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ABSTRACT

This paper applies quantile data analysis to input modeling
in simulation. We introduce the use of QIQ plots to
identify suitable distributions fitting the data and comparison
distribution P-P plots to test the fit. Two examples illustrate
the utility of these quantile statistical methods for input
modeling. Popular distribution fitting software often give
confusing results, which is usually a set of distributions
differing marginally in the test statistic value. The methods
discussed in this paper can be used for further analysis of
the software results.

1 INTRODUCTION

Defining input models to represent data is an important step
in the simulation modeling process. In this paper we assume
that data exists for the factors of interest. We could possibly
use the data or its empirical distribution function to carry out
the simulation. Fitting a theoretical distribution provides a
structure to the simulation model which is useful in giving
intuition into the deeper physical processes underlying an
observed phenomenon and how the system behavior depends
on specific characteristics of randomness associated with
its different aspects.

The problem of selecting appropriate distributions to
represent the different random quantities of the simulation
model is an interesting and difficult problem from the point
of view of the practitioner. The main difficulty is that it is
a very soft issue. There are no hard and fast rules that can
be followed in selecting distributions.

Many software products are now available which fit
distribution functions to the data. Popular examples in-
clude BestFit, Arena Input Analyzer and ExpertFit. Input
modeling that involves fitting standard univariate parametric
probability distributions is typically performed using such
an input modeling package. These packages fit several dis-
tributions to a data set, then determine the distribution with
the best fit by comparing goodness-of-fit statistics like the
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Chi-Squared, Kolmogorov-Smirnov and Anderson-Darling.
Cheng (1992) gives a good description of these tests with
their advantages and disadvantages. These tests should be
considered consultive only and using these tests to rank the
fitting of the distributions leads to following problems:

1. The ranking of distributions is done by their p-
values. Often the different distributions hardly
differ in their p-values and the ranking in that case
is indicative of the randomness of the data rather
than the distribution fit.

2. The model chosen is often an overfit of the data.
The whole goal of modeling is to get a size of the
error which is reproducible, else a future sample
will not agree with the current model.

To illustrate our point we will discuss the results from
distribution-fitting software in the next section.

The purpose of this paper is to introduce the use of
quantile statistical methods in simulation input modeling.
These methods can be useful in giving additonal evidence
in favour of or against the use of the selections suggested
by distribution-fitting software. We try to layout steps to
systematically choose the distribution functions which best
fit the data using quantile statistical modeling methods as
have been developed by Parzen (2003).

The format of the remainder of the paper is as fol-
lows. Section 2 discusses some issues that arise while
using distribution-fitting software. Quantile methods are
discussed in section 3. Section 3 also gives the proposed
methodology for using these methods in simulation input
modeling. Examples are in section 4 and section 5 provides
the concluding remarks.

2 NOTE ON DISTRIBUTION-FITTING
SOFTWARE

We consider the following data set that originally comes
from the life testing literature (Lawless 1982, p.228). Here
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we present this data sample of size n = 23 as order statistics
(in increasing order).

17.88 28.92 33 41.52 42.12 45.6 48.48 51.84 51.96
54.12 55.56 67.8 68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.4

This data set comes originally from a study on
the fatigue life of deep groove ball bearings by
Lieblein and Zelen (1956) and was analyzed as coming
from a Weibull distribution. Lawless (1982) suggested a
possible lognormal fit to the data and estimated the param-
eters and conducted a comparison of fits between Weibull
and lognormal. This data set has been studied in detail from
the simulation input modeling perspective by Leemis (2001)
who regarded the data as service times in seconds. Leemis
analyzed the Weibull in detail as a fit for the data.

To get an idea of the possible fitting distributions we
used the distribution fitting software BestFit. Table 1 gives
a summary of results based on the Anderson-Darling test
(A-D test) and from the test statistics we can conclude that
BestFit regards Inverse Gaussian, Lognormal, Pearson 5,
Log Logistic and Extreme Value distributions as possible
candidates.

