
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

DATA DISSEMINATION TECHNIQUES FOR DISTRIBUTED SIMULATION ENVIRONMENTS

Bryan Horling
Victor Lesser

Department of Computer Science
University of Massachusetts

Amherst, MA 01003-9264, U.S.A.
ABSTRACT

Farm is a distributed simulation environment for modeling
the performance of large-scale multi-agent systems. It uses
a component-based architecture to distribute the computa-
tional load of the simulation and improve running time. It
also supports a global data repository, which permits both
actors running in the simulator and external analysis com-
ponents to generate and use arbitrary pieces of information.
Because the components are distributed, the manner in which
this data is accessed can have significant effect on the com-
munication overhead and duration of the simulation. In this
paper we explore several different techniques for accessing
and disseminating this data. Analytic and empirical models
of the system’s performance are presented, along with an
analysis of which strategy is appropriate under different
conditions.

1 INTRODUCTION

Farm (Horling, Mailler, and Lesser 2004a) is a distributed
simulation environment designed to facilitate the analysis of
the quantitative aspects of large-scale, real-time multi-agent
systems. Its purpose is to provide the essential base func-
tionality needed to drive a multi-agent system, in such a way
that elements such as the scalability, real-time convergence
rate and dynamics of a particular system can readily be
evaluated and compared.

Farm uses a component-based architecture, where indi-
vidual components have responsibility for particular encap-
sulated aspects of the simulation. For example, they may
consist of agent clusters, visualization or analysis tools,
environmental or scenario drivers, or provide some other
utility or autonomous functionality. These components or
agent clusters may be distributed across multiple servers to
exploit parallelism, avoid memory bottlenecks, or use local
resources.

Like most agent-oriented simulation environments,
Farm provides control flow mechanisms and a configurable
communication medium. These create a minimalist envi-
ronment in which agents can run and interact with one
another. Although some environments support data collec-
tion or instrumentation tools (Gasser and Kakugawa 2002,
Minar et al. 1996, Kahn and Cicalese 2001) Farm incorpo-
rates a more general global data repository, separate from the
local memory used by individual agents and components,
which allows entities to generate, store and access informa-
tion potentially produced elsewhere in the simulation. This
capability can be used in several different contexts. For
example, it can facilitate the simulation scenario by allow-
ing tasks or environmental cues to be created by a driver
component, and then accessed by the agents. It can also be
used by evaluation or visualization components to analyze
data generated by the agents. The negative implication of
this arrangement is the potential for large amounts of data
which need to be transferred and stored. For example, in
a naive centralized solution, the storage point can quickly
become a bottleneck as the size of the simulation grows.
Some of this overhead clearly cannot be avoided – if the
producer and consumer of a piece of information are seg-
regated. However, there are some strategies which can be
employed to take advantage of long-term access patterns
which can minimize communication and storage costs. In
this paper we will present several such strategies, and show
how the performance of the environment is affected by them.

In the following section we will briefly describe Farm’s
architecture, which will provide a deeper understanding of
the problem that motivates this work. We will then outline
the challenges associated with implementing Farm’s data
repository, and describe the different strategies which have
been implemented to address them. Empirical results from
each strategy are provided in three different domains, and we
will conclude with a discussion comparing these approaches.

2 FARM OVERVIEW

Farm is a distributed, component-based simulation environ-
ment, as shown in Figure 1. By distributed, we mean that

Horling and Lesser
Analyses
• State / trend analysis

GUIs
• State visualization

Driver
• Non-agent activity

Farm Core
• Plug-in management
• State maintenance

• Control flow

…
Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
…

Figure 1: An Example of Farm’s Component Architecture
discrete parts of the environment may reside on physically
separate computing systems. In general, no assumptions
are made about the type of system a part is run on, with
respect to its operating system, memory or disk architecture.
In particular, all that is required is a Java interpreter, and a
means for that part to communicate with other parts of the
environment (e.g. some sort of network connection).

