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ABSTRACT

Monte Carlo simulation techniques that use function approx-
imations have been successfully applied to approximately
price multi-dimensional American options. However, for
many pricing problems the time required to get accurate
estimates can still be prohibitive, and this motivates the de-
velopment of variance reduction techniques. In this paper,
we describe a zero-variance importance sampling measure
forAmerican options. We then discuss how function approx-
imation may be used to approximately learn this measure;
we test this idea in simple examples. We also note that the
zero-variance measure is fundamentally connected to a du-
ality result for American options. While our methodology
is geared towards developing an estimate of an accurate
lower bound for the option price, we observe that impor-
tance sampling also reduces variance in estimating the upper
bound that follows from the duality.

1 INTRODUCTION

Accurate estimation of the price of an American option and
the optimal exercise policy when the dimensionality of the
underlying process is large remains an important problem
in option pricing. Typically, this problem is simplified by
restricting times at which the option can be exercised to a
finite set of values so that it may be modelled as a discrete
time Markov decision process (MDP), or more specifically,
an optimal stopping problem in discrete time. Unfortunately,
the well known numerical techniques for solving such MDP’s
suffer from a ‘curse of dimensionality’.

Recently, significant literature has developed that ap-
proximately solves the optimal stopping problem associated
with theAmerican option using Monte Carlo simulation (see,
e.g., the overview in Chapter 8 of Glasserman (2004)). These
typically involve generating many sample paths (or more
general sample trees) of the underlying assets until the expiry
of the option and then using some form of backward in-
duction to obtain an approximate solution. Carrière (1996),
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy
(2001) propose regression based function approximations
to aid in accurate and quick execution of this backward
induction step. These methods involve approximating the
‘continuation value’ (the value of the option if not exer-
cised) as a linear combination of certain easily evaluated
and well-chosen basis functions.

In this paper we build upon the function approximation
techniques proposed in Longstaff and Schwartz and (2001)
and Tsitsiklis and Van Roy (2001) and show how they may
be used to develop an effective importance sampling estima-
tor for pricing American options. We view the pricing of an
American option as a two-phase procedure: In the first phase
the approximately optimal exercise policy is learned, while
in the second phase, this policy is evaluated to estimate the
American option price. Our experiments suggest that with
regression-based methods, the first phase is completed very
quickly, even under naive simulation. Thus, our main focus
is the second phase, i.e., efficient evaluation of the approx-
imately optimal exercise policy using importance sampling
based simulation methods. Note that in this approach, since
the policy is evaluated approximately, the price we estimate
always lower bounds the true price.

For evaluating the optimal policy, we show that if the
original probability density governing the underlying asset
movement is biased appropriately by the value functions,
we get a zero-variance importance sampling measure. This
motivates the use of function approximations to develop an
approximate zero-variance estimator. We also briefly discuss
how this measure may be learned adaptively, although since
the first phase is very quick, no additional benefits are
observed from the adaptive approach.

We observe that any importance sampling estimator
leads to a ‘dual’ upper bound on the option price. This is
an importance sampling interpretation of the multiplicative
dual developed in Jamshidian (2003) (also see Haugh and
Kogan (2004) for an ‘additive’ dual upper bound). Inter-
estingly, this upper bound is tight under the zero-variance
estimator, suggesting that as the approximations to the zero-
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variance measure improve so does this upper bound. In our
experiments, this bound lies within 2–20% of the option
price as the number of exercise opportunities ranges from
2 to 50 in a simple one-dimensional example. We observe
that importance sampling reduces variance in the estimation
of the upper bound.

Regression-based techniques approximate value func-
tions by representing them as linear combinations of a set
of basis functions. If the basis functions are not integrable
with respect to the original measure and if some of the
linear weights assigned are negative then this could lead
to implementation difficulties. We resolve this by selecting
the basis functions from a family of functions with req-
uisite implementation advantages and we use non-negative
least squares to determine the weights assigned to the basis
functions. As may be expected, the performance of our ap-
proach depends critically on the quality of approximations
provided by the basis functions. We explore this further by
also experimenting with truncated basis functions.

