “black box”, or func-
tional, models.  

• Creating pre-prepared models of standard 
components: To enable the creation of models of 
IT topologies in a simple, non-programmatic 
manner, given an IT site, standard components of 
the IT (e.g., middleware, operating systems and 
hardware) are modeled using a set of pre-prepared 
building blocks. Following this approach, for each 
type of IT component, a generic model is created 
in advance, which can be reused across different 
sites and infrastructures. It’s worth noting that 
since we attempt to create models containing only 
the required level of detail, a single building block 
may happen to contain several tiers of a system, 
and in some cases, contain all the standard com-
ponents of the modeled system. 

• Automatically deriving application-specific 
models: Models of IT topologies, created by as-
sembling the building blocks described in the pre-
vious paragraph, model only hardware resources 
and standard middleware, and do not contain any 
information about particular applications running 
on top of this middleware. In addition, unlike a 
description of the IT topology, which in many 
cases can be obtained from human sources, this 
performance-related application-dependent infor-
mation is usually not explicitly known. For this 
reason, the methodology defines a set of high-
level application-specific model specifications. 
Models satisfying these specifications are gener-
ated automatically, using machine learning algo-
rithms and statistical techniques. 

 
The modeling methodology also defines a two-stage 

process for the generation of IT simulation models: A first 
stage, where a topological IT model is built by assembling 
building blocks (e.g., using a drag-and-drop GUI), and a 
second stage, consisting of the deployment of application-
specific automatic model-learning algorithms. The models 
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required for both stages, namely pre-prepared building 
blocks and application-specific models, will be next dis-
cussed in detail. 

3.1 Pre-Prepared Building Blocks 

Pre-prepared building blocks are re-usable models of 
hardware resources and standard middleware that are 
coded in advance, and are used in the assembly of topo-
logical IT models. 

From a conceptual point of view, we have divided pre-
prepared building blocks into several categories. This is 
mainly motivated by the intention to ease the process of 
model creation and management. We discriminate between 
blocks that model aspects of the actual system, and blocks 
that, while not representing any objects in the system, fa-
cilitate the connection of the model to the external world. 
Blocks of the first kind are further classified into blocks 
that model physical behavior, and those that model logical 
(or algorithmic) behavior. They match the “System Simu-
lation Model” and “System User Behavior Simulation” 
components of the architecture depicted in Figure 1 above. 
Other blocks include those that collect and process infor-
mation generated by a simulation, thereby matching the 
“AMIT” and “Overall Business Metric Computation” 
components in Figure 1, and those that act on the model, 
e.g., update the IT topology, configure policy parameters, 
etc., which correspond to the “Current Action Policy” 
and “Optimizer” components in Figure 1. 

Having this in mind, we have defined the following 
building-block categories:  

 
• Core infrastructure: These blocks model the 

cost (in terms of time spent in the system) of per-
forming operations in the modeled environment, 
e.g., performing a database request, serving an 
HTTP at a J2EE application server, etc. Examples 
of core-infrastructure building blocks include 
hardware resource models, such as CPUs and 
disks, and middleware models, e.g., models of 
web, application, or database servers. 

• Environmental modifiers: These blocks intend 
to model logical features of an actual environ-
ment, such as routing, load-balancing or dynamic 
bandwidth-allocation policies, so that their impact 
on the system’s overall performance can be ulti-
mately assessed. They are also used to model ob-
jects that are essential to the environment, but are 
not part of the IT environment, e.g., an input 
model, or a client-traffic generator. Unlike core-
infrastructure blocks, environmental modifiers in-
tend to capture the functional behavior of the 
modeled objects, disregarding the performance 
cost of going through any system resources. 
• Monitors: These blocks interact with other model 
objects through an instrumentation interface. They 
receive primitive modeled events, such as the start 
or the completion of a client transaction, perhaps 
together with additional information about the 
transaction, such as the transaction’s amount 
where applicable, or the identity of the client per-
forming the transaction. Monitors act as transla-
tors between these primitive events, and business 
objectives such as the operating profit generated 
by an eCommerce website. To this end, a monitor 
will typically implement, or be a wrapper of, a 
situation manager, or a complex-event-processing 
or business-rule engine. 