Each part, or component, in this simulation environment
is responsible for some aspect of the simulation. Figure 1
shows how a typical set of components in the simulation
are related. The hub of activity is the Farm core, which
serves as a connection point for components, and also drives
the control flow in the system as a whole. The connected
components then fall into two categories: those which
directly manage the agents running in the system, and those
which exist to support those agents or the scenario as a
whole. The components responsible for managing agents
are called meta-agents, as each acts as an interface to and for
a cluster of one or more agents. This arrangement is solely
for efficiency purposes, it has no effect on the outcome of
the simulation, and the individual agents do not know what
meta-agent they are controlled by.

Plugin components provide the remainder of the
system’s non-agent capabilities, typically including both
domain-independent and domain-specific elements which
create, manage and analyze the environmental state. An
arbitrary set of components may be used for a given simu-
lation scenario. For example, one might choose to reduce
simulation overhead by running without visualization, or
with it to get a clearer picture of the system’s state. Multi-
ple, different analysis components could be used to capture
different aspects of the system. Different environmental
drivers could be used, depending on what type of scenario
is desired.

Agents are implemented as threads, although this is only
for performance purposes - from an agent’s perspective they
are completely segregated, and are not aware of or directly
share memory with other agents which happen to also be
resident at the same meta-agent. The agents operating in
the system are typically (but not necessarily) light-weight,
partially autonomous entities that have a defined goal or
role to fulfill within a larger domain context. They may be
heterogeneous, either by instantiating the same type of agent
with different parameters, or by using different classes of
agent. To distribute the load incurred by the agent popula-
tion, Farm organizes them into clusters, where each cluster
exists under the control of a meta-agent component that pro-
vides access to the rest of the simulation environment. The
agents themselves run in pseudo real-time, where individual
agents are each allocated a specific amount of real CPU time
in which to run (similar to Riley and Riley (2003)). This
aspect allows the systems to exhibit a fair amount of tem-
poral realism, where the efficiency of an agent’s activities
can have quantifiable effects on performance in domains
where the passage of time matters. Communication actions
are similarly modeled and monitored in such a way that
message delivery times appropriate for the domain can be
simulated.

At runtime, agents are provided time in which to run,
and other components (such as the drivers, analyses, and
GUIs from figure 1) are given the opportunity to perform,
analyze, or modify the simulation at well-determined times.
The run cycle is partitioned such that non-agent tasks such
as state maintenance or analysis may be performed without
adversely affecting the simulation results, even if they require
indeterminate time. Such tasks are facilitated by the ability
to store and retrieve global state information, which allows
any given component to interact with a snapshot of the
system’s current state. The design and analysis of this
data storage will be the focus of the remainder of this
paper. More details on the Farm simulator can be found in
Horling, Mailler, and Lesser (2004b).

Farm has been used to model several different domains,
including a variety of agents and drivers for distributed sensor

Horling and Lesser
network, graph coloring, SAT and reinforcement learning
domains. Scenarios consisting of 5000 autonomous agents
have been run using 10 desktop-class Linux boxes. These
environments will be discussed in more detail later in this
paper.

3 DATA DISSEMINATION TECHNIQUES

The Farm provides the components in the simulation with a
data storage facility with characteristics similar to distributed
shared memory. This is not inter-agent shared memory
(agents are still assumed to interact via messaging), but
instead provides an indirect means of interaction between the
simulation components and a way to deliver environmental
information to the agents. Using this scheme, components
may store and retrieve data (properties) from a functionally
common repository, enabling the data produced by one part
of the simulation to be used by another. For example, an
environmental driver might be responsible for updating the
Target1:Location property. Agents needing to know
that target’s location can then simply access this property.
Similarly, each agent could store some notion of it’s current
state in, for instance, the property Agent1:State. An
analysis component could then find all properties *:State
to capture a snapshot of all the agents in the system.

