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ABSTRACT 

The application of M&S simulation technologies to ad-
vanced analysis and training functions throughout the DoD 
has led to an increasing need for higher fidelity representa-
tions of human decision-making behavior than is currently 
available in most military simulation behavior engines. The 
appropriate path to meet this need is to incorporate cogni-
tive models from the Human Behavior Representation  
(HBR) community that provide psychologically-rooted 
representations of decision-making behavior and perform-
ance. There are significant challenges associated with the 
integration of these models within complex simulation en-
vironments, however. Here, we attempt to identify some of 
these challenges and provide design strategies to overcome 
them.  Specifically, we provide strategies for selecting ap-
propriate modeling resolution for specific applications, dy-
namically managing the resolution of those models 
throughout a simulation run, and dealing with the general 
mismatch of sensor and control data between simulation 
environments and HBR models. 

1 INTRODUCTION 

Increasingly sophisticated models and simulations are be-
ing developed by DoD to support a range of analysis and 
training functions: analysis applications include the support 
of research, development and acquisition decisions (e.g., 
Simulation Based Acquisition), development of general 
doctrine and tactics, and generation of specific operational 
plans; training applications include general “training for 
war”, ongoing proficiency maintenance, and more focused 
mission rehearsal activities.  As DoD operational plans and 
systems have grown in complexity, demands made on the 
modeling and simulation (M&S) base are growing corre-
spondingly, with increasing requirements for greater levels 
of simulation fidelity and usability (DMSO 2000).   

As the application of M&S tools has moved beyond 
the modeling of isolated physical systems (e.g., high fidel-
ity aircraft system and subsystem models supporting analy-
sis throughout the design cycle)  to large-scale engagement 
simulations to support analysis and training at the joint 
force level, it has become increasingly important to effec-
tively represent human elements, since battlespace dynam-
ics are inherently driven by human decision-makers at all 
levels of operations. As a result, high fidelity representa-
tions of that decision-making behavior is required within 
military simulations to study advanced issues such as tac-
tics development or to effectively train warfighters within a 
dynamic and reactive environment that provides realistic 
responses to trainee actions. 

Most large-scale M&S environments provide some 
level of behavior modeling capabilities to manage the dy-
namics of the battlespace. These embedded behavior en-
gines generally rely on either pre-defined behavior scripts 
or on simple decision tree logic. Through scripting, the en-
tity’s decisions and actions are fully defined during the 
scenario generation process, thus eliminating any ability to 
react to the dynamic battlespace. Some of that reactive ca-
pability is achieved using decision trees, but again, the 
scenario generator must be able to classify and represent 
all possible decision points and options prior to simulation 
execution, which is most difficult considering the unpre-
dictability of human participants (e.g., trainees) that may 
interact with the modeled entity. Also, such methods do 
not effectively model the decision-making processes of 
humans, with all of their individual skill sets and basic per-
formance limitations. As a result, such approaches to mod-
eling human behavior are insufficient to drive effective 
study of human cognitive performance or to provide suffi-
ciently rich behavior sets for training applications. 

The human behavior representation (HBR) research 
community has made progress towards meeting the chal-
lenge of providing significantly more realistic models of 
human decision-making behavior and performance within 
many military operational contexts. A number of HBR 
modeling efforts are underway, and a series of established 
models are readily available, including ACT-R, COGNET, 
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Soar, and SAMPLE. Pew and Mavor (1998) provide a 
good summary of each of these modeling approaches: 

Atomic Components of Thought (ACT-R): ACT-R 
is a hybrid cognitive architecture which represents both de-
clarative knowledge via scheme-like structures, and proce-
dural knowledge via production rules.  Its most distinctive 
characteristic is its focus on learning through experience, 
and several learning mechanisms are provided for within 
the architecture (Anderson & Lebiere 1998). 

COGnition as a NEtwork of Tasks (COGNET): 
COGNET is a framework for creating and exercising mod-
els of human operators in primarily cognitive tasks.  Its in-
tended application is to support the development of intelli-
gent interfaces for operators working in complex 
environments.  It does not provide any modeling of psy-
chomotor behavior.  The base assumption of the model is 
that humans perform multiple tasks in parallel at any given 
time.  COGNET implements the parallel multi-tasking 
model through rapid attention switching between concur-
rent tasks (Zachary, Ryder & Hicinbothom 1999). 