In Section 2, we develop our mathematical framework
and discuss the zero-variance importance sampling distri-
bution. In Section 3, we discuss the proposed importance
sampling methodology. Experimental results displaying the
effectiveness of the proposed scheme are presented in Sec-
tion 4.

2 MATHEMATICAL FRAMEWORK

Suppose that the option can be exercised only at N +1 times
0, 1, 2, ..., N (these times need not be equally spaced). In
practice, options that provide fixed finite number of times
at which they can be exercised are referred to as Bermudan
options. American options that expire at time T are well
approximated by Bermudan options by dividing T into a
large number of well spaced intervals.

The underlying security prices are modeled by a Markov
process (Xn ∈ X : n ≤ N), where X may be a multi-
dimensional state space. The state description may include
additional variables such as the value of stochastic interest
rates and volatilities, and supplementary path dependent
information, so that the resulting process {Xn} is Markov.
The value of the option at time n if exercised at that time,
is denoted by gn : X → �+ (i.e., its exercise value or
intrinsic value). Let Tn denote the set of stopping times
taking value in {n, n+1, . . . , N} (recall that τ is a stopping
time w.r.t. {Xn} if {τ = n} is a measurable function of
(X1, . . . , Xn)). Let

Jn(x) = sup
τ∈Tn

E[gτ (Xτ )|Xn = x], x ∈ X ,

the expectation taken under the risk neutral measure. Then
Jn(x) is the value of the option at time n given that the option
is not exercised before time n. The initial state X0 = x0
is fixed and known. So, our pricing problem is to evaluate
J0(x0). Since no closed form solutions are available for the
above except in the simplest cases, numerical and simulation
methods are needed for pricing such multi-dimensional and
multiple exercise opportunity options. This formulation is
sufficiently general to include discounted payoffs through
appropriate definition of the {Xn} and {gn} (see Glasserman
2004, p.425), and hence these are not explicitly stated.

For simplicity of exposition, we suppose that the pdf
of Xn+1 conditioned on Xn = x evaluated at y is given by
fn(x, y) under the risk-neutral measure. Define

(PnJ )(x) = E[J (Xn+1)|Xn = x] =∫
X

J (y)fn(x, y)dy. (1)

It is well known that the value functions J = (Jn(x) :
x ∈ X , n ≤ N) satisfy the following backward recursions:

JN(x) = gN(x)

Jn(x) = max(gn(x), (PnJn+1)(x)) (2)

for n = 0, 1, 2, ..., N − 1, for each x ∈ X . An alternative
set of recursions based on the continuation value function
Q = (Qn(x) : x ∈ X , n ≤ N −1) may be developed, where

Qn(x) = E[Jn+1(Xn+1)|Xn = x] = (PnJn+1)(x).

These recursions are:

QN−1(x) = (PN−1gN)(x)

Qn(x) = (Pn max(gn+1, Qn+1))(x) (3)

for n = 0, 1, 2, ..., N − 2. Note that Jn(x) =
max(gn(x), Qn(x)).

2.1 Importance Sampling and Zero-Variance Measure

Let τ ∗ denote an optimal stopping time for our problem, i.e.,
suppose J0(x0) = E[gτ∗(Xτ∗)]. Suppose this stopping time
is known, and to avoid trivialities suppose τ ∗ > 0. Then,
a naive estimate of J0(x0) = Q0(x0) is obtained by taking
an average of independent identically distributed samples
of gτ∗(Xτ∗). Suppose, we generate these samples using the
importance sampling pdf’s (f̃n(x, ·) : x ∈ X , n ≤ N − 1)

such that f̃n(x, y) > 0 whenever fn(x, y) > 0 and vice
versa for each x, y and n. Let P̃ denote the resultant
measure (let P denote the original measure). Then the
unbiased importance sampling (IS) estimator of J0(x0) is
obtained by taking an average of independent, identically
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distributed samples of

f0(x0, X1)

f̃0(x0, X1)

f1(X1, X2)

f̃1(X1, X2)
· · ·

fτ∗−1(Xτ∗−1, Xτ∗)

f̃τ∗−1(Xτ∗−1, Xτ∗)
gτ∗(Xτ∗). (4)