Table 1: Results from Best-Fit for Lieblein and

Zelen Data
Distribution A-D Test A-D Test
Statistic value p-value

InvGauss 0.1849 N/A
Lognorm?2 0.1863 N/A
Pearson5 0.1895 N/A

LogLogistic 0.1966 N/A
ExtValue 0.2302 > 0.25
Logistic 0.5114 0.1 <p=<025

BestFit does not fit Weibull to the data at all, which
is in contradiction to the analysis available in the literature
on this data set. As will be seen from the preliminary
diagnostics (to be presented in the next section), at least
from initial results we have no basis to reject Weibull or
gamma.

These results from BestFit raise important questions
about the results that we get from distribution fitting software.

One observation that we can make is that the A-D
test statistic values are almost same for Inverse Gaussian,
Lognormal, Pearson 5 and Log Logistic. If we analyze the
P-P plots, they also turn out to be almost the same. The
extreme value distribution also has a P-P plot which is only
slightly different, and this is because the A-D test statistic
value is not very different. Thus we have five distributions
which characterize the data exactly the same way.

The aim of input modeling is to choose a model with
some distinguishing characteristics but here all the 5 models
fit the same. We cannot differentiate one model from the
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other. We really cannot pick a better model if they all have
same goodness of fit!

Why do these models fit the same? This is because
BestFit is not using maximum likelihood estimators (mle)
for parameter estimation. In fact, the mle is just an initial
guess for an algorithm that uses the Levenberg-Marquardt
method (Jankauskas and McLafferty 1996). The optimiza-
tion routine aims to minimize the test statistic value by
iteratively modifying the parameter estimates and thus get
a better goodness-of-fit between the data set and a distri-
bution function. This estimation procedure does not have
any good properties of maximum likelihood or the method
of moments, and we do need to ask this question: “is this
fitting or over-fitting?". This seems more of over fitting and
a distribution which is recommended using this procedure
does not stand a chance of repeating its performance (i.e.
of getting a low test statistic value) to fit another sample.

The method of ranking distributions on the basis of test
statistic value is also fallacious. Most distribution-fitting
software use a p-value to represent the test. Since we
consider random data, the test statistics or the p-value can be
different for different samples from the same population. We
need to remember that we are testing statistical significance,
and any distribution which passes the test irrespective of the
test statistic value is an equally good choice from the point
of view of the goodness of fit test. In fact if the distribution
(with parameters being estimated as in this example) is a
very good fit for one sample, then it is very unlikely that
it will be a good fit for another sample.

An interesting observation is that if we generate a
dataset of 250 from the standard Weibull and use BestFit
for distribution fitting the Weibull does not fit at all. This
is surprising as we would expect Weibull to at least pass
the goodness-of-fit test. The result from Arena’s Input
Analyzer is different. Input Analyzer identifies Weibull as
the best fit. One of the reasons why it outperforms BestFit
may be because Input Analyzer decides from a pool of 12
distributions as compared to BestFit which compares 28
distributions.

We need to remember that we do not want to answer the
question which is the best fitting model. We aim to provide
good alternatives which fit the data well. An option should be
for the final decision to be taken by the simulation practitioner
based on his experience and any physical interpretation that
a chosen distribution can give to the observed process.

3 THE QUANTILE METHODS APPROACH

Any input modeling exercise involves the following steps:

Testing the assumptions.
Selection of possible models.
Estimation of parameters.
Analysis of the fit.

R
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It is in the selection of possible models and analysis of
the fit that quantile methods can play a role in facilitating
in modeling. We suggest an algorithmic approach to model
selection and testing. First we give a brief explaination
of the key concepts and then their incorporation in input
modeling.

For the random variable Y, if the distribution function
is F(y) = P[Y < y] then the quantile function is given by
Q) = F~'(u). The general definition is given as
Qw)=F ') =inf(y: F(y) >u) for 0<u<1.

Important concepts are quartiles Q; = Q(j/4) for j =
1,2, 3, and mid-distribution F™d(y) = F(y)—.5P[Y = y]
which treats tied data by computing their mid-ranks.