• Actors: These blocks modify configurable pa-
rameters of model objects, such as those parame-
ters on which an optimization is based, or the 
whole model, e.g., through the creation or re-
moval of model components, connections, etc. 

3.2 Automatically-Created Application-Specific 
Models 

The automatically-created application-specific models pro-
vide site-specific information required by the IT topologi-
cal models, defined above. 

We have defined the following application-specific 
models: the user-behavior model, the user-attribute model, 
the tier-level message breakdown, and tier-specific re-
source-requirement models. They were created in the con-
text of models for an eCommerce website. However, they 
can be easily adapted to other domains (e.g., messaging 
applications). The models, as well as the automatic algo-
rithms used to derive them, will be now discussed in detail. 

3.2.1 User Behavior Model 

The user-behavior model is a model of traffic patterns of 
client requests submitted to an eCommerce website. These 
patterns are modeled using a set of Markovian state-
transition graphs, augmented with a set of client clusters. 

The derivation of the Markovian transition graphs is 
based on the Customer Behavior Model Graph (CBMG) 
method (Menascé and Almeida 2000). This method as-
sumes the existence of a finite number of known client-
request types, and that actual client requests can be natu-
rally grouped into sessions. Sessions are then interpreted as 
traversals of a Markovian state-transition graph whose 
nodes are client-request types. The definition of a distance 
between sessions permits the application of standard clus-
tering algorithms, such as the k-means clustering algorithm 
(Everitt 1980), yielding a small number of state-transition 
graphs. These graphs are seen as representing different cli-
ent-session types. Figure 2 below shows an example of 
such a transition graph. 
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      Figure 2: Example of a CBMG, for a Given Session  
      Type 

 
The user-behavior model then groups simulated clients 

into clusters, according to the frequency with which each 
of them initiates sessions belonging to the different client- 
session types. This clustering process yields a set of prob-
ability distributions (having the set of client-session types 
as their sample space), and a function that assigns one of 
these distributions to each simulated client. 

The user-behavior model is automatically derived by 
applying the CBMG derivation algorithm (Menascé and 
Almeida 2000) and k-means clustering algorithm (Everitt 
1980) to web logs of the modeled environment. 

3.2.2 User Attribute Model 

The user-attribute model captures data that accompanies 
each incoming client request, which is relevant to the com-
putation of business objectives. An example of this is the 
actual amount of a purchase transaction. Unlike the user-
behavior model, which models the arrival process of client 
requests, the user-attribute model deals with parameters of 
these client requests on which the rules for computing the 
business objectives are based.  

The model is composed of a set of client clusters, and, 
for each cluster, a set of attribute-generating probability 
distributions. Clients are clustered according to similarity 
of attributes, where similarity means closeness of probabil-
ity distributions. Standard statistical tests such as chi-
squared can thus be applied for measuring this similarity. 
Table 1 below shows an example of a user-attribute model, 
based on three abstract attributes (A, B, and C), and com-
posed of three clusters (C1, C2, and C3). 

Model derivation is based on standard automatic dis-
tribution fitting and clustering algorithms (Brownlee 1965, 
Everitt 1980). First, for each simulated client, a probability 
distribution for each relevant attribute is derived from ac-
tual measured data. Simulated clients are then clustered ac-
cording to the distance between these probability distribu-
tions, as measured by some standard statistical similarity 
test such as chi-squared. The centroid of each cluster is the 
set of attribute-generating probability distributions that is 
attached to it. 

 
Table 1: Example of a User Attribute Model 

C1 A=20 to 30 
Unif. distr. 

B= Man/Woman 
(50%/50%) 

C=‘gold’ 

C2 A=Normal 
µ=50 σ=10 

B= Man/Woman 
(40%/60%) 

C=‘platinum’ 

C3 A=20 to 40 
Unif. distr. 