(see, e.g., Glynn and Iglehart 1989).
We assume in our analysis that Qn(x) > 0 for all x ∈ X

and for n ≤ N − 1. Now suppose that the importance
sampling distribution P ∗ corresponds to:

f ∗
n (x, y) = fn(x, y)Jn+1(y)

Qn(x)

for each x, y and n. Equation (1) confirms the validity of
f ∗

n (x, ·) as a pdf. Since Qn(Xn) = Jn(Xn) when τ ∗ > n

and Jτ∗(Xτ∗) = gτ∗(Xτ∗), it is easy to see that P ∗ is a
zero-variance measure as (4), with f ∗

n replacing f̃n, reduces
to Q0(x0) = J0(x0) a.s. (Such zero-variance measure are
discussed, e.g., in Kollman et al. 1999; Ahamed, Borkar,
and Juneja 2004).

In this paper we use regression based approximations
of Jn(·) to develop approximations for the zero-variance
measure. First we study some properties associated with
this measure.

2.2 Dual Estimator

Let L̃n denote the n step likelihood ratio of P w.r.t. P̃ , i.e.,

L̃n = f0(x0, X1)

f̃0(x0, X1)

f1(X1, X2)

f̃1(X1, X2)
· · · fn−1(Xn−1, Xn)

f̃n−1(Xn−1, Xn)
.

(Define L∗
n similarly). Then the importance sampling es-

timator for J0(x0) equals L̃τ∗gτ∗(Xτ∗). Note that this is
upper bounded by

max
n≤N

L̃ngn(Xn). (5)

Thus, the average of independent samples of (5) provides
an unbiased estimator for an upper bound on J0(x0).

Proposition 1 Under P ∗,

max
n≤N

L∗
ngn(Xn) = J0(x0),

i.e, the upper bound on the samples is constant and tight.
Proof Note that

L∗
ngn(Xn) = Q0(x0)

J1(X1)

Q1(X1)

J2(X2)
· · · Qn−1(Xn−1)

Jn(Xn)
gn(Xn).
It follows that this is upper bounded by Q0(x0) =
J0(x0) since Ji(x) = max(gi(x), Qi(x)). Thus,
maxn≤N L∗

ngn(Xn) ≤ J0(x0). The result follows as

max
n≤N

L∗
ngn(Xn) ≥ L∗

τ∗gτ∗(Xτ∗) = J0(x0).

�

This result is an IS formulation of a multiplicative
duality result in Jamshidian (2003). It suggests that if P̃ is
close to P ∗, then Ẽ(maxn≤N L̃ngn(Xn)) provides a close
upper bound to J0(x0) (where Ẽ denotes the expectation
operator under P̃ ). Also, note that

Ẽ(max
n≤N

L̃ngn(Xn)) = E(max
n≤N

L̃ngn(Xn)/L̃N)

This provides two ways of estimating the upper bound
associated with P̃ : simulating under the IS distribution P̃

and using the expression on the left, or simulating under the
original distribution and using the expression on the right.
Jamshidian (2003) does the latter. In our experiments,
using IS (with the approximate zero-variance distribution)
to estimate the upper bound yields lower variance.

2.3 Characterizing Approximation Error

Suppose that we have a J̃ = (J̃n(x) > 0, n ≤ N −
1, J̃N (x) ≥ 0, x ∈ X) and a positive ε > 0 such that,

(1 − ε) ≤ J̃n(x)

Jn(x)
≤ (1 + ε) (6)

for all n and x. For each n ≤ N − 1 and x ∈ X , consider
the pdf

f̃n(x, y) = fn(x, y)J̃n+1(y)

(PnJ̃n+1)(x)
, y ∈ X ,

and denote the associated measure by P̃ . Here we assume
that (PnJ̃n+1)(x) < ∞, also J̃N (x) > 0 if gN(x) > 0. Let
L̃n denote the corresponding likelihood ratio of P w.r.t. P̃

restricted to time 0 to n. Further, for any random variable
Y , let V (Y ) denote its variance.