Defining mid-quartile MQ = 0.5(Q1 + Q3) and
measure of deviation IQR?2 2(03 — Q1) = 2 x
interquartile range, the quantile/quartile function Q17 Q ()
as defined by Parzen (2003) is

Qu) —MQ

QI1Q(u) = 10R2

ey

One explanation of the powerful insight provided by the
quantile-quartile function Q7 Q(u) is that its five percentile
summary Q1 Q(u), u = .05, .25, .5, .75, .95 has the follow-
ing interpretations: Q1 Q(.25) = —.25, Q1Q(.75) = .25,
universal normalizations; QI Q(.5), identify skewness;
QI1Q(.05) and QI Q(.95) identify respectively left tail and
right tail behavior.

For data analysis we plot the sample quantile/quartile
function QI Q7 “(u). The Q™ “IQ “(u) can be used to
draw conclusions about possible distributions fitting the
data. The QI Q(u) plot can be interpreted as a Goodness
of Fit test without using the location and scale parameters
and just using the shape for comparison.

The well known quantile-quantile plots (Q Q plots) are
commonly used to test the normality assumption which
is required by statistical procedures like those using t
or F distributions. The quantile-quartile plots (QIQ
plots) are NOT QQ plots; they are normalized to satisfy
010(0.25) = —0.25 and Q7 Q(0.75) = 0.25. They help
identify for a sample distribution skewness, tail-behavior,
possible bimodality of the data and closeness to a population
location-scale distribution.

To test the closeness of a distribution function F; and
distribution G, the comparison distribution (?) is defined as
D(u; Fi,G) = G(F; "(u)) = u for 0 < u < 1. When F
is a sample distribution and G is a population distribution;
uniformity is equivalent to testing the null hypothesis of
equality of F; and G. A test can be performed by con-
structing the graph of D and checking whether it lies on a
45-degree line. The graph of D is known as the percentile-
percentile or probability-probability(P-P) plot. While Q1 Q
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plots can be very powerful in identifying distributions, they
are a preliminary diagnostic to be followed by P-P plots
which require the estimation of the parameters of the fitted
distribution, and thus can be used to draw final conclusions
regarding the distribution fits. Thus Q7 Q plots can be used
to screen distributions and P-P plots can be used to give
judgement on fit of the distributions. These methods can
help us and should be used, to gain a better understanding of
the recommendations being made by the distribution-fitting
software. They enable the final decision on the choice of
the distribution to be made by the simulation practitioner
based on physical interpretation and experience.

The P-P plot that we use (and recommend because
of theoretical properties) is slightly different from those
that we get from standard software like SAS or BestFit.
We use the mid-distribution function to plot the P-P plot,
thus our treatment of ties is different as explained earlier.
But like SAS we recommend plotting the P-P plot with
the sample mid-distribution function on the Y-axis and the
fitted cumulative distribution function on the X-axis. This
is advantageous as it gives an intuition on non-parametric
density estimation of the unknown theoretical distribution
of the observed data.

The rest of the paper primarily discusses the applications
of Q1 Q plots and P-P plots to input modeling. We propose
the following steps to be incorporated when using quantile
methods :

Stage 1 Compute the sample quantile function

07 (u).
From Q7“(u) we define the median,

quartiles, IQR2 and the other diag-
nostics.

Stage 2

Stage 3 Plot the Q71 Q function and compare
with the QIQ plots of exponential
and normal to get a feeling of the
distribution. The normal and expo-
nential are chosen as reference distri-
butions because they are amongst the
most popular univariate distributions
that are encountered in theoretical and

applied statistics.

Stage 4 Compare the Q7 Q function plot with

possible fits.

Stage 5 Do the P-P plot amongst possible
candidate distributions to judge the

best fit.
4 EXAMPLES

We now illustrate the use of quantile methods in simulation
using two examples from literature.



Gupta and Parzen

4.1 Service Time Model

We consider the data from Lieblein and Zelen (1956) which
was introduced in section 2. As mentioned -earlier,
Leemis (2001) considered this data set as service times
of a queuing system.

