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ABSTRACT

Recently, simulation-based methods have been successfully
used for solving challenging stochastic optimization prob-
lems and equilibrium models. Here we report some of the
recent progress we had in broadening the applicability of
so-called the sample-path method to include the solution
of certain stochastic mathematical programs with equilib-
rium constraints. We first describe the method and the
class of stochastic mathematical programs with comple-
mentarity constraints that we are interested in solving and
then outline a set of sufficient conditions for its almost-
sure convergence. We also illustrate an application of the
method to solving a toll pricing problem in transportation
networks. These developments also make it possible to
solve certain stochastic bilevel optimization problems and
Stackelberg games, involving expectations or steady-state
functions, using simulation.

1 INTRODUCTION

This paper reports our recent progress in extending the range
of problems that can be solved by sample-path methods. This
is achieved by analyzing a class of stochastic mathematical
programs with equilibrium constraints for which both the
objective function and the equilibrium constraints (repre-
sented by complementarity constraints) may be stochastic.
In this section we briefly outline the class of problems
concerned.

Roughly speaking, sample-path methods are developed
for solving a problem of optimization or equilibrium, in-
volving a limit function f∞ for which we do not have
an analytical expression. However, we can use simulation
to observe functions fn that converge pointwise to f∞ as
n → ∞ almost surely. In the kind of applications typically
encountered, f∞ could be a steady-state performance mea-
sure of a dynamic system or an expected value in a static
system. In systems that evolve over time, we simulate the
operation of the system for, say, n time units and then com-
pute an appropriate performance measure. In static systems
we repeatedly sample instances of the system and compute
an average. In both cases, we use the method of common
random numbers to observe fn at different parameter set-
tings. A crucial observation is the following: once we fix an
n and a sample point (using common random numbers), fn

becomes a deterministic function. In the simplest form, the
sample-path methods then solve the resulting deterministic
problem (using fn with the fixed sample path selected), and
take the solution as an estimate of the true solution. Further-
more, in many cases derivatives or directional derivatives of
the fn can be obtained using well-established methods of
gradient estimation such as infinitesimal perturbation analy-
sis (IPA), see Ho and Cao (1991) and Glasserman (1991), or
automatic differentiation capabilities, see Griewank (2000).
Clearly, the success of this basic approach heavily depends
on the availability of powerful and efficient deterministic
solvers for the underlying deterministic problem type.

It is possible to distinguish between three types of
problems. The first involves optimization; in this case
we can think of the fn as extended-real-valued functions:
fn : Rk → R∪{±∞} for 1 ≤ n ≤ ∞, and we are interested
in solving

min
x

f∞(x). (1)

This setup also covers optimization problems with deter-
ministic constraints since we can always set f∞(x) = +∞
for x that do not satisfy the constraints.

The second problem type is a variational inequality;
in this case the fn would be vector-valued functions: fn :
Rk → Rk for 1 ≤ n ≤ ∞, and our aim would be finding a
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point x0 ∈ C, if any exists, satisfying

for each x ∈ C, 〈x − x0, f∞(x0)〉 ≥ 0, (2)

where 〈y, z〉 denotes the inner product of y and z, and C is a
polyhedral convex subset of Rk . Problem (2) is denoted by
VI(f∞, C). It models a very large number of equilibrium
phenomena in economics, physics, and operations research;
for many examples, see Harker and Pang (1990) and Ferris
and Pang (1997). An important class of variational inequal-
ities are complementarity problems; see also Section 2. A
well-known area where complementarity is used is nonlinear
programming, because the first order necessary conditions
for local optimality of a nonlinear program can be stated as a
complementarity problem. Note that the availability of very
powerful deterministic solvers, for optimization problems,
variational inequalities, and equilibrium models, makes the
sample-path method an attractive approach.