Proposition 2 Under (6),

max
n≤N

L̃ngn(Xn) ≤ J0(x0)

(
1 + ε

1 − ε

)N

. (7)

Furthermore,

V (L̃τ∗gτ∗(Xτ∗)) ≤
((

1 + ε

1 − ε

)N

− 1

)
J0(x0)

2 = NO(ε).

(8)
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Proof From (6) it follows that

(1 − ε)Jn(x) ≤ (PnJ̃n+1)(x) ≤ (1 + ε)Jn(x).

Note that

L̃ngn(Xn) =
(P0J̃1)(x0)

J̃1(X1)

(P1J̃2)(X1)

J̃2(X2)
· · · (Pn−1J̃n)(Xn−1)

J̃n(Xn)
gn(Xn)

≤ J0(x0)

(
1 + ε

1 − ε

)n

.

From this, (7) follows. In particular,

L̃τ∗gτ∗(Xτ∗) ≤ J0(x0)

(
1 + ε

1 − ε

)N

. (9)

Note that

V (L̃τ∗gτ∗(Xτ∗)) = Ẽ(L̃2
τ∗gτ∗(Xτ∗)2) − J0(x0)

2.

Now,

Ẽ(L̃2
τ∗gτ∗(Xτ∗)2)

= E(L̃τ∗gτ∗(Xτ∗)2) ≤ J0(x0)
2
(

1 + ε

1 − ε

)N

,

where the last step follows from (9). �

The above analysis suggests that if Jn can be closely
approximated by J̃n a known quantity (e.g., a function of
European options whose value is known), then the corre-
sponding P̃ may provide a good proxy for the zero-variance
measure and good simulation efficiency may be expected.
However, there may still remain issues concerning efficient
generation of random variables from the distributions f̃n.

3 PROPOSED METHODOLOGY

As mentioned earlier, we adopt a two-phase approach to
pricing the option. In the first phase, we approximately
estimate the optimal stopping policy. For this purpose we
develop approximations Q̃ for Q = (Qn(x), n ≤ N−1, x ∈
X ). Tsitsiklis and Van Roy (2001) find that methods based
on least squares regressions are better suited for estimating
Q rather than J = (Jn(x), n ≤ N, x ∈ X ), as the estimates
of the former have better bias characteristics.

In the second phase we evaluate this policy using impor-
tance sampling. However, for importance sampling we also
need to find estimators J̃ for J . Furthermore, to generate
samples and compute the likelihood ratio, it is desirable that
the integral (PnJ̃n+1)(x) be known explicitly, and that we
may be able to sample cheaply from the associated densities
f̃ . We now discuss how this is achieved using functional
approximations.

Let φk : X → � for 1 ≤ k ≤ K denote a set of
basis functions. Consider a parameterized value function
Q̂ : X × �K → � that assigns values Q̂(x, r) to state x

where r ∈ �K is a vector of free parameters and

Q̂(x, r) =
K∑

k=1

φk(x)r(k).

Using simulated paths, we find parameters r∗
0 , r∗

2 , . . . , r∗
N−1

so that

Q̂(x, r∗
n) ≈ Qn(x)

for each x and n. These approximations are then used to
estimate the optimal stopping policy.

To conduct importance sampling we consider a param-
eterized value function Ĵ : X ×�K → � that assigns values
Ĵ (x, s) to state x where again, s ∈ �K , and

Ĵ (x, s) =
K∑

k=1

φk(x)s(k).

We choose each φk(·) so that (Pnφk)(x) can be explic-
itly evaluated and it is easy to generate samples from the
probability density functions

fn(x, y)φk(y)

(Pnφk)(x)
.