4.1.1 Quantile Methods Analysis

First we compute the sample quantile function Q™ () from
the data. We now compute the median, the quartiles, the
inter quartile range and other diagnostics. Table 2 shows
the numerical summary of the data. Since absolute value
of the skew index is less than 0.0625, the distribution is
symmetric. The tail indices suggest that the distribution
has short left tail (—0.5 < Q1 Q(0.05) < —0.25), medium
right tail (.5 < QIQ(0.95) < 1) and no outliers. De-
tails of the quantile/quartile diagnostics of tail are given in
Parzen (2003).

Table 2: Numerical Summary for Lieblein and

Zelen Data
Sample MIN 17.88
Sample MAX 173.4
01 46.32
Q2 67.80
03 97.26
MQ 71.79
IQR2 101.88
Skew index (Q2 — M Q)/IQR2 -0.0392
Left tail index, Q7 Q(0.05) -0.4587
Right tail index, Q7 Q(0.95) 0.708
(MIN —MQ)/IQR2 -0.53
(MAX —MQ)/IQR2 0.99
Conclusion Symmetric

We compare the sample quantile/quartile function plot
with those obtained from normal and exponential (Figure 1).
From the plot we note that the distribution is between normal
and exponential. We could claim that the exponential may
fit in the middle, but as can be seen from the Q7 Q plot the
sample definitely does not exhibit the tail behavior of an
exponential distribution. The normal distribution does not
fit the sample in the middle (which is unusual); horizontal
shape indicates many ties (clustering) in the middle of the
sample.

From the plot we conclude that the sample is NOT from
normal or exponential but from a distribution like gamma,
Weibull or log-normal. Since the data from Lieblein and
Zelen was from a survival analysis, we analyze gamma and
Weibull in more detail.
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Figure 1: Q7“1 Q™ “(u) Plot with Q1 Q Normal and Q7Q
Exponential

The Weibull distribution has probability density function

given by

Fx) = Arex<"lem 00 x>0, )
where A is a positive scale parameter and « is a positive shape
parameter. For the purposes of QI Q plot we are interested
in the standard Weibull («) distribution with A = 1. Figure
2(a) shows the QIQ plot for x =2. Further details on
choosing the shape parameter for plotting the Weibull and
gamma Q1 Q plots are given in appendix A.

From the Q1 Q plot in Figure 2(a) we can conclude that
the Weibull(k) fits the data fairly well especially in the tails,
but not as well in the middle. The sample Q1 Q plot shows
a flatness in the middle, from u = 0.4 to u = 0.6. This
is because approximately 1/5th of the data is around the
median. But this flatness cannot be suggested as a deviation
from Weibull, especially since the Weibull does a good job
of fitting in the tails. Using the MATLAB function weibfit
we get the maximum likelihood estimates of the Weibull
parameters as k = 2.102 and A = 0.0125.

The gamma distribution has probability density function
given by

_x
xVle™F

x=>0;y,6>0 (3

where y is a positive shape parameter and 8 is a positive
scale parameter. The standard gamma (y) distribution has
B = 1. Figure 2(b) shows the QI Q plot for y =4.

From the Q7 Q plot we can conclude that the gamma
distribution fits the data fairly well too. Using the MATLAB
function gamfit we get the maximum likelihood estimates
of the gamma parameters as y = 4.0255 and 8 = 17.9419.
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— weibull x =2
— = exponential
+ data

Q/Q(u)” data

(a) Q71 Q™ “(u) Plot with QI Q Weibull (x =2) and QIQ

Exponential

2

— gamma
— — exponential
+ data

Q/Q(u)” data

(b) Q71 Q™ (u) Plot with Q1 Q Gamma (y =4) and QIQ

Exponential

2

— lognormal
— — exponential
+ data

Q/Q(u)” data

(¢) QI Q™ (u) Plot with QI Q Lognormal (o = 0.53) and

Q1Q Exponential

Figure 2: QI Q Plots for the Lieblein and Zelen Data
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The probability density function of the lognormal dis-
tribution is

o (InGx—=6)=0)*/(20%))
(x —0)o/(2m)

fx) = x>0;¢,0>0 4

where o is the shape parameter, 6 is the location parameter
and ¢ is the scale parameter. The standard lognormal (o)
distribution has 6 =0, ¢ = 0.