Distributed data storage is accomplished in Farm
through the use of a token system. Each globally-accessible
property is associated with a token, which may be resident
in the simulator core or at any one of the plugins. The owner
of the token for a particular property is responsible for its
storage; all reads and writes to that value are performed by
or through it. The Farm core itself is responsible for keeping
track of who owns the token for each property, somewhat
like a specialized directory service. When a property is
to be read for the first time by an entity, it optimistically
assumes that it is stored at the core, and makes a request to
the simulator for it. If it is being stored there, the property’s
data will be delivered and the process continued uninter-
rupted. If a different plugin is the owner of that property,
the core instead provides the requester with the name of
that plugin. This can be used to contact the appropriate
plugin and retrieve the data. This property-plugin mapping
is then cached so future requests can be made directly to
the owner plugin. Because plugins may leave, have their
tokens removed, or otherwise lose control of a property,
such future requests may fail. In this case the requester will
again revert to the default assumption that the core itself
is storing the property, since the core will either return the
data or redirect the reader as needed.

Property writes occur in a similar manner. If the writing
entity has a cached property-plugin mapping, then it will
contact the appropriate plugin with the new data to be
written. If no such mapping exists, or if the property is
controlled by the core, then the simulator itself is contacted.
As with reading, the simulator may store the data itself, or
redirect the writer to the appropriate owner plugin. Because
property owners may change over time, writers will again
fall back to the default assumption that the property may
be controlled by the core if the local knowledge is out of
date. We will assume from here on that the plugins fulfill
all of the storage responsibilities; simulation core storage
is generally only used as a fail-safe mechanism in case a
plugin fails or is otherwise unavailable.

An additional mechanism also exists which allows plu-
gins to be automatically updated with a property’s data
when it is updated. A list of recipients is attached to the
owner’s token, so when the property is changed the new
value can be automatically pushed to each member of the
list. This pushed data is flagged as being cached, so the
recipient knows it can safely read from the data, but writes
must still be propagated back to the owner. The owner is
responsible for ensuring that this remotely cached data is
kept up to date.

This token-based scheme is really just a support struc-
ture; the more interesting problem is determining which
plugin should be assigned to manage a particular property,
and what other plugins should be included in that property’s
recipient list. The difference between the duration of local
and remote writes and reads can be as much as two orders of
magnitude, caused by the messaging duration and the time
needed to encode and decode the information. Testing the
average duration of 100,000 sequential, unloaded accesses
showed that on average, local reads/writes of a 10 character
string took 0.0005/0.0044ms each, respectively. Remote
reads/writes took 0.7986/0.8081ms each. As the number of
data accesses grows, this overhead has the potential to add a
noticeable amount of time to the duration of the simulation.
Because the time needed to perform remote accesses can be
a significant overhead cost in this framework our objective
is to minimize the number of messages needed to support
each property, under the assumption that this will similarly
minimize the overall time cost associated with that prop-
erty. The total size of the data being transferred is typically
uniformly small enough that it can be ignored. We have
explored several different strategies to address this cost. If
we view a particular allocation as being constant for the
duration of a simulation, this cost Ca

p can be estimated with
the following function for a particular plugin a accessing
property p.

Ca
p =




0 a = Op

Wa
p a ∈ Tp

Wa
p + Ra

p otherwise,
(1)

where Op is the designated owner of the property,
and Tp is the list of recipients to which the property will
be automatically pushed. Ra

p and Wa
p are the number of

Horling and Lesser
reads and writes of p by a, respectively. The total cost for
property p, including strategy overhead, is then:

Pp = (
∑
a∈A

Wa
p) × |Tp| (2)

Mp = kδ(1 + 1|Tp|) (3)

Cp =
∑
a∈A

Ca
p + Pp + Mp (4)

A is the set of available plugins, and |Tp| is the cardi-
nality of Tp. Ca

p only represents the messages needed for
a to directly access p; the total cost Cp must also include
cost models of the mechanisms which support the distribu-
tion architecture. Pp represents the overhead incurred by
maintaining p’s push list. Each time a value is written to
p, that change must be reflected to all members of Tp. Cp

also incorporates Mp, the overhead needed to set up and
(eventually) tear down the owner relationship, in addition to
the overhead needed to control membership in the push list.
k will typically be 2, since a message is needed for both set
up and tear down. δ is the number of times ownership is
assigned, so if δ = 1 this equation assumes a single owner
Op is assigned and that Tp does not change. If δ > 1 and
the assignment is allowed to vary, then Equations (2) and
(3) are only approximations; a more precise computation
of Cp must take into account the costs incurred under each
assignment episode, rather than an overall aggregate. Note
that δ may also be zero, indicating no remote owner is
assigned and the simulation core is the de facto owner.