We estimate parameters s∗
1 , s∗

2 , . . . , s∗
N , under non-negativity

constraints, so that Ĵ (x, s∗
n) ≈ Jn(x) for each x and n.

Different basis functions can be used for Q̂ and Ĵ .
These could further depend upon the time period n. The
number of basis functions used could also be a function of
n. However, to keep the notation simple we avoid these
generalizations.

We first discuss the procedure outlined above in de-
tail. Then, we extend these to adaptive methodologies that
combine the two phases.

3.1 Approximately Evaluating the Optimal Policy

As mentioned earlier, we follow the type of approach used in
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy
(2001) to approximate the optimal stopping time τ ∗. This
involves generating M sample paths (xm,n : n ≤ N, m ≤ M)

of the process (Xn : n ≤ N) using the original measure P .
The parameters r∗

0 , . . . , r∗
N−1 are found recursively:
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r∗
N−1 = arg min

r

M∑
m=1

[gN(xm,N) −
K∑

k=1

φk(xm,N)r(k)]2.

Then, using the approximation Q̂(·, r∗
N−1) for QN−1(·)

along each generated path m we can approximately evaluate
when to exercise the option, given that we have not exercised
it till time N − 2. Call this time τm,N−2.

Recursively, consider time n. Suppose that we know
τm,n, the time to exercise the option along path m, given
that we have not exercised it till time n. Then, parameters
r∗
n are found as a solution to the least squares problem:

r∗
n = arg min

r

M∑
m=1

[gτm,n(xm,τm,n) −
K∑

k=1

φk(xm,n)r(k)]2.

Note that if τm,n is a realization of the optimal stopping
time, then gτm,n(xm,τm,n) above is an unbiased sample of the
continuation value Qn(xm,n) (and hence a reasonable proxy).
This step differs slightly from the method in Longstaff and
Schwartz (2001), in that we do not restrict ourselves to
in-the money paths above. Since phase 1 requires relatively
less time, we do not focus on these issues.

We modify this approach to determine the parameters
s∗

1 , . . . , s∗
N . Set

s∗
N = arg min

s≥0

M∑
m=1

[gN(xm,N) −
K∑

k=1

φk(xm,N)s(k)]2.

Note that we now use the non-negative least squares method
(as in Lawson and Hanson 1974).

The parameters s∗
n for n ≤ N − 1 are found after

parameters r∗
n have been determined. Knowing r∗

n allows
us to determine whether to exercise the option at state xm,n

or not by comparing gn(xm,n) and Q̂(xm,n, r
∗
n) for each m.

Then, τm,n−1 is known for each m. Set

s∗
n = arg min

s≥0

M∑
m=1

[gτm,n−1(xm,τm,n−1) −
K∑

k=1

φk(xm,n)s(k)]2.

Again, if τm,n−1 is a realization of the optimal stopping
time, then gτm,n−1(xm,τm,n) above is an unbiased sample of
Jn(xm,n).

3.2 Estimating the Option Price

Once (Ĵ (x, s∗
n) : x ∈ X , n ≤ N) are known, we start

the second phase of the algorithm involving importance
sampling to evaluate the price of the option. The importance
sampling probability densities are given by
f̂n(x, y) = fn(x, y)Ĵ (y, s∗
n+1)∫

y∈X fn(x, y)Ĵ (y, s∗
n+1)dy

.

This may be re-expressed as

f̂n(x, y) =
∑
k≤K

p∗
k (x)

fn(x, y)φk(y)

(Pnφk)(x)
,

where

p∗
k (x) = s∗

n+1(k)(Pnφk)(x)∑
k≤K s∗

n+1(k)(Pnφk)(x)
.

Note that p∗
k (x) ≥ 0 and

∑
k≤K p∗

k (x) = 1. Hence, if

we can easily generate a sample from the pdf fn(x,·)φk(·)
(Pnφk)(x)

, then

this makes generation from f̂n(x, ·) also straightforward.