The Q1Q plot for lognormal is shown in Figure 2(c).
We have chosen the shape parameter o to be 0.53 which is
the maximum likelihood estimate. Since the location and
scale parameter do not effect the QI Q plot we use the
standard lognormal with o = 0.53. The lognormal fits well
in the left tail; right tail fit is not good because lognormal
has longer right tail than sample.

The preliminary diagnosis using QI Q plots provides
evidence that gamma, Weibull and possibly lognormal could
be the fitting distribution. We need to do further analysis
using P-P plots to be able to come to a conclusion. A final
conclusion also needs to be based on a possible physical
interpretation. Using the mle estimators we plot the P-P
plots (Figure 3) for Lieblin and Zelen data.

The data has a cluster near the median, and the P-P
plot gives a clear evidence of a sharp blip in the region
from u = 0.4 to u = 0.6. This is a crucial property of the
data and is not being picked out. We can choose to ignore
this clustering and go ahead with a parametric distribution,
or alternatively we can fit a non-parameter density function
depending on our objectives.

The gamma seems to fit the data better as compared to
Weibull (poorer fit near 0) and lognormal (poorer fit near

1).
4.2 LV Model

Cheng, Holland, and Hughes (1996) gives the data of the
times in seconds to serve Light Vans (LV) at the toll booths
of the Severn Bridge River crossing in Britain. The data
in ascending order is :

313133353.63839444142434344454.6
4747474849552525758586.162636.36.4
6.4666.76.772727.77879 8882105109 12.5

The interesting aspect of this data set (which we refer
to as LV data) is the presence of ties. This is an illustration
that the assumption of no ties in data (which is used while
deriving goodness-of-fit test statistics) may not be valid in
real scenarios.
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Figure 3: P-P Plots for the Lieblein and Zelen Data
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4.2.1 Quantile Methods Analysis

From the sample, we compute the sample quantile func-
tion and the associated numerical summary diagnostics like
median, quartiles and tail indices. The skew index value
(= —0.0715) indicates that the distribution is not symmet-
ric (skew index diagnostic absolute value must be less than
0.0625 for symmetry). The tail indices suggest that the
distribution has a short left (left tail index absolute value
= —0.4524, below .5) and long right tail (right tail index
= 1.0159 above 1).

2

— normal
— - exponential
+ data

Q/Q(u)” data

Figure 4: Q7“1 Q™ “(u) Plot with QI Q Normal and QI Q
Exponential for the LV Data

As in the previous example, we first compare the sample
quantile/quartile function plot with those obtained from
normal and exponential (Figure 4). From the plot we can
conclude that the sample is NOT from normal or exponential
but from a distribution like gamma, Weibull or log-normal.

We now plot the Q1 Q plot using the standard Weibull
pdf with values of x = 2 and x = 4. Figure 5(a) shows the
Q10 plots. From the QI Q plot we can conclude that the
Weibull does not fit the data well in the right tail. Using the
MATLAB function weibfit we get the maximum likelihood
estimates of the Weibull parameters as k = 2.9347 and
A =0.1536.

Figure 5(b) shows the Q1 Q plot for gamma with y = 4.
From the QIQ plot we can conclude that the gamma
distribution fits the data fairly well. Using the MATLAB
function gamfit we get the maximum likelihood estimates
of the gamma parameters as y = 9.2047 and g = 0.6306.

From the QI Q plot for lognormal in Figure 5(c), we
conclude that the lognormal distribution does a good job
in fitting the data well. It fits well especially in the right
tail, which is long for the sample and long for the distri-
bution. The maximum likelihood estimates of lognormal
are calculated to be 0 = 0.33 and ¢ = 1.7. We use the
shape parameter to be the maximum likelihood value while
plotting the Q1Q plot.