In the third problem type, the optimization and equi-
librium problems are combined together through placing
the variational inequalities as a set of constraints into the
optimization problem

min f∞(x, y)

s.t. (x, y) ∈ Z

F∞(x, y)(v − y) ≥ 0 for all v ∈ C(x),

(3)

where f∞ : R
n+m → R, F∞ : R

n+m → R
m, and

Z ⊆ R
n+m. In general, problems of type (3) are called math-

ematical programs with equilibrium constraints (MPEC’s);
see Luo, Pang, and Ralph (1996) and Outrata, Kocvara, and
Zowe (1998). Note that a bilevel optimization problem can
be seen as a special case of MPEC in which the mapping
F∞(x, ·) is the partial gradient (with respect to y) of a real-
valued, continuously differentiable function. In MPEC’s x

is called the upper level variable and y is called the lower
level variable.

An important class of MPEC’s are mathematical pro-
grams with complementarity constraints (MPCC’s) in which
the equilibrium constraints take the special form of com-
plementarity conditions; see next section for further details.
In this paper we will deal with such an MPCC problem of
the form discussed in Scheel and Scholtes (2000).

More specifically, we are concerned with a class of
stochastic MPCC’s, in which potentially, all of the defining
functions (or some of their components) may represent a
limit function that can not be directly observed. Formally,
we are interested in the following stochastic mathematical
programs with complementarity constraints (SMPCC):

min f∞(z)

s.t. min{F∞
k1 (z), . . . , F∞

kl (z)} = 0 k = 1, . . . , m

g∞(z) ≤ 0 (4)

h∞(z) = 0

z ∈ � ,

where any of f∞, F∞, g∞, or h∞ (or some of their com-
ponents) may be not have analytical expressions available.
Here variable z includes the decisions at all levels; the con-
straint min{F∞

k1 (z), . . . , F∞
kl (z)} = 0 means that F∞

kj (z) ≥ 0
for every j = 1, ..., l and F∞

k1 (z)F∞
k2 (z) . . . F∞

kl (z) = 0. A
particular example in which expectations are involved in the
objective function and in the constraints is the following:

min Eω[f (x, y; ω)]
s.t. (x, y) ∈ Z (5)

y ≥ 0, Eω[F(x, y; ω)] ≥ 0

y Eω[F(x, y; ω)] = 0,

where Z = { (x, y) ∈ R
n × R

m | Eω[g(x, y; ω)] ≤
0, Eω[h(x, y; ω)] = 0 } and ω denotes the random ele-
ment in the model.

As an example consider a leader-follower (Stackelberg)
type game from mathematical economics. A set of rational
players try to select their best strategies in order to maximize
their respective utilities. Among these players there is a
distinctive player called the leader, whose decision x can
impact the strategies y chosen by the other players, i.e., the
followers. Given the leader’s preference, the other users
play a Nash game. The resulting MPEC problem is then
selecting the best strategy that maximizes leader’s utility,
under the constraints of Nash equilibrium among the players.

Suppose that x represents the tax levels which the leader
imposes on the followers and that we are interested in the
revenues resulting from these taxes in the long run. Then
we are trying to find the taxation scheme x of the leader
that maximizes the expected revenues −Eω[f (x, y; ω)]. In
this case, the leader may relate her decisions to certain
activity levels y of the players which satisfy the equi-
librium conditions in the long run. In other words, the
equilibrium conditions may be required to hold on average
and be expressed in terms of the average marginal costs
Eω[F(x, y; ω)]. Constraints expressed by Eω[g(x, y; ω)]
and Eω[h(x, y; ω)] may model the relations between, for
example, average production levels of the followers and
the expected demand levels or service level type require-
ments. Here ω may represent various sources of uncer-
tainty such as market demand for followers’ products or
randomness in the marginal cost function F itself (for ex-
ample due to the costs of raw materials or to technological
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changes). By simulating this system and using gradient
estimation techniques or automatic differentiation capabili-
ties incorporated into a modeling language, such as GAMS,
we can estimate the performance measures Eω[f (x, y; ω)],
Eω[F(x, y; ω)], Eω[g(x, y; ω)], and Eω[h(x, y; ω)] as well
as their gradients. Using these together with appropriate
deterministic techniques we can then compute the optimal
taxation scheme of the leader and the equilibrium activity
levels of the followers.