Soar: Soar is a symbolic cognitive architecture that im-
plements goal-oriented behavior as a search through a prob-
lem space and learns the results of its problem-solving.  It is 
used to model the cognitive capabilities of an intelligent 
agent through a production rule-based approach that embod-
ies procedural, declarative and episodic knowledge.  Soar 
has a full suite of support tools to assist in editing, tracing 
and debugging developing models (Newell 1990).  

Situation Awareness Model for Pilot-in-the-Loop 
Evaluation (SAMPLE): SAMPLE is a domain-
independent architecture for modeling situation awareness 
(SA) centered decision-making in high-stress, time-critical 
environments. It provides a hybrid computational architec-
ture to model individual cognitive processes of information 
processes (via fuzzy logic), situation assessment (via 
Bayesian reasoning), and procedurally-driven decision-
making (via expert systems) (Mulgund et al. 2000). 

1.1 Strategies for Integrating Human Behavior  
Models within Military M&S Environments 

The integration of these HBRs within large-scale military 
simulation environments poses many technical chal-
lenges, however. There are fundamental software engi-
neering challenges that are currently being tackled 
through several efforts, most prominent among them  
the development and distribution of the High-Level  
Architecture (HLA) <https://www.dmso.mil/ 
public/transition/hla/> and the Distributed  
Interactive Simulation (DIS) protocol <http://www. 
sei.cmu.edu/publications/articles/ 
arch-dist-int-sim.html>. While these are im-
portant efforts within the M&S community, we believe 
that they are being effectively addressed, and therefore, 
are not the focus of this paper. Rather, we focus here on 
some of the more esoteric challenges associated with the 
integration of high fidelity HBR models within large-
scale M&S environments. These challenges highlight the 
added thought and effort required to effectively match a 
given HBR model with a specific M&S tool to address a 
given problem. The issues we will specifically discuss 
within the scope of this paper are as follows. 

Entity Resolution: Selecting the appropriate level of 
modeling resolution to apply to a given simulation applica-
tion is an art in and of itself, especially considering the 
large number of entities operating in a large-scale engage-
ment level simulation. Weighing the cost in terms of com-
putational performance against the benefits of high fidelity 
behavior modeling can be very difficult. However, it is 
rarely the case that all of the modeled entities in a given 
simulation must be represented with significantly high fi-
delity. Rather, only a subset of entities may require signifi-
cant modeling detail (e.g., those entities with which a 
trainee specifically interacts). If we can develop a reliable 
mechanism by which to load a simulation with some set of 
nominally “lower” fidelity models, and dynamically re-
place those models with high fidelity models throughout 
simulation execution as appropriate, we could provide an 
efficient way to manage this performance versus modeling 
fidelity trade-off. We will present an option to accomplish 
this dynamic entity resolution in section 2. 

Variability in Simulated “Sensed Data”: It is rarely 
the case that a given simulation environment will provide 
exactly the right level of data resolution and appropriate 
data representation to drive high fidelity HBR models. 
Therefore, there is often a “translation” function that must 
be performed to aggregate simulated data sources into ap-
propriate data packets to drive HBR models. This is usu-
ally supported by custom data translations serving the inte-
gration requirements for a specific HBR model (and 
instance of that model) operating within a specific simula-
tion environment and scenario. If we can provide a 
generalized methodology to aid in the development of data 
translation protocols applicable across a range of HBR 
models and simulation environments, we could reduce the 
costs associated with HBR integration by easing the devel-
opment process. We discuss an approach to support such 
generalization in section 3. 

Variability in Simulated “Control Data”: Along 
with variability in the level of detail in sensed data pro-
vided by a given simulation tool, there is also significant 
variability in the level of “control” that that given HBR 
model will be able to exert on a simulated entity. Some 
models will be directly “injected” into a simulation in 
place of a human player (e.g., replacing a human pilot fly-
ing a simulated aircraft through a pilot/vehicle interface). 
In these cases, the HBR must generate very low-level 
commands (e.g., stick and throttle control). In other cases, 
the HBR may only have to generate high-level commands, 
and the simulation environment may translate those into 
low-level controls (e.g., the HBR generates a flight path 
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and the simulation manages the flight controls to follow 
that path). In section 4, we describe an approach to 
generalizing HBR development concepts to support this 
range of control requirements. 

The remainder of this paper discusses these issues in 
further detail and provides example solutions that we have 
applied to address them across a range of human behavior 
modeling applications. 