Gupta and Parzen

2 T T
— weibull x =4
— weibull x =2
— — exponential !
data !
15F I~

Q/Q(u)” data

(@) Q7°IQ~“(u) Plot with QIQ Weibull (x = 2), QIQ
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2 T T
— weibullx =4
— weibull k=2
— — exponential N
data !
15 =

Q/Q(u)” data

(b) Q71 Q™ (u) Plot with Q1 Q Gamma (y =4) and QIQ
Exponential

Q/Q(u)” data

(¢) QI Q™ (u) Plot with QI Q Lognormal (o = 0.33) and
Q1Q Exponential
Figure 5: Q1 Q Plots for the LV Data
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4.2.2 Results from the Software

The BestFit rankings of the fitting distributions for the LV
data are given in Table 3. Inverse Gaussian, Weibull, Pearson
5, Log Logistic and Extreme Value appear to be the fitting
distributions.

The P-P plot of Weibull (Figure 6(b)) shows that Weibull
with maximum likelihood estimates does not fit the sample
data well in left tail and thus the choice made by BestFit
is not fully supported by the quantile analysis. On the
other hand, the gamma P-P plot in Figure 6(a) shows that
gamma with maximum likelihood estimates fits the sample
data well.

Another observation that we make is the high A-D test
statistic value for the lognormal distribution calculated by
BestFit. Cheng, Holland, and Hughes (1996) calculates the
value of the A-D statistic as 0.227 as compared to the BestFit
value of 18.158. These sharply different values between the
computer and the literature raises some concern. The P-P
plot of lognormal distribution in Figure 6(c) gives evidence
that the lognormal with maximum likelihood estimates is
a good fit for the sample data. We would like to point out
that the formula for the A-D test statistic computation has
been derived under the assumption of distinct values.

The A-D test statistic is a numerical diagnostic for the
P-P plot; it is a measure of the “distance” between the
empirical and theoretical distribution function. Since, the
number from the software does not agree with the graph
for which it stands we need to ask “Who are you going to
believe ? the number or the evidence from the graph for
which it stands".

Table 3: Results from Best-Fit

Distribution A-D Test A-D Test
Statistic value p-value
InvGauss 0.2336 N/A
Weibull 0.2609 N/A
Pearson5 0.2615 N/A
LogLogistic 0.3194 N/A
ExtValue 0.3557 > 0.25
Logistic 0.7847 0.025 < p <0.05
Normal 1.1138 0.005 < p <0.01
Expon 1.5131 < 0.01
Uniform 12.3088 N/A
Lognorm?2 18.1558 N/A

5 CONCLUDING REMARKS

Input modeling is an important issue in simulation modeling.
Recent times have seen advances in software for distribution
fitting and these software are now being widely used by
simulation practitioners for input modeling. Instead of
treating the answers from the software as from a black box,
it is crucial to perform one’s personal reasoning to interpret
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numbers and diagnostics. Our practice should regard that
analysis is cheap since data is costly. In this spirit we
present the quantile methods as a facilitator in improving
the results (and the interpretations of the results) that we
get from popular software. We develop a systematic input
modeling strategy using quantile methods, especially Q1 Q
plots and P-P plots. The examples shown illustrate the
importance of these methods in improving the results that
we get from popular software.

The real issue may be the overdependence of present
analysis on goodness of fit tests like Chi-Squared,
Kolmogorov-Smirnov and Anderson-Darling. We need to
realize the numbers associated with these statistics are just
diagnostics for the discrepancy between the empirical sample
distribution and the theoretical distribution. The software
may not give enough weight to all aspects of the fit, and are
especially susceptible to miss out on giving importance to
the tails. We cannot just argue on the basis of a number, it is
always helpful to support the analysis the picture provided
by the P-P plots.

Central to the quantile methods is the definition of the
mid-distribution function which is required to handle the
case of data with ties.

A Deciding the Shape Parameter for Plotting
the Gamma and Weibull Q7 Q Plots

Write the standard gamma distribution density function with
b=1/y,

1
xp!

r'($)

e ¥ X

fx) =

For b = 1 we get the exponential distribution and
b — 0 gives the extreme value distribution. We check the
exponential and normal QI Q plots in the beginning of our
analysis, and so for the gamma QI Q plots, we propose
plotting b = 0.25,0.5,0.75. As can be seen from a pdf
plot the important features with regards to the exploratory
data analysis are captured by this range of b values for the
gamma. As the b value comes closer to 0 the graph tends
to become more and more flatter to the x-axis. It is clear
from the QI Q plots for these b values that the choice of
the shape parameter largely depends on the tail behavior
exhibited and this can be easily done using these plots.