3.3 Adaptively Learning the Parameters

We briefly outline a methodology to adaptively find param-
eters r∗

0 , r∗
1 , . . . , r∗

N−1 so that

Q̂(x, r∗
n) ≈ Qn(x)

for each x and n. Again suppose that M sample paths
(xm,n : n ≤ N, m ≤ M) of the process (Xn : n ≤ N)

are generated. Suppose that path m is generated using
measure P(m) that is equivalent to P and under which
the process {Xn} remains Markov. Let Lm,n1,n2 (0 ≤ n1 <

n2 ≤ N) denote the ratio of the product of the original pdf’s
of transitions (xm,n1 , xm,n1+1), . . . , (xm,n2−1, xm,n2) and the
product of new pdf’s of these transitions under P(m). Then,
we may again set

r∗
N−1 = arg min

r

M∑
m=1

[gN(xm,N)Lm,N−1,N −

K∑
k=1

φk(xm,N)r(k)]2Lm,0,N−1

and, recursively, set

r∗
n = arg min

r

M∑
m=1

[gτm,n(xm,τm,n)Lm,n,τm,n −

K∑
k=1

φk(xm,n)r(k)]2Lm,0,n−1.

Note that these parameters are determined using the
weighted least squares method (see, e.g., Bertsekas and
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Tsitsiklis 1996). Again, if τm,n is a realization of the
optimal stopping time, then gτm,n(xm,τm,n)Lm,n,τm,n above
is an unbiased sample of Qn(xm,n). The term Lm,0,n−1 is
used to unbias the effect of generating the state xm,n using
importance sampling. The parameters s∗

1 , s∗
2 , . . . , s∗

N may
be determined similarly, with a non-negativity constraint.

In practice, this adaptive approach may be implemented
as follows: one may initially generate a fixed number of
samples under the naive measure and learn the optimal
stopping rule and the new importance sampling measure.
This measure may then be used to generate more sample
paths to refine the optimal stopping rule and and update the
importance sampling measure. This process may then be
repeated many times. These paths (after the naive simulation
phase) may be used to provide samples of payoffs from the
approximately optimal policy, whose average then estimates
the option price.

In numerical experiments (not reported), we find that
the adaptive method leads to a slight reduction in variance
compared to the two-step approach, especially when the
number of exercise opportunities is large. However, due to
increase in the number of updates of the weight parameters,
the average per sample effort increases.

4 NUMERICAL RESULTS

We conduct simulation experiments to price a one dimen-
sional American put assuming that the risk-neutral stock
price process follows the stochastic differential equation:

dS = rSdt + σSdZ

where r and σ are constants, Z is standard Brownian motion,
and the stock does not pay dividends. The expiration time
for the option is denoted by T . Let Xn denote S(n�t) and
set N = T/�t . Then (Xn : n ≤ N) is a Markov process.
Let N(a, b) denote a Gaussian random variable with mean
a and variance b. Note that and Xn+1 has the distribution

Xn exp[(r − σ 2/2)�t + √
�tN(0, σ 2)]

or, given Xn = x, we may set

Xn+1 = exp[N(µ̂, σ̂ 2)]

where µ̂ = (r −σ 2/2)�t + log x and σ̂ 2 = �tσ 2 (see, e.g.,
Glasserman 2004, p.94).

Thus, fn(x, y) (or f (x, y) as the densities are time-
homogeneous) equals

1√
2πσ̂y

exp[− 1

2σ̂ 2 (log y − µ̂)2]
For each k ≤ K , and constants (α1k, α2k) we select our
basis function

φk(y) = exp[α1k log2 y + α2k log y].

We keep α1k ≤ 0. Note that if α1k > 1
2σ̂ 2 , (Pnφk)(x) blows

up and if α1k = 0, then φk(y) = yα2k .
Then,

φk(y)f (x, y) = 1√
2πσ̂y

exp[− 1

2σ̂ 2 (log y − µ̂)2]

exp[α1k log2 y + α2k log y].