3.1 Strategies

Our objective is to find an optimal policy for choosing Op

and Tp so that we can minimize Cp. Because there are
varied access patterns to particular pieces of data, and can
be near-continuous access to a single property by different
plugins (for example, an agent’s state being maintained by
one and analyzed by another), it is not clear that a single
strategy will be best for all properties. In the extreme, if
there is no pattern to the accesses then an equally random
assignment of ownership will be as good as any other on
average. Fortunately, since particular plugins have specified
roles and associated property needs there should be a definite
pattern to the accesses. We will evaluate several strategies
to see which is appropriate for the types of simulations and
plugins we currently use.

Our baseline strategy (C) employs a simple but inef-
ficient centralized assignment. All properties are stored at
the simulator core, so all accesses will be made remotely.
In this case, ∀a, p, Ca

p = Wa
p + Ra

p. We will then evaluate
the last writer (LW) strategy, where the plugin which makes
the last write access will be assigned ownership of the prop-
erty. In this case, the owner will change over time. Two
analogous techniques are evaluated where the first reader
(FR) or writer (FW) is assigned ownership, which does not
change over the remainder of the simulation. In other tests,
the last writer, first reader and first writer strategies will
be augmented with an aggressive push mechanism (LWP,
FRP, FWP), where all remote reads will result in the read-
ing plugin being added to the automatic push list for that
property. A first-access, pushed strategy was also evaluated,
but dropped from these experiments because it was in all
cases nearly identical to FWP, since the vast majority of
properties are written before a read is attempted.

Another strategy will add a so-called "adjustable" push
to the first reader and writer strategies (FRAP, FWAP) using
an exponential, recency-weighted usage estimation as a form
of online learning. This is done in constant space for each
property using the formula:

�a
pt+1

= �a
pt

+ α(ωa
pt+1

− �a
pt

) (5)

Recall that during each time step in the simulation
a specific amount of processing time is allocated to each
agent, and multiple data accesses can be performed by each
agent during that time. Let ωa

pt
represent the amount of

overhead-inducing activity associated with property p by
plugin a at time t . This value, reset to zero at the beginning
of each time step, is incremented by 1 each time p is
read, and decremented by 1 each time it is pushed to a.
A nonnegative ω indicates that p is being read locally at
least as much as it is being pushed to the agent (a desirable
condition). α is the step-size parameter (0 < α ≤ 1),
which controls how much the historical values affect the
estimate. In these experiments α = 0.3. Then, �a

pt+1
is the

estimated amount of activity at time t + 1, with which a

can determine if it should change its membership status on
p’s push list. If that estimate shows that a push mechanism
would reduce or exceed remote accesses and overhead, then
a push is requested or rejected respectively. In practice,
a change is made only when 0 > �a

pt+1
> 0.3 to avoid

thrashing. This strategy is similar to the PoP (push-or-
pull) strategy described in Deolasee et al. (2001), although
we use a somewhat simpler switching heuristic. Note that
because Tp varies under this strategy, agents may be added
to or removed from this push list multiple times. Thus,
the cardinality of this set in Equation (3) must refer to the
total number of additions made to the list, and not just the
number of members it has at any one time. Equation (2)
is also approximate in this case.