A similar line of reasoning can be developed for the
Weibull distribution and for a preliminary diagnostic we
just choose b = 0.25,0.5,0.75, 1 where b = 1/k. Plotting
the Weibull pdf for different b values it can easily be seen
that as b — 0 the distribution becomes sharper. As was the
case for gamma, the choice of shape parameter for Weibull
depends on the tail behavior.



Gupta and Parzen

REFERENCES

Cheng, R. C. H. 1992. Distribution fitting and random
number and variate generation. In Proceedings of the
1992 Winter Simulation Conference, ed. J. J. Swain,
D. Goldsman, R. C. Crain, and J. R. Wilson, 74-81.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Cheng, R. C. H., W. Holland, and N. A. Hughes. 1996.
Selection of input models using bootstrap goodness-
of-fit. In Proceedings of the 1996 Winter Simulation
Conference, ed. J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain, 199-206. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Jankauskas, L., and S. McLafferty. 1996. Bestfit,
distribution-fitting software by palisade corporation. In
Proceedings of the 1996 Winter Simulation Conference,
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J.
Swain, 551 — 555. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Lawless, J. F. 1982. Statistical models and methods for
lifetime data. New York: John Wiley & Sons.

Leemis, L. 2001. Input modeling techniques for discrete-
event simulations. In Proceedings of the 2001 Win-
ter Simulation Conference, ed. B. Peters, J. Smith,
D. Medeiros, and M. Rohrer, 62-73. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Lieblein, J., and M. Zelen. 1956. Statistical investigation of
the fatigue life of deep-groove ball bearings. Journal of
Research of the National Bureau of Standards 57:273—
316.

Parzen, E. 2003. Quantile probability and statistical data
modeling. Technical report, Department of Statistics,
Texas A & M University. Accepted for publication in
Statistical Science.

AUTHOR BIOGRAPHIES

ABHISHEK GUPTA is a graduate student in the Depart-
ment of Industrial Engineering at Texas A & M University.
He received the Bachelor of Technology degree in Mechan-
ical Engineering from the Indian Institute of Technology,
Delhi. In 2004 he received the Mary G. Natrella scholarship
from the Quality and Productivity Research section of the
American Statistical Association. He is a student member
of IIE, ASA, IMS and SIAM. His research interests include
engineering statistics and data analysis. His e-mail address
is <abhishek.gupta@tamu.edu>.

EMANUEL PARZEN, Distinguished Professor of Statis-
tics at Texas A & M University, was born in New York City
on April 21, 1929, and educated at Harvard (B.A. 1949)

736

and University of California Berkeley (Ph.D. 1953). He has
served as a Statistics faculty member at Columbia (1953-
56), Stanford (1956-70), SUNY Buffalo (1970-1978), Texas
A & M (1978-Present), and a visiting faculty at Imperial
College London, M.L.T., IBM, Harvard, and The Center for
Advanced Study in the Behavioral Sciences. In 1994 he
was awarded the Samuel S. Wilks Memorial Medal of the
American Statistical Association with the following citation:
For outstanding research in Time Series Analysis, es-
pecially for his innovative introduction of reproducing ker-
nel spaces, spectral analysis and spectrum smoothing; for
pioneering contributions in quantile and density quantile
functions and estimation; for unusually successful and
influential textbooks in Probability and Stochastic Pro-
cesses; for excellent and enthusiastic teaching and dis-
semination of statistical knowledge; and for a commit-
ment to service on Society Councils, Government Advisory
Committees and Editorial boards. His e-mail address is
<eparzen@stat.tamu.edu>.


mailto:abhishek.gupta@tamu.edu
mailto:eparzen@stat.tamu.edu

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 728
	02: 729
	03: 730
	04: 731
	05: 732
	06: 733
	07: 734
	08: 735
	09: 736