Notice that the SMPCC formulation we consider deals
with problems in which all decisions, that is, at both upper
and lower levels, must hold in the long run or in expecta-
tion. From this point of view, the stochastic MPCC under
consideration here differs from the type of stochastic MPEC
as formulated in Patriksson and Wynter (1999), where the
lower level decisions depend on ω and the complementarity
(or equilibrium) constraints are required to hold individually
for every realization of ω. Lin, Chen, and Fukushima (2003)
address the same problem; moreover, they also discuss a
different variant, somewhat closer to ours, which makes use
of a recourse variable depending on ω and some “adjusted”
complementarity constraints are yet required to hold indi-
vidually, for each ω. Our variant of SMPCC differs from
either of those formulations, in that it does not impose in-
dividual realization constraints, but rather complementarity
constraints at an “average" level. For a more formal and
detailed discussion on different stochastic MPCC formula-
tions, we refer to Birbil, Gürkan, and Listeş (2004).

The rest of this paper is organized as follows. In Sec-
tion 2 we review some background material for MPCC’s
and provide further details on sample-path methods. We
summarize our results on sample-path analysis for SMPCC’s
in Section 3; this section is based on Birbil, Gürkan, and
Listeş (2004). In Section 4 we outline an illustrative ap-
plication related to toll pricing in transportation networks.
Finally, conclusions are in Section 5.

2 MPCC AND SAMPLE-PATH METHODS

In this section we review some background material related
to MPCC’s and sample-path methods. From the viewpoint
of nonlinear programming, the complementarity constraints
involving the function F∞ are problematic, irrespective of
the properties of F∞, since no solution z can be a strictly
feasible point. Consequently, the standard Mangasarian-
Fromovitz constraint qualification is violated at every fea-
sible point and one needs to deal with the complementarity
constraints explicitly. Stochastic MPCC’s require additional
effort in order to account for the uncertain data. As men-
tioned earlier, for the SMPCC formulation (4), we propose
a simulation-based solution approach using the sample-path
method.

The basic case of sample-path optimization, con-
cerning the solution of simulation optimization problems
with deterministic constraints, appeared in Plambeck et
al. (1993, 1996) and was analyzed in Robinson (1996).
Plambeck et al. (1993, 1996) used infinitesimal perturba-
tion analysis (IPA) for gradient estimation. In the static case,
a closely related technique centered around likelihood-ratio
methods appeared in Rubinstein and Shapiro (1993) under
the name of stochastic counterpart methods. The basic ap-
proach (and its variants) is also known as sample average
approximation method in the stochastic programming litera-
ture; see for example Shapiro and Homem-De-Mello (1998),
Kleywegt, Shapiro, and Homem-De-Mello (2001), and Lin-
deroth, Shapiro, and Wright (2002).

In Gürkan, Özge, and Robinson (1996, 1999a) the ba-
sic idea of using sample-path information was extended to
solving stochastic equilibrium problems. There a frame-
work is presented for stochastic variational inequalities that
can model certain equilibrium problems and conditions are
provided under which equilibrium points of approximating
problems (computed via simulation and deterministic vari-
ational inequality solvers) converge almost surely to the
solution of the limit problem. Gürkan, Özge, and Robin-
son (1999a) also contains a numerical application of the
derived theory for finding the equilibrium prices of nat-
ural gas as well as the equilibrium quantities to produce
in the European natural gas market. This work was used
further in Gürkan, Özge, and Robinson (1999b) for estab-
lishing almost-sure convergence of sample-path methods
when dealing with stochastic optimization problems with
stochastic constraints.