We will also look at a technique which post-processes
the access pattern (S), in an attempt to learn what the most
appropriate static assignment should be. In this case, the

Horling and Lesser

o
t

a
w
E
t
b
i
w
r
t
e
w
p
e

3

T
a
a
r
a
p
b
w
o
a
T

t
t
i
w
t
f
a
t
F
p
h

t
a
a
r
F
m

wner and push lists are calculated as follows to minimize
he total number of remote accesses per property:

Tp = {a ∈ A|Ra
p >

∑
x∈A

Wx
p } (6)

Op = a ∈ A|(∀x ∈ A)Ca
p ≥ Cx

p (7)

Equation (6) specifies push targets as those which have
greater number reads than the total number of writes,
hich equals the number of pushes they would receive.
quation (7) selects the plugin which has the greatest cost,

aking into account the benefits of pushing which have just
een calculated. After selecting Op, it is removed from Tp

f necessary. Because this information is known a priori,
e can avoid the overhead needed to set up individual push

equests. This information is instead bundled along with
he ownership message, resulting in fewer messages, at the
xpense of making a single message somewhat larger. We
ill also examine the effects of using this learned policy to
rime the initial state of the adjustable technique described
arlier (SAP).

.2 Results

he strategies were evaluated using a distributed sensor
llocation simulation, consisting of nine plugins with varying
ccess patterns. Each strategy was tested in 50 different
andom scenarios, and the total cost in terms of remote
ccesses and overhead messages determined. Roughly 100
roperties, accessed a total of 75,000 times, were managed
y the system. Remote accesses include any reads or
rites to non-local data, while overhead is the collection
f messages needed to support the various schemes, such
s ownership notification, push requests and pushed data.
he results are shown in Figure 2.

The most obvious conclusion that can be drawn from
hese results is the reduction in message activity permitted by
he push-based technique. All six strategies which employed
t produced nearly half the messages of the best technique
hich did not, and close to four times fewer messages than

he simple centralized solution. This was caused by the
act that there were some components (such as the analysis
nd graphing plugins) which read from properties on every
ime pulse, even though they were changed less frequently.
or example, if a property were updated only every other
ulse, the push technique cuts the number of messages in
alf compared to one which read the value on every pulse.

Also apparent from Figure 2b was the fact that lowering
he total level of messaging does not strictly correspond to

reduction in time, even where computational overheads
re similar at first glance. The differences lie in the manner
emote accesses have been apportioned over the timeline.
or example, the learned technique (S), although it has at
ost an equal number of total messages and minimal runtime
a)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s
(1

00
0s

)

0

10

20

30

40

50

60

70

80

90

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

b)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e
(s

ec
)

290

300

310

320

330

340

350

Comparison of Different Token Assignment Strategies

Figure 2: Comparison of Message Activity and Time Be-
tween Property Ownership Strategies in the DSN Domain

computational requirements, takes longer to complete than
its counterparts which more aggressively pushed data (e.g.
LWP, FRP, FWP). In some cases, an additional measure of
parallelism is created, when a group of plugins set or push
data to a plugin which would otherwise need to retrieve
that data serially. Other differences are observed because of
the cumulative effects of minor duration variances between
strategies. In these tests, the allocations generated by the
S and FRP strategies produced a set of variables which
were owned by one of two plugins. One was a reader, the
other a writer, so one of the two would be forced to make
a remote access for each property at each time pulse. In
this particular instance, it was observed that remote sets
were slightly slower than remote gets for the same data.
These small delays accumulated to produce a significant
portion of the overall duration differences between these
two strategies.

A Student’s t-test was performed across all pairs of
strategies. This showed that the FRP and FRAP strategies
took significantly less time than other strategies in this
domain (p < 0.005), while they were indistinguishable
from each other. In fact, none of the adjustable strategies
FRAP, FWAP, SAP took significantly less time (p > 0.5)
than their static counterparts. This is a result of the relatively
fixed access patterns that take place for each property.