After simple algebraic manipulations this can be seen to
equal

σ̃

σ̂
exp[ µ̃2

2σ̃ 2 − µ̂2

2σ̂ 2 ]d(k)

µ̃,σ̃ 2(y)

where µ̃ = µ̂+σ̂ 2α2k

1−2σ̂ 2α1k
and σ̃ 2 = σ̂ 2

1−2σ̂ 2α1k
and d

(k)

µ̃,σ̃ 2(y) is

the pdf of the exp[N(µ̃, σ̃ 2)] distributed random variable.

Let β∗
n(k) = s∗

n+1(k) σ̃
σ̂

exp[ µ̃2

2σ̃ 2 − µ̂2

2σ̂ 2 ], and set p∗
n(k) =

β∗
n(k)∑

k≤K β∗
n(k)

. Then our importance sampling pdf’s have the

form

f ∗
n (x, y) =

∑
k≤K

p∗
n(k)d

(k)

µ̃,σ̃ 2(y),

where each p∗
n(k) depends upon x. Thus, for each x,

f ∗
n (x, ·) corresponds to a non-negative mixture of log-normal

distributions and it is easy to generate samples from it.
In an attempt to improve the approximations in the

case of non-negative least squares method, we also consider
truncated basis functions of the form

φk(y) = exp[α1k log2 y + α2k log y]I (ak < y < bk),

where I (·) is an indicator function. In this case, f ∗
n (x, y)

corresponds to an appropriate non-negative mixture of trun-
cated log-normal distributions.

Specifically, we focus on the problem of pricing an
American put with a strike price of 40, T = 1 year, r =
0.06 and σ = 0.20. For this option for the initial stock
price X0 = 36, Longstaff and Schwartz (2001) use finite
difference methods to find that for time periods N = 50
the price equals 4.478.

First, we empirically establish that the time taken to
learn the optimal parameters r∗ = (r∗

0 , . . . , r∗
N−1) is quite

small. We do this by generating a fixed number of initial
phase paths to determine an approximately optimal stopping
policy using the r∗ computed from these paths. Then we
evaluate the option price under this policy by generating
100, 000 samples using naive simulation. The results for
X0 = 36, N = 50 are shown in Table 1. Four untruncated
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basis functions are used. Their parameters (α1, α2) are
set at (−1, 0), (−1, 1), (−1, 2) and (−1, 3). The results
show that only a small number of paths are needed in the
initial phase to approximately learn the optimal policy for
this example. Similar results were observed (not reported)
for initial stock price equal to 50 and 30 (at this price
it is optimal to exercise immediately, so we focussed on
estimating the continuation value at time zero).

Table 1: Comparison of Price Estimates as the
Number of Paths in Initial Phase Varies
Paths in Estimated Mean 95% C. I.
Initial Phase (100,000 paths)
2,000 4.471 (4.454, 4.488)
5,000 4.481 (4.463, 4.499)
10,000 4.485 (4.468, 4.502)
50,000 4.475 (4.457, 4.492)

In the second experiment we compare importance sam-
pling with naive simulation on our example using the r∗
and the s∗ learned from 10,000 generated paths using naive
simulation. We conduct simulations for N = 2, 10, 20 and
50 (T remains equal to one year) and for initial stock price
X0 = 36 and 50. For each simulation 100,000 paths are
generated to evaluate the option price. The results are shown
in Table 2. The variance reduction factor (VR) corresponds
to the ratio of the estimate of naive variance and the es-
timate of importance sampling variance. We also estimate
the dual upper bound via importance sampling simulation.
As illustrated in Table 3, importance sampling yields more
precise estimates of the upper bound than does naive sim-
ulation. The basis functions used are the same four used
in the first experiment. We also experimented with varying
the parameters of the four basis functions (to neighboring
values) and varying the number of basis functions to 2,
3 and 6 similar functions. The results (not reported) are
more-or-less insensitive to these perturbations. Similar re-
sults were seen for initial stock price 30 (not reported),
however this is a less interesting case as here with a large
probability it is optimal to exercise quickly.