2 DYNAMIC ENTITY RESOLUTION 

Most large-scale battlespace scenarios involve many enti-
ties representing individual human players or groups of de-
cision-makers. However, specific analysis and training 
scenarios may only require that a subset of those entities be 
modeled at a particularly significant level of detail. Model-
ing all entities in full detail obviously increases the compu-
tational load for the integrated simulation system, so it is in 
the best interests of performance to only model each entity 
at the level of detail necessary for the given application. 
But, it is not always known a priori which entities must be 
modeled in detail and which are extraneous to the purposes 
of a given experiment or training scenario.  

For example, as a human-in-the-loop (HIL) trainee 
moves through a simulated exercise, he/she will likely only 
interact directly with a subset of the modeled entities in the 
scenario. It is important that these entities be modeled with 
sufficient detail to effectively react to the unpredictable 
behaviors of the trainee in order to present a realistic sce-
nario, and therefore, a positive training result. But, it is not 
known prior to run-time which entities the trainee may en-
counter directly, and therefore, which entities must be 
modeled at a higher level of resolution. 

As a result, it is often useful to allow for the dynamic 
adjustment of entity resolution at run-time. This can be ac-
complished by implementing a separate process within the 
HBR integration architecture that monitors the scenario as 
it plays out and identifies when it is appropriate to override 
the default behavior engines within the simulation with the 
high fidelity behavior provided  by the HBR.  

In a recent NASA-sponsored program, we developed a 
suite of agent-based models to represent commercial pilot, 
air traffic controller, and airline dispatcher behavior to 
support the investigation of advanced concepts for distrib-
uted air traffic management policies and procedures for fu-
ture airspace control (Harper et al. 2002).  This involved 
the injection of HBR models within a very large-scale 
simulation environment, where we were interested in mod-
eling all the air traffic within a large airspace through sev-
eral hours of air traffic operations. Had we attempted to 
model all the airspace users with high fidelity models, we 
would have unnecessarily created significant computa-
tional performance issues.  However, we were specifically 
interested in the distributed decision-making processes that 
could be applied to solve potential air traffic conflict situa-
tions and weather avoidance issues that arose through a 
given scenario. Therefore, it was only relevant to model 
those entities that were actually involved in a potential 
conflict or weather avoidance situation with detailed HBR 
models. The remaining players could be modeled with 
simple scripts that followed pre-defined flight plans. 

We approached this problem by developing a Manage-
ment Agent within the integrated solution, as shown in 
Figure 2-1. The purpose of the Management Agent was to 
monitor the air traffic situation and determine (through the 
use of a very coarse, and therefore, computationally inex-
pensive, conflict detection algorithm) when specific aircraft 
might be involved in potential conflict situations. Upon de-
tecting a potential problem, the Management Agent would 
dynamically instantiate high-fidelity SAMPLE models to 
represent the pilot, his associated airline dispatcher, and any 
air traffic controllers that might be involved in solving the 
potential problem. These agents would then carry out a sig-
nificantly more detailed analysis of the problem, and imple-
ment a sophisticated distributed decision-making process to 
solve it. Once the Management Agent detected that the prob-
lem had been solved, it would delete those agent-based 
models, allowing the simple behavior engine within the 
simulation to once again take control of the aircraft.  
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Figure 2-1: Managing Dynamic Entity Resolution 
 
The Management Agent consists of three components, 

including the Simulation Engine Interface, the Agent Man-
ager, and the Inter-Agent Communicator. The Simulation 
Engine Interface provides the main communications entry 
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and exit point between the simulation and the HBR model-
ing environment. The Agent Manager component then de-
termines when agents are needed. When a situation arises 
that requires an agent instance of a particular HBR model 
to be created, it will dynamically create and initialize a 
SAMPLE agent to represent that entity. While the agent 
instances are active, the Agent Manager component com-
municates all required simulation data to them, and ac-
quires simulation update information from them to com-
municate back to the Simulation Engine through the 
Simulation Engine Interface. Finally, the Inter-Agent 
Communicator component manages the communications 
between different instances of SAMPLE HBR models. 
When entity models need to communicate information, this 
component ensures that those communications get for-
warded to the correct agents, or, if required agents have not 
yet been created, informs the Agent Manager component to 
create them. As a result, a SAMPLE agent is not limited to 
interacting only with other agents that the Agent Manager 
has deemed fit to generate, but can also force the genera-
tion of agents with which it chooses to interact.  