B= Man/Woman 
(65%/35%) 

C=‘gold’ 
/‘regular’ 
(50%/50%) 

 
Relevant user attributes usually appear as part of 

HTTP client requests. The user-attribute model is auto-
matically generated from logs and database values on the 
customer’s site, following the process just described. 

3.2.3 Tier-Level Message Breakdown Model 

The tier-level message breakdown model breaks down in-
coming client requests (as modeled by the user-behavior 
model), into invocations of methods and services at the dif-
ferent components of a multi-tier web application, e.g., in 
the context of a J2EE web application, Servlets, JSPs, 
EJBs and database requests. 

The tier-level message breakdown of each client-
request type is modeled by a probabilistic graph, whose 
nodes are services and methods that are invoked. Figure 3 
below shows an example of such a breakdown graph. 

 

 
Figure 3: Example of a Tier-Level Message Breakdown 
Model Graph 
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In this graph, each node represents a method call; differ-
ent colors and shades are used to represent nodes of different 
system tiers. Vertical edges represent caller/callee flows, i.e., 
an invocation of a method within another method, while 
horizontal edges represent consecutive flows, i.e., a sequence 
of method invocations that take place in a specified order. 

Solid edges in the tier-level message breakdown graph 
represent deterministic edges, while dotted lines represent 
probabilistic edges. In the particular example of Figure 3, 
the dotted circular line, which is a recursive sequential call, 
is supplied with the random variable N, that establishes the 
number of loop iterations, i.e., how many times this edge is 
to be taken. The other dotted line is the “default edge”, 
namely, the edge that is taken if no other edge (exiting 
from the same node) is taken. 

Breakdowns of individual client request are collected 
by tracing and monitoring tools (Intel’s VTune Enterprise 
Analyzer, IBM’s Tivoli Monitoring for Transaction Per-
formance). Tier-level message breakdown graphs are then 
built by applying business-process analysis (Golani and 
Pinter 2003) and distribution fitting (Brownlee 1965) algo-
rithms to a log of individual broken-down client requests. 

3.2.4 Tier-Specific Resource Requirement Model 

The tier-specific resource-requirement models are models 
of the resource level (e.g. CPU, disk) service times (i.e. the 
net usage time of each resource) of each tier-level request.  

For tiers where a detailed queuing-network building 
block has been implemented, service times required at in-
dividual resources, for the completion of each tier-level 
service-request type, are first measured at the website in 
isolation, using monitoring tools such as Intel’s VTune En-
terprise Analyzer or IBM’s Tivoli Monitoring for Transac-
tion Performance. Distribution functions for these service 
times are then automatically generated by applying statisti-
cal fitting methods (Brownlee 1965). The resource-
requirement model so obtained is then tested and validated 
against real website loads. If necessary, load-dependent 
corrections, or burstiness factors (Menascé and Almeida 
2002), are introduced. 

For tiers where a black-box building block is consid-
ered sufficient, Bayesian-network learning algorithms 
(Ghahramani 1998) are applied, to derive a response time 
function for each request type, depending on the state of 
the modeled component. Our Bayesian-network learning 
algorithm assumes that the state of a modeled component 
changes only when a request is received, or when a request 
has been serviced and is returned. The component’s state is 
therefore uniquely defined by the set of pending (i.e., re-
ceived and not yet returned) requests. The algorithm re-
ceives as input an entry/exit log of requests to the modeled 
tier, and produces two functions: 

 
• A response-time function f (R, θ), which depends 

on the state θ of the modeled component, and for 
each pending request R, returns the time that re-
mains till the request is to be returned. 

• A state-transition function g (R, θ), that computes 
the new machine-state θ’ of the modeled compo-
nent as a function of the previous machine-state θ, 
and the request R, that either has just arrived, or 
has been just returned. 