We have also tested these strategies in two other domains
with different load patterns. The first is a graph coloring
scenario consisting of 12 plugins and 80 agents, which
attempt to solve a similarly sized 3-coloring graph using a
distributed constraint satisfaction algorithm. Approximately

Horling and Lesser
a)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s
(1

00
0s

)

0

20

40

60

80

100

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

b)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e
(s

ec
)

100

120

140

160

180

200

220

240

260

280

Comparison of Different Token Assignment Strategies

Figure 3: Comparison of Message Activity and Time Be-
tween Property Ownership Strategies in the Graph Coloring
Domain

350 properties were accessed 100,000 times over 100 pulses.
The results in Figure 3 show the FRP strategy works well, as
does the S strategy. In this domain, the access patterns were
such that the post-process analysis produced an assignment
that naturally exploited parallelism, by having the analysis
component own many of the properties it required. This
meant the agent plugins frequently had to remotely set
their data, but the bulk reads performed by the analysis
component were local, resulting in a net savings in time.
The learned (S) strategy which produces this allocation does
best here (p < 0.005), followed by FRP which also assigned
ownership of these properties to the analysis component.

The second is a learning domain consisting of 14 plugins
and 500 agents, which are each learning an appropriate policy
for a simple, individually random n-armed bandit problem.
This managed 1000 properties, accessed over 1 million
times over 1000 pulses, but with a simpler usage pattern.
Specifically, the use of mobile analysis code allows the bulk
of these properties (97%) to be used by just a single plugin.
From Figure 4, one can see how dramatically property
relocation can reduce the amount of messaging needed to
support it, with corresponding decreases in total running
time. The peculiar fact that no components read from
those properties leads to little differentiation from strategies
that push data, and poor performance of techniques where
ownership is based on reading. In the latter case the absence
of readers means the properties stay resident in the simulation
core, so those accesses are all remote. In this case, the
a)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s
(1

00
0s

)

0

200

400

600

800

1000

1200

1400

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

b)
Type

C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e
(s

ec
)

450

550

650

750

850

950

1050

Comparison of Different Token Assignment Strategies

Figure 4: Comparison of Message Activity and Time Be-
tween Property Ownership Strategies in the Learning Do-
main

previously good FRP strategy is no better than centralizing
the data.

3.3 Analysis

The quantitative reductions in time observed under each
strategy are shown in Table 1. Based on these tests, the
learned (S) strategy, seems to offer the most consistent
performance in our typical scenarios, with time reductions
of around 5%, 29% and 44% across the three domains when
compared to the default centralized strategy. However, it
does not it does uniformly produce the best results, it requires
the user to generate data needed to perform the analysis, and
it will not adapt well to cases where the correct allocations
vary widely from one episode to the next. The first reader
push (FRP) strategy offers similar or better performance in
two out of the three domains with a 7% and 22% reduction
in time in DSN and graph coloring respectively, and one
might argue that the conditions in the learning domain are
atypical. In our opinion, this strategy is the suitable choice
for most domains, although there is clearly a need for an
alternative under some conditions. The first writer push
(FWP) exhibits lower performance in two of the domains,
and also suffers from an worst case analogous to that seen in
FRP (an absence of writers). This also holds for the writer
(LWP) strategy, with the additional caveat that thrashing
may occur in domains where two separate writers coexist.
Although not seen in these tests, we suspect that in domains
where the usage pattern for properties change over time

Horling and Lesser
Table 1: Percentage Reduction in Simulation Duration Versus Centralized, Observed Under Each Strategy in
the Distributed Sensor Network, Graph Coloring and Learning Domains

Domain LW FR FW LWP FRP FWP S FRAP FWAP SAP
DSN −0.8 3.4 −0.8 6.1 7.5 5.7 4.8 7.5 5.7 5.3

GC −17.1 −5.1 −14.2 18.6 21.6 18.5 28.5 18.9 11.3 19.1
L 43.3 −0.5 42.1 43.0 0.7 43.7 44.4 −0.1 43.1 43.9
that the adjustable reader strategy (FRAP) may prove best,
because it can adapt to changing conditions. However, this
is not the case in our existing domains, and the additional
overhead usually causes a slight reduction in performance.
Both this and the learned technique would benefit from a
richer representation of the potential benefits of parallelism
and more accurate message delivery costs, which could
address some of the deficiencies noted above.