In order to guarantee the closeness of solutions of the
approximating variational inequalities to the solution of the
real problem, Gürkan, Özge, and Robinson (1999a) impose
a certain functional convergence of the data functions. It

is called continuous convergence and denoted by
C−→; it

is equivalent to uniform convergence on compact sets to a
continuous limit. For an elementary treatment of the rela-
tionship between different types of functional convergence,
see Kall (1986), and for a comprehensive treatment of con-
tinuous convergence and related issues, see Rockafellar and
Wets (1998). In the sequel we will employ this property as
well.

In general the results which provide theoretical support
for sample-path methods are based on the sensitivity analysis
of the corresponding deterministic problems. This aspect
is illustrated in Robinson (1996) in the case of simulation
optimization problems with deterministic constraints as well
as in Gürkan, Özge, and Robinson (1999a) in the case
of stochastic variational inequalities. Following a similar
argument, we build our sample-path analysis of stochastic
MPCC’s on the recent work of Scheel and Scholtes (2000),
who set forth important sensitivity results for deterministic
MPCC’s.

As discussed in Scheel and Scholtes (2000), we work
with an open set � ⊆ R

n0 and twice differentiable functions
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f : � → R, g : � → R
p, h : � → R

q , and F : � →
R

m×l with m ≥ 1, l ≥ 2, and

F(z) =



F11(z) . . . F1l (z)
...

. . .
...

Fm1(z) . . . Fml(z)


 ·

Given these ingredients, the problem under consideration is
the following mathematical program with complementarity
constraints (MPCC):

min f (z)

s.t. min{Fk1(z), . . . , Fkl(z)} = 0 k = 1, . . . , m

g(z) ≤ 0 (6)

h(z) = 0

z ∈ � .

If z = (x, y) ∈ R
n1 × R

n2 , l = 2, Fk1(x, y) =
yk , and Gk(x, y) := Fk2(x, y), then the constraints
min{Fk1(z), Fk2(z)} = 0, k = 1, ..., m, represent the para-
metric nonlinear complementarity problem

y ≥ 0, G(x, y) ≥ 0, y G(x, y) = 0, (7)

with parameter x and variable y. It is well known
(see e.g., Harker and Pang (1990)) that problem (7) is
equivalent to solving the parametric variational inequality
VI(G(x, ·), R

n2+ ) over the positive orthant R
n2+ . Thus, the

MPCC’s are indeed a very important subclass of the math-
ematical programs with equilibrium constraints (MPEC’s);
see Luo, Pang, Ralph (1996).

One can associate with an MPCC the following La-
grangian function:

L(z, �, λ, µ) = f (z) − F(z)� + g(z)λ + h(z)µ , (8)

where λ ∈ R
p, µ ∈ R

q , and � ∈ R
m×l are the corresponding

Lagrange multipliers and F(z)� = ∑
i

∑
j Fij (z)�ij is the

inner product of the two m × l-matrices.
Scheel and Scholtes (2000) provide a thorough discus-

sion on stationarity concepts for MPCC’s and how they
relate to the local minima. A basic concept is weak sta-
tionarity. A point z is called a weakly stationary point for
MPCC if there exist multipliers �, λ, and µ such that

∇zL(z, �, λ, µ) = 0

min{Fk1(z), . . . , Fkl(z)} = 0 k = 1, . . . , m

h(z) = 0

g(z) ≤ 0 (9)

λ ≥ 0

gr(z)λr = 0 r = 1, . . . , p

Fki(z)�ki = 0 k = 1, . . . , m,

i = 1, . . . , l .

Under appropriate assumptions, the multipliers associated
with a weakly stationary point can provide valuable infor-
mation about the local geometry of the problem. Moreover,
additional conditions to weak stationarity lead to stronger
stationarity concepts for MPCC’s, such as C-stationarity and
strong stationarity; see Scheel and Scholtes (2000). Under
certain constraint qualifications, such stationarity conditions
are necessary for local optimality. For conciseness we con-
fine our discussion here to weakly stationary points and refer
to Birbil, Gürkan, and Listeş (2004) for further details.