4 A CASE STUDY – MODELING AND 
VALIDATING A SPECIFIC ENVIRONMENT 

This section details the application of our methodology to 
the modeling and validation of a specific eCommerce site. 
Our example is based on a three-tier deployment of the 
FMStocks trading application. 

As the final goal of our model is the optimization of 
the IT environment according to business objectives, it is 
our aim to validate the model against business objectives 
rather than against IT metrics.  Since business objectives 
are, however, based on IT metrics, the validation of the 
model against IT metrics does provide valuable informa-
tion. On the other hand, whenever certain IT metrics prove 
to have a negligible impact on business objectives, their 
validation becomes irrelevant.  

The exposition starts with a description of the actual 
IT environment, the input model used, and the business 
rules applied. Then, the two-stage model-generation proc-
ess is described: (1) the assembling of an IT model out of 
building blocks, including a detailed description of the 
building blocks used, and (2) the derivation of application-
specific models. The section ends with a validation of the 
simulation model, and a set of conclusions. 

4.1  The Actual Environment 

The actual environment of our case study is a website run-
ning the FMStocks 2000 application (available online at 
<http://www.fmstocks.com>). It consists of three 
interconnected computers running the IIS web-server, the 
COM+ application server, and the SQLServer database 
server, see Figure 4 below. Client traffic was emulated, ac-
cording to the input model described in 4.2 

Intel's VTune Enterprise Analyzer was used to meas-
ure roundtrip response times at the web, application and 
database tiers. 

4.2 Input Model and Business Metrics 

The input model consists of a fixed number of simulated 
clients; each of them initiates, on average, two sessions on 
every 8-hour working day. Thus, for each 1,000 simulated 
clients, there's a workload of 250 sessions per hour. The 
session-arrival process is a Poisson process, with the ap-
propriate intensity. 
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Figure 4: The Actual Environment 

 
Four client-session types were defined, and a probabil-

ity assigned to each of them: Browse/Buy (33%), Browse 
(28%), Check Portfolio (22%), and Buy (17%). We have 
defined each session type as a Markovian transition graph. 
As an illustration, Figure 5 below shows the graph corre-
sponding to a Browse/Buy session (this is an expanded ver-
sion of the example shown above in Figure2). 
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Figure 5: The CMBG Corresponding to the Browse/Buy 
Session Type 

 
User attributes were defined as follows: 
 
• Service Level Agreement (SLA): Platinum (10% 

of the clients), gold (40%), and regular (50%). 
• Spending Habits: High spenders (monthly spend-

ing amount uniformly distributed between 
$100,000 and $125,000 per month, 3% of the cli-
ents), medium spenders ($10,000 to $12,500, 
30%), and low spenders ($1,000 to $1,250, 67%). 
The client think-time, that is, the time elapsed between 
the reply from a request and the submission of a new re-
quest by the same client (within a single session), is uni-
formly distributed between 0.5 and 8 seconds. Finally, if a 
request is not answered within a 10-second timeout, the 
client session is aborted. 

The computation of the business metric is governed by 
the following rules: 

 
• For each buy or sell transaction, a commission of 

4% of the transaction’s amount, or $25 is col-
lected, whichever is greater. 

• Platinum and gold customers pay a daily flat fee 
of $50 and $20, respectively. 

• Platinum and gold customers are promised an av-
erage response time of one second, and two sec-
onds, respectively. For each 1% deviation from 
this contract, the site pays them a penalty of $5.5 
and $3.5 respectively. 

4.3 The IT Simulation Model 

Following our two-stage methodology, the generation of an 
IT simulation model for the actual environment consisted 
of (1) assembling building blocks into a model of the IT 
topology, followed by (2) a stage where the model is com-
plemented with application-specific information. These 
two stages will be discussed below. 