4 OTHER STRATEGIES

There are other techniques that have been developed for
content distribution networks and large scale storage sys-
tems which in theory are applicable to this environment,
but in practice we suspect that the cost-benefit ratio would
not be favorable. For instance, hierarchical distribution
frameworks (Rodriguez, Spanner, and Biersack 1999) are
an effective way of disseminating information. The fa-
cilities needed to support such a technique would not be
difficult to implement in the existing framework as an ex-
tension of the push mechanism. However, we feel that
given the typically small number of plugins which need
to access a particular property that the reduction in load
provided by such a hierarchy would be minimal. Multicast
notification would be a useful way to reduce the cost of
pushed information if it were supported by the underlying
network, but relying on this limits where Farm can be used.
A potential solution to this is application-layer multicast
(Banerjee, Bhattacharjee, and Kommareddy 2002), but be-
cause the underlying protocols are usually still unicast and
the distribution target pool is small, the benefits would
seemingly be minimal.

The data consistency problem in Farm manifests itself
in the time between when one agent changes a value to when
that change can be observed by another. In between those
events, the system can lose some measure of coherence.
Because Farm is attempting to replicate the behavior of a
centralized simulation, data storage should exhibit strong
coherence, and components always use the most up-to-date
property when possible. In the system described above, co-
herence is maintained by the single owner for each property,
which handles all read and write accesses for the property.
These accesses are serialized by the owner, ensuring that
consistency is maintained. In the case where data has been
pushed to and cached by remote components, the owner is
also responsible for immediately updating those components
with the new information. Owner coherence is maintained
by locking the property for the duration of the update, while
remote coherence is limited by the network and processing
delay incurred by the update. One could envision a system
where a weaker form of coherence might be acceptable to
some components (e.g. visualization) in order to reduce
overheads. In this case, techniques used to minimize the
cost associated with maintaining such a heterogeneous pop-
ulation could be employed, as shown in Shah et al. (2001).
However, due to the relatively small population of plugins
in a typical scenario, the costs associated with maintaining
such special cases may outweigh the potential benefits.

As alluded to above, Farm also uses Java’s RMI and
serialization services to support mobile code, for cases where
data retrieval bottlenecks are otherwise unavoidable. With
this technique, instead of remotely retrieving and locally
processing a potentially large amount of data, a specialized
function is delivered to and run directly by property owners.
This function can be written to use only local data, with the
intention of returning a more concise view to the originator.
This is particularly useful for analysis components, which
frequently need to access data that scales in number with
the agent population. For example, the analysis component
used in the learning domain computes averages of two
properties set by each agent. Because the analysis and
meta-agent components are distinct, when running with a
population of 500 agents, this will immediately result in
1000 remote property gets or sets regardless of the strategy
being employed. We use mobile functions to avoid this
by first computing local averages at each plugin, and then
transferring only these values. The dominating costs of
this technique scale with the number of plugins instead of
the number of agents, resulting in substantial savings in
bandwidth and time.

5 CONCLUSIONS

Farm’s ability to provide global data storage to the simula-
tion participants has both benefits and drawbacks. On one
hand, it facilitates state analysis, visualization, and allow
agents to easily access environmental or scenario informa-
tion. However, this can lead to a dramatic increase in the
demand placed on the underlying network, with a corre-
sponding decrease in the simulation’s speed. This behavior
is not unique to Farm, but may be observed in almost any
distributed system where nodes are related through depen-

Horling and Lesser
dencies on rapidly-changing data. In this work, we have
shown that one can exploit existing, but a priori unknown
data access patterns to reduce the overhead caused by such an
arrangement. In particular, by using reference locality and
push-updates one can significantly reduce the computational
and network load incurred by the process.

Simulations in general, and Farm in particular, are
differentiated from typical programs in that their data access
patterns may be substantially different depending on the
components and agents which take part in the simulation,
as well as the scenario in which they are run. Consequently,
we have observed that no single strategy stood out from
the others under all circumstances. Under more dynamic
conditions it is possible that a valid strategy may later
become unacceptable, although this did not occur frequently
in our experiments. We have explored adaptive and learned
strategies to address these problems, both of which have
strengths and weaknesses. Ultimately, a balance must be
found between the complexity and overhead of the solution
and the benefits it can provide. The results presented in this
paper can provide inspiration and guidance when making
this decision.