3 STOCHASTIC MATHEMATICAL PROGRAMS
WITH COMPLEMENTARITY CONSTRAINTS

We focus in this section on solving the problem SMPCC,
in which no explicit description is available, in general, for
any of the defining functions f∞, g∞, h∞, and F∞. For
ease of notation, the ∞ scripts in SMPCC are omitted from
now on. Suppose we observe some sequences of functions
{fn}, {gn}, {hn}, and {Fn} for n ∈ N, which approximate
f , g, h, and F , respectively. Then we are concerned with
sufficient conditions under which the solutions of SMPCC
can be approximated by the solutions of a sequence of
problems of the following type:

MPCCn

min fn(z)

s.t. min{Fn
k1(z), . . . , F

n
kl(z)} = 0 k = 1, . . . , m

gn(z) ≤ 0

hn(z) = 0

z ∈ � .

Assuming that the functions {fn}, {gn}, {hn}, and {Fn} are
twice differentiable, the weak stationarity conditions for
MPCCn are of the form (9), where the true functions are re-
placed by the approximating functions and their derivatives.
As these conditions represent a system which approximates
system (9), the strategy could be to try and solve an ap-
proximating MPCCn for n sufficiently large.
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Note that an important way of envisioning the approx-
imating setup is to regard the approximating functions as
estimates of the true functions obtained from a simulation
run of length n. In the context of option pricing, Gürkan,
Özge, and Robinson (1996) provide an example in which an
unobservable function f∞ is approximated by a sequence
{fn : n ∈ N} of step functions. Hence, each fn has a finite
(but large) number of discontinuity points and a zero deriva-
tive on the rest of the domain, which makes it extremely
difficult to optimize. On the other hand, the authors show
that the derivative ∇f∞ of f∞ may be approximated by a
sequence gn of nicely behaved (smooth) functions. Clearly,
in this example gn does not coincide with ∇fn (at the points
where the latter is defined). Such examples indicate that in
practise it is important to work with assumptions as weak
as possible. Therefore, we focus here on a more general
context.

We assume that one can observe some sequences of
functions {gn}, {hn}, {Fn}, {an}, {bn}, {cn}, and {dn} for
n ∈ N, which approximate g, h, F , ∇f , ∇g, ∇h, and ∇F

respectively. In the elaboration of our main result we will
use the following notation:

J (z) = (∇f (z), ∇g(z), ∇h(z), ∇F(z)), (10)

J n(z) = (an(z), bn(z), cn(z), dn(z)), (11)

dLn(z, �, λ, µ) = an(z)−dn(z)�+bn(z)λ+cn(z)µ. (12)

In this setting, we are concerned with when and how well
the solutions of (9) can be approximated by the solutions
of the sequence of systems of the following type:

dLn(z, �, λ, µ) = 0

min{Fn
k1(z), . . . , F

n
kl(z)} = 0 k = 1, . . . , m

hn(z) = 0

gn(z) ≤ 0 (13)

λ ≥ 0

gn
r (z)λr = 0 r = 1, . . . , p

Fn
ki(z)�ki = 0 k = 1, . . . , m,

i = 1, . . . , l .

Notice that if bn = ∇gn, cn = ∇hn and dn = ∇Fn

for every n ∈ N and if moreover, f is approximated by
a sequence of functions fn such that an = ∇fn for every
n ∈ N, then indeed, the approximating problem (13) repre-
sents the weak stationarity conditions for an approximating
program MPCCn of the type above.