4.3.1 Building Blocks and IT Topology 

The composition of the simulation IT topology model was 
based on the following building blocks: 

 
• A CPU building block, implementing a round-

robin queue. 
• A disk building block, implementing a first-come-

first-served queue. 
• A generic middleware building block that trans-

lates messages it receives from its front end into 
messages for a CPU, a disk and/or a lower tier 
(the translation is to be specified by application-
specific models, such as the tier-level message 
breakdown model, and the tier-specific resource 
requirement model). 

• A traffic generator building block that simulates the 
input model described in the previous subsection. 

 
In addition, response times were monitored at each of 

the middleware building blocks, and business metrics 
computed following the rules specified above. 

The IT simulation model was created by assembling 
instances of these building blocks, using XJTek’s Any-
Logic 4.5 (<http://www.xjtek.com/anylogic>) 
simulation product. The model consisted of one traffic 
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generator block, and three sets of middleware/CPU/disk 
blocks, representing the web, application and database 
servers respectively. The simulation model is shown in 
Figure 6. The upper diagram shows a model of the whole 
system, while the lower diagram shows the internal struc-
ture of generic middleware building block. 

 

 
Figure 6: The IT Simulation Model 

4.3.2 The Application-Specific Models 

A tier-level message breakdown model and a tier-specific 
resource requirement model were derived from the actual 
environment. Since the actual environment was not a real 
business environment, the user-behavior model, and the 
user-attribute model could not be derived; these models 
were in fact provided as input to the environment. 

Both application-specific models were derived by run-
ning isolated client sessions, consisting of a fixed sequence 
of client requests, and using Intel’s VTune Enterprise Ana-
lyzer to monitor the system's activity. As sessions were run 
in isolation, response times were interpreted, as a first ap-
proximation, as actual resource requirements. A correction 
procedure aimed at dealing with contentions not accounted 
for in our IT topology model was then applied (more de-
tails regarding this technique will be given in 3.5 below). 

Table 2 shows some results of these model derivations. 
The left side of the table shows average values of some tier-
specific resource-requirement probability distributions. Re-
source requirements for the web server and application 
server tiers are CPU average service times, in milliseconds 
(no significant disk activity was observed for these tiers). 
For the database server tier, there are two columns, showing 
CPU and disk average service times respectively. 

The right side of the table shows part of the tier-level 
message breakdown: Each of the five rightmost columns 
represents a task at the web tier. Lower-tier tasks invoked 
as a result of the processing of a web-tier task are marked 
with an ‘X’ inside the appropriate cell. 
 

Table 2: Average Resource Requirements, and Tier-Level 
Message Breakdowns 

Web Tier   Time LP L VB BS VP 
Login Page 9 X     
Login 114  X    
View Balance 15   X   
Buy Stock 22    X  
View Portfolio 20     X 

 
App Tier   Time (ms) L VB BS VP 

Acct.Summary 35  X   
Acct.ListPostns 27    X 
Acct.VfyLogin 32 X    
Broker.BuyStock 110   X  
Ticker.VfySymb 17   X  

 
DB Tier   Time (ms) L VB BS VP 

Acct Summary 0.93 0.01  X   
Acct VfyLogin 0.00 0.00 X    
Broker Buy 0.94 0.09   X  
Position List 3.31 0.97    X 
Ticker Price 0.31 0.02   X  
Ticker VfySymb 0.35 0.02   X  
Xactn Order 0.35 0.02   X  
Xactn Type 0.00 0.00   X  

4.4 Validation and Tuning Against IT Metrics 

Response-time results from the simulation model and the ac-
tual environment were compared, for the input model defined 
above, at various workload intensities ranging from 250 to 
2000 sessions per hour (a throughput of 2500 sessions per 
hour was found to be beyond the system's capacity). 

Response times for the database tier turned out to be 
comparatively very small, erratic, and highly volatile, 
which led us to the (expected) conclusion that, for our par-
ticular environment, we could have ignored the effect of 
the database tier at all in our simulation model. 