A problem with the experiments reported in Table 2 is
that in most cases for each n only one or two of the s∗

n(k)

assume a positive value; thus only one or two basis functions
are used in conducting importance sampling, suggesting that
better approximations of J may lead to improved perfor-
mance. With this in mind, we test truncated basis functions.
However, more analysis and experimentation is needed to
develop insights for improving approximations.

Parameters for the truncated basis functions are specified
in Table 4. These are chosen so that near the initial stock price
X0 = 36, we may be able to approximate the terminal value
JN reasonably accurately. Again we compare importance
sampling with naive simulation on our example using the r∗
and the s∗ learned from 10,000 generated paths using naive
Table 2: Point Estimates and 95% CI
Halfwidths Using Naive Simulation and Im-
portance Sampling

N X0 Naive Est. IS Est. VR

2 36 4.189 (.023) 4.206 (.009) 6.2
10 36 4.426 (.018) 4.438 (.008) 5.4
20 36 4.451 (.018) 4.458 (.008) 5.3
50 36 4.455 (.017) 4.475 (.008) 5.3

2 50 0.310 (.007) 0.311 (.001) 16
10 50 0.316 (.007) 0.319 (.001) 15.9
20 50 0.325 (.007) 0.321 (.002) 14.7
50 50 0.322 (.007) 0.325 (.002) 15.2

Table 3: Upper Bound Estimates (with 95%
CI Halfwidths) Using IS and Naive Simula-
tion
N X0 Dual Upper Dual Upper

Bound (IS) Bound (Naive)
2 36 4.280 (.008) 4.292 (.03)

10 36 4.912 (.004) 4.926 (.03)
20 36 5.007 (.003) 4.985 (.03)
50 36 5.063 (.003) 5.048 (.03)

2 50 0.315 (.002) 0.311 (.01)
10 50 0.358 (.002) 0.363 (.01)
20 50 0.381 (.002) 0.386 (.01)
50 50 0.395 (.002) 0.395 (.01)

imulation. For each simulation 100,000 paths are generated
o evaluate the option price. The results are shown in Table 5
here we show point estimates under naive simulation and IS

long with 95% CI halfwidths, and variance reduction factor
R. The performance of importance sampling compared
ith naive simulation was better for X0 = 30 with these
asis functions. For X0 = 50, with these basis functions,
ven the mean estimates were significantly off the mark
ith the bias increasing with the increase in time periods,
oth under naive and importance sampling simulation.

Table 4: Truncated Basis Functions
Basis fn. i ai bi α1i α2i

1 0 16 0 -0.05
2 16 25 -0.1 1.5
3 25 30 -1.4 5.2
4 30 35 -1.4 4.7
5 35 40 -1.4 4.5
6 40 50 -0.3 0.1
7 50 60 -0.2 0.1
8 60 ∞ -0.1 0.0
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Table 5: Comparison between Naive Simula-
tion and IS Using Truncated Basis Functions

N Naive Est. IS Est. VR
2 4.229 (.023) 4.200 (.004) 33.2
3 4.372 (.019) 4.378 (.006) 12.8

10 4.424 (.017) 4.415 (.008) 5.0
20 4.431 (.016) 4.418 (.010) 2.3
50 4.457 (.017) 4.457 (.022) 0.6

5 CONCLUDING REMARKS

This paper develops an importance sampling method for the
pricing of American options. The method is based on the
observation that the value function of the pricing problem
provides a zero-variance importance sampling distribution.
We use approximations to the value function to approximate
this optimal distribution. Similar ideas lead to an upper
bound on the option price that is tight under the zero
variance measure; our IS method appears to reduce variance
in estimating this upper bound as well.

The main obstacle to applying this method lies in the
choice of basis functions. This is always an issue in devel-
oping function approximations for dynamic programming.
But the IS method introduces a further consideration: it
must be practical to sample from the distributions obtained
by biasing the original transition law by each of the basis
functions. Our examples accomplish this in the case of the
lognormal distribution, but this remains a challenge in more
complex models.
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