The following theorem contains our main result on
existence and convergence of approximating solutions.
Theorem 1 Let � be an open set in R
n0 . Suppose

that f , g, h, and F are functions from � to R, R
p, R

q ,
and R

m×l respectively, which are twice differentiable and
that J is defined as in (10). Let z̄ ∈ �, �̄ ∈ R

m×l , λ̄ ∈ R
p,

and µ̄ ∈ R
q . Suppose that {J n | n = 1, 2, ...} are random

functions defined on �, as in (11), {dLn | n = 1, 2, ...} are
random functions defined as in (12), {gn | n = 1, 2, ...} are
random functions from � to R

p, {hn | n = 1, 2, ...} are
random functions from � to R

q , and {Fn | n = 1, 2, ...}
are random functions from � to R

m×l such that for all
z ∈ � and all finite n the random variables J n(z), gn(z),
hn(z), and Fn(z) are defined on a common probability
space (�, F, P ). Let L(z, �, λ, µ) be defined as in (8) and
assume the following:

1) With probability one, each J n for n = 1, 2, ... is

continuous and J n C−→ J .
2) With probability one, each gn for n = 1, 2, ... is

continuous and gn C−→ g.
3) With probability one, each hn for n = 1, 2, ... is

continuous and hn C−→ h.
4) With probability one, each Fn for n = 1, 2, ... is

continuous and Fn C−→ F .
5) (z̄, �̄, λ̄, µ̄) is a solution of (9) (that is, a weakly

stationary point of the SMPCC).
6) ∇zL has a strong Fréchet derivative ∇2

zzL(z̄, �̄, λ̄, µ̄)

at the point (z̄, �̄, λ̄, µ̄) and all the matrices



∇2
zzL(z̄, �̄, λ̄, µ̄) −∇zFI (z̄)� ∇zgR(z̄)� ∇zh(z̄)�

∇zFI (z̄) 0 0 0

−∇zgR(z̄) 0 0 0

∇zh(z̄) 0 0 0



(14)

with {(k, i) | �̄ki �= 0} ⊆ I ⊆ {(k, i) | Fki(z̄) = 0}
and ∀ k = 1, ..., m ∃ i ∈ {1, ..., l} : (k, i) ∈ I ,

and {r | λ̄r > 0} ⊆ R ⊆ {r | gr(z̄) = 0} ,

have the same nonvanishing determinantal sign.
Then, there exist compact subsets C0 ⊂ � containing

z̄, U0 ⊂ R
m×l containing �̄, V0 ⊂ R

p containing λ̄, and
W0 ⊂ R

q containing µ̄, neighborhoods Y1 ⊂ � of z̄,
U1 ⊂ R

m×l of �̄, V1 ⊂ R
p of λ̄, and W1 ⊂ R

q of µ̄, a
constant α > 0 and a set � ⊂ � of measure zero, with the
following properties: for n = 1, 2, ... and ω ∈ � let

ξn(ω)= sup { ‖(dLn(ω, z, �, λ, µ), (gn, hn, F n)(ω, z))

−(∇zL(z, �, λ, µ), (g, h, F )(z))‖ :
(z, �, λ, µ) ∈ C0 × U0 × V0 × W0 },

Zn(ω) = { (z, �, λ, µ) ∈ Y1 × U1 × V1 × W1 |
(z, �, λ, µ) solves (13) associated to ω }.
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For each ω /∈ � there is then a finite integer Nω such that
for every n ≥ Nω the set Zn(ω) is a nonempty, compact
subset of B((z̄, �̄, λ̄, µ̄), α ξn(ω)).

Although useful, continuous convergence itself does
not guarantee neither the existence of approximating solu-
tions nor their convergence. To guarantee these, one needs
to impose an additional regularity condition. The partic-
ular regularity condition we employ in 6) is the so-called
nonvanishing determinantal sign condition, as set forth in
Scheel and Scholtes (2000). It is highly technical and we
refer the reader to Scheel and Scholtes (2000) and Birbil,
Gürkan, and Listeş (2004) for a detailed discussion. In
Birbil, Gürkan, and Listeş (2004), we give the proof of
Theorem 1 along with a rigorous discussion of the rela-
tionship between the nonvanishing determinantal sign and
other regularity concepts.