For the web server and the application server, it was 
found that the model overestimates response times for rela-
tively low intensities, and underestimates response times 
for high intensities. In addition, this gap was found to in-
crease together with the intensity. These were attributed, 
on one hand, to the synergetic effects of low, though 
steady, input on factors such as caching effects, and on the 
other, to burstiness and contention effects not explicitly ac-
counted for in our IT topology model. Following the meth-
odology developed in (Menascé and Almeida 2002), we 
introduced two correction factors aimed at closing these 
gaps: a negative (i.e., smaller than one) constant factor for 
the synergy resulting from having a steady load, and a 
positive (i.e., larger than one) burstiness factor, propor-
tional to the workload intensity. 
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Table 3 below, shows a partial list of corrective factors 
used. The “synergy” factor is constant (i.e., it doesn’t de-
pend on workload intensity). The tabulated “burstiness” 
factor is the correction applied to a workload intensity of 
250 sessions per hour. 

 
Table 3: Corrective Factors 

Tier – Task   Synergy Burstiness 
WEB – Login Page -20% +2% 
WEB – Login - +5% 
WEB – View Balance - +5% 
WEB – Buy Stock - +10% 
WEB – View Portfolio - +10% 
APP – Acct.Summary  - +4% 
APP – Acct.ListPostns -15% +5% 
APP – Acct.VfyLogin - +4% 
APP – Broker.BuyStock - +4% 
APP – Ticker.VfySymb - +4% 

 
Figures 7 and 8 show some response time gaps be-

tween the model and the actual environment, before and 
after the burstiness correction, for a subset of the tasks 
listed in Table 3. A positive (negative) gap indicates that 
model response times overestimate (underestimate) those 
of the real environment. 

 

 
Figure 7: Gaps Between Model and Real Environment 
Response Times Before Correction 

 

 
Figure 8: Gaps Between Model and Real Environment 
Response Times After Correction 

 
The final validation of the simulation model was car-

ried out by comparing the overall business metric, as ob-
tained both from the actual environment and from the 
simulation model. Figure 9 below shows collected-
commission gaps between the actual environment and the 
corrected simulation model. The result shown in each case 
is the largest gap observed in a set of three independent 
measurements (again, positive gaps indicate that the simu-
lation model overestimates actual results). 
 
Figure 9: Gaps Between Model and Real Environ-
ment Collected Commission (After Correction) 

4.5 Conclusions 

The validation process has shown that a gap of no more 
than 10% exists between our simulation model and our ac-
tual environment, for response times at the web-server and 
application-server tier, and for business metrics. No valida-
tion was achieved for response times at the database-server 
tier. Nevertheless, it was observed that the database-server 
has negligible impact on business metrics, and therefore, 
for the defined business objectives, the database tier might 
have been ignored. 

5 SUMMARY 

This paper presented a methodology and a process for 
business-oriented performance modeling of IT infrastruc-
tures. The methodology has many potential applications, 
ranging from traditional capacity planning to business-
objective driven optimization that focus on high-level 
business objectives, rather than more traditional IT metrics. 

Our methodology is quite general, and may be applied 
to various IT scenarios, including eCommerce sites and 
messaging infrastructures. In addition, business objectives 
may be defined in an arbitrarily complex manner, which in 
turn helps maintaining a clear connection between IT pol-
icy decisions and business-level metrics, such as operating 
profit or return on investment. A two-stage process enables 
an almost automatic deployment of the modeling solution, 
given an IT site. The knowledge on the IT site required for 
an actual deployment is minimal. 

While the first stage of the process, dealing with com-
position of topological models out of pre-prepared building 
blocks, is domain-agnostic, deciding what sets of building 
blocks are suitable for pre-preparation in different applica-
tion domains, as well as deciding how much detailed 
should be a given building block, are issues that warrant 
further research. In contrast, the second stage of the proc-
ess, which deals with the extraction of application-specific 
information, is more domain-specific. The paper presented 
our choice of models in the context of eCommerce sites. 
These models can be easily adapted to related domains, 
such as messaging applications. Processes for defining sets 
of application-specific models in more dissimilar domains 
are worth of being explored. 
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