ACKNOWLEDGMENTS

Effort sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Labora-
tory Air Force Materiel Command, USAF, under agreements
number F30602-99-2-0525 and DOD DABT63-99-1-0004.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. This material is also based
upon work supported by the National Science Foundation
under Grant No. IIS-9812755. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), Air Force
Research Laboratory or the U.S. Government.

REFERENCES

Banerjee, S., B. Bhattacharjee, and C. Kommareddy. 2002.
Scalable application layer multicast. In Proceedings
of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communica-
tions, 205–217. ACM Press.

Deolasee, P., A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. J. Shenoy. 2001. Adaptive push-pull: dissemi-
nating dynamic web data. In World Wide Web, 265–274.

Gasser, L., and K. Kakugawa. 2002. MACE3J: fast flexible
distributed simulation of large, large-grain multi-agent
systems. In Proceedings of the first international joint
conference on Autonomous agents and multiagent sys-
tems, 745–752. ACM Press.

Horling, B., R. Mailler, and V. Lesser. 2004a. Farm: A
Scalable Environment for Multi-Agent Development
and Evaluation. In Advances in Software Engineering
for Multi-Agent Systems, ed. A. G. C. Lucena, J. C. A.
Romanovsky, and P.Alencar, 220–237. Springer-Verlag,
Berlin.

Horling, B., R. Mailler, and V. Lesser. 2004b. The Farm
Distributed Simulation Environment. Computer Science
Technical Report 2004-12, University of Massachusetts.

Kahn, M. L., and C. D. T. Cicalese. 2001. CoABS grid
scalability experiments. In Proceedings of the Second
International Workshop on Infrastructure for Scalable
Multi-Agent Systems at Autonomous Agents.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi. 1996.
The swarm simulation system: A toolkit for building
multi-agent simulations. Technical report, Sante Fe In-
stitute.

Riley, P., and G. Riley. 2003. SPADES — a distributed
agent simulation environment with software-in-the-loop
execution. In Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin, and
D. J. Morrice, 817–825. IEEE, Piscataway, NJ.

Rodriguez, P., C. Spanner, and E. W. Biersack. 1999.
Web caching architectures: Hierarchical and distributed
caching. In Proceedings of the 4th International Web
Caching Workshop.

Shah, S., A. Bernard, V. Sharma, K. Ramamritham, and
P. Shenoy. 2001. Maintaining temporal coherency of
cooperating dynamic data repositories. Computer Sci-
ence Technical Report TR01-52, University of Mas-
sachusetts at Amherst.

AUTHOR BIOGRAPHIES

BRYAN HORLING is a Ph.D. candidate at the University
of Massachusetts, working in the Multi-Agent Systems Lab.
He received his MS from UMass in 1998, and has bache-
lor’s degrees in computer science and biology. His research
interests include organizational design, agent control archi-
tectures, simulation frameworks and distributed computing.
His email address is <bhorling@cs.umass.edu>.

VICTOR LESSER received his Ph.D. from Stanford Uni-
versity in 1972 and has been a professor of computer science
at the University of Massachusetts at Amherst since 1977.
He is a founding fellow of AAAI, and the founding president
of the International Foundation for Multi-Agent Systems.
His major research focus is on the control and organization
of complex AI systems. He has been working in the field of
Multi-Agent Systems for over 25 years. Prior to coming to
the University of Massachusetts, he was a research scientist
at Carnegie-Mellon University where he was the systems

<bhorling@cs.umass.edu>

Horling and Lesser
architect for the Hearsay-II speech understanding system,
the first blackboard system developed. His email address
is <lesser@cs.umass.edu>.

<lesser@cs.umass.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 792
	02: 793
	03: 794
	04: 795
	05: 796
	06: 797
	07: 798
	08: 799
	09: 800