To summarize, Theorem 1 says that under certain nice-
ness conditions, for n sufficiently large (i.e., if we go out
long enough on any sample-path), the solution set of (13)
becomes nonempty and compact. Furthermore, the dis-
tance of every such solution of (13) from the exact solution
(z̄, �̄, λ̄, µ̄) of (9) becomes bounded by a constant multiple
of the uniform norm of (dLn, gn, hn, F n)− (L, g, h, F ) on
a compact set.

By assuming an additional condition at the solution
point, similar convergence results to Theorem 1 can be
also established for the C-stationary and strong stationary
concepts mentioned above. Moreover, if one assumes con-
tinuous convergence of the first and second order derivatives
of the approximating functions to the first and second order
derivatives of the limit functions, the approximating solu-
tion set can be guaranteed to be finite. Furthermore, by
assuming both continuous convergence of the derivatives
and an additional regularity condition at the solution point,
the uniqueness of the approximating solutions can be also
proven. We refer to Birbil, Gürkan, and Listeş (2004) for
technical details on these.

4 AN APPLICATION IN TOLL PRICING

The commuters in a transportation network depart from
certain points and try to arrive at their destinations in the most
beneficial way. Generally, their benefits are directly related
to traversing the shortest or least costly paths. A principle
which characterize the steady-state flows in such networks
was introduced by Wardrop (1952). In the literature this
principle is used to formulate a set of equilibrium conditions,
which are in turn, used as part of traffic congestion problems;
see Florian and Hearn (1995). For network controllers, one
way to deal with the congestion is imposing toll prices
on the roads, which can alter the equilibrium conditions.
In this regard, the objective of the toll pricing problem is
to determine the optimal toll prices so that the congestion
is minimized under the user equilibrium conditions and
network flow constraints.

The following mathematical description of the toll pric-
ing problem is somewhat standard in the literature and our
exposition borrows largely from the model given by Dirkse
and Ferris (1997). Consider a transportation network de-
scribed by a set of nodes N , and a set of arcs A. We denote
an arc interchangeably by subscripts a ∈ A and (i, j) ∈ A
with i, j ∈ N . The set of destination nodes is denoted by
K ⊂ N . A commodity is associated with a destination node
and it is denoted by k. The flow vector of a commodity
k ∈ K over the network is represented with the variable yk

with the components yk
a denoting the flow of commodity k

on arc a. The cost (or time) of flow on an arc, experienced
by a user, is a real-valued function given by ca . The cost
function not only depends on the network flows but also
on the nonnegative vector x = (xa : a ∈ A) representing
the toll prices. We assume that the monetary costs of toll
prices are converted, for instance through simple weighting,
into time units so that the cost (or time) of a tolled arc a

is calculated after incorporating xa into the cost function
ca . The minimum time to deliver commodity k from node
i ∈ N is denoted by tki , which for all i ∈ N constitute the
components of the vector tk . For each commodity k, there
is an associated demand dk

i at node i and the demand vector
for the same commodity over the network is denoted by
dk . In practice the demand is a function of the minimum
cost vector t , however for simplicity we assume here that
demand is a constant function independent of t .

A standard set of constraints imposes conservation of
flow. Denoting the node-arc incidence matrix by A, these
constraints can be written as

Ayk = dk k ∈ K.

The user equilibrium laws are amenable to a complemen-
tarity formulation. They state that if there is a positive
flow for a commodity along an arc, then the corresponding
time to deliver the commodity should be minimal. This
statement can be equivalently formulated by the set of com-
plementarity constraints for all a = (i, j) ∈ A and k ∈ K
as follows:

0 ≤ ca(ȳa, x) + tkj − tki ⊥ yk
a ≥ 0 a=(i, j)∈A, k∈D,

where ȳa := ∑
l∈K yl

a , tkj − tki represents the minimum time

to traverse arc a = (i, j), and d ⊥ e means d�e = 0.
An important objective of toll pricing could be reducing

the congestion on the network. One way of modeling
this is minimizing the total system costs

∑
a∈A ca(ȳ, x),

as used by Hearn and Ramana (1998). By expressing
complementarity through the nonsmooth min operator, the
mathematical model for the toll pricing problem becomes
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the following:

min
∑

a∈A ca(ȳa, x)

s.t. Ayk = dk k ∈ K,

min{ca(ȳa, x) + tkj − tki , yk
a } = 0 a=(i, j)∈A, k∈K,

tk ≥ 0 k ∈ K,

x ≥ 0.

(15)
A cost function commonly used in practice was proposed

by Bureau of Public Roads (BPR) in US; see Bureau of
Public Roads (1964). Adding now the toll prices to this
function leads to

ca(ȳa, x) = αa + βa

(
ȳa

γa

)4

+ xa (16)

where αa and βa are so-called calibration parameters and
γa denotes the practical capacity parameter of an arc. The
parameters α, β, and γ are usually looked up from tables or
found by analyzing the historical data. However, in prac-
tice there exist major difficulties in determining their exact
values. In general these parameters fluctuate considerably
over time and hence, they can be set only within certain
tolerances or sampled from appropriate distributions. In-
corporating this type of uncertainty into the mathematical
model plays an important role for understanding the average
behavior of the system. We represent the uncertain element
by a random variable ω defined on a common probability
space (�, F, P).

A traffic controller may try to get insight into the
“average” behavior of the system, by assuming that the
users will choose their routes based on the most favorable
expected costs. Thus, the controller may decide to relate her
tolling decisions to some “average” flows over the network.
Formally, the situation can be modelled using the following
stochastic model with expected equilibrium constraints:

min Eω[∑a∈A ca(ȳa, x; ω)]
s.t. Ayk = dk k ∈ K,

min{Eω[ca(ȳa, x; ω)] + tkj − tki , yk
a } = 0 a=(i, j)∈A,

k ∈ K,

tk ≥ 0 k ∈ K,

x ≥ 0.

This model can be analyzed using the following “average”-
based interpretation of the equilibrium principle: if the
“average” flow on a link is positive, then the expected cost
of traversing that link is minimum. Consequently, variable
tki represents here the minimum average time for travelling
from origin i to destination k and the difference tki − tkj
represents the minimum average time for traversing arc
a = (i, j) (in the case this arc is being used). Similarly,
variables y are interpreted as the average network flows
to which the toll decisions x are related. Accordingly, dk

represents in this case the average demand the controller
expects for commodity (destination) k. The objective is to
minimize the total expected costs with the goal of reducing
the expected congestion.

We are currently performing numerical experiments in
order to understand the effectiveness of the sample-path
method for solving the stochastic toll pricing problem. The
model is implemented using the GAMS modeling language,
and solved using the latest version of the NLPEC pack-
age. This is a so-called beta solver which exploits several
methodologies for reformulation of MPEC’s as nonlinear
programs and calls subsequently several off-the-shelf non-
linear programming solvers for their solution; see Ferris,
Dirkse, and Meeraus (2002).

Our implementation starts from the deterministic model
in tollmpec.gms file from the MPECLIB library as ex-
plained in Dirkse and Ferris (1997). We modified the original
tollmpec.gms according to the formulation (15) and the
cost functions (16). In the stochastic setting, parameters
α, β, and γ are sampled from appropriate distributions.
Based on the sampled values an approximating model is
then built and solved using NLPEC. Numerical experiments
are currently underway.

5 CONCLUSIONS

In this paper we outlined a variant of sample-path method
to solve a class of stochastic mathematical programs with
equilibrium constraints and a set of sufficient conditions for
the almost-sure convergence of the method in this case. This
extends the range of applicability of sample-path methods.
We also gave an illustrative example of how it can be used
to solve a stochastic toll pricing problem. We hope that
our analysis turns out being helpful in providing solutions
for challenging practical problems arising in the study of
complex stochastic systems.
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