3 VARIABILITY IN SIMULATED 
SENSED DATA 

HBR models are driven by simulated “sensor data” gener-
ated by the simulation environment. For example, if we 
were to build a SAMPLE-based model of an air combat pi-
lot, then we would be interested in collecting cockpit sen-
sor data (e.g., track data generated by a simulated radar 
system) and radio communications to drive the HBR 
model. If we were interested in a building a simulated sol-
dier model, on the other hand, we might be interested in a 
collection of state data associated with “currently visible” 
entities within the combat simulation. It is rarely the case 
that there exists a direct mapping of simulation-generated 
data that is readily accessible to the HBR for cognitive 
processing. At the very least, there is generally some sim-
ple data translation to map simulation-generated data into 
the “language” of the HBR. But sometimes, more signifi-
cant pre-processing of simulation data is required before 
passing it into the HBR. For example, a small unit combat 
simulation will often only provide “truth data” regarding 
entity state (e.g., position and orientation). That data would 
then need to be pre-processed to filter out the data outside 
the modeled soldier’s current field of view. Some HBRs 
may provide a vision model to do this, while others may 
assume that capability exists on the simulation side.  

We cannot provide a general computational tool that is 
guaranteed to match data effectively between the simula-
tion and HBR in all cases. However, we can provide a 
framework that can help identify these data mismatches 
and guide the implementation of “data translators” (e.g., 
HLA Federated Object Models (FOMs)) in a manner that 
will support a broad range of HBR models. To do this, we 
can leverage the commonalities between HBR models in 
terms of their shared concepts of human cognitive behav-
ior, since they all act on some representation of “knowl-
edge” within a given operational domain.  This knowledge 
may include events of interest, perceived states or beliefs, 
and selected actions. If we can generate a common set of 
concepts that define the required “inputs” to HBRs in gen-
eral, then that framework can be leveraged to generalize 
the data-level interfaces between the HBR and simulation 
environment, thus simplifying the integration process. 

Our approach to the specification of this common 
framework is rooted in an ontology of cognitive processing 
associated with skilled human decision-making behavior 
that we are currently developing under an ongoing ONR-
sponsored effort (Napierski, Young & Harper 2004). An 
ontology is “a specification of a conceptualization” 
(Gruber 1993), which provides an abstract model of a par-
ticular field of knowledge. It describes a hierarchy of con-
cepts, attributes of concepts, and the relationships between 
concepts. Our developing ontology describes the concepts 
associated with cognitive decision-making processes (i.e., 
abstract representations of events, states, and responses) 
and the relationships between those concepts.  

Figure 3-1 shows a high-level overview of our devel-
oping ontology of human decision-making behavior. There 
are common elements of cognitive theories and architec-
tures captured by the ontology, namely cues, situations, ac-
tions, goals, and behavior moderators. Furthermore, there 
are identifiable relationships between these elements. For 
example, the goal structure has a predictable effect on se-
lected actions (actions that support current high priority 
goals will be executed while other actions may not). The 
ontology also incorporates further decomposition of high-
level elements. For example, the class of behavior modera-
tors can be further decomposed to represent different ef-
fects of personality traits, affective state, and physiological 
factors.  Furthermore, the base ontology can be extended 
into a given domain (as indicated by the grey overlays). A 
model developer can extend the concepts into a domain-
specific ontology, and use the concept of “inheritance” to 
maintain the relationships of the common ontology within 
the more specific domain ontology. 
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Figure 3-1: Common Ontology of Human Decision-
Making 
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How does this framework lend itself to the simplifica-
tion of simulation/HBR data interfaces? If a given HBR 
model can classify its data requirements within this frame-
work, extending it effectively to represent domain-relevant 
data that must be collected from the simulation environ-
ment, then those data requirements can be easily “pub-
lished” to support simulation integration. The resulting 
data requirements will include sufficient context to enable 
more straightforward interpretation by the simulation inte-
grator, thus simplifying the integration process. 

4 VARIABILITY IN SIMULATED 
CONTROL DATA 

In section 3, we dealt with the variability in simulation data 
defining inputs to integrated HBR models. Here, we dis-
cuss similar issues associated with matching outputs from 
the HBR to control the simulated entity. The common on-
tology classifying the primitives associated with human 
decision-making is certainly relevant to matching output 
control actions between the HBR and simulation as well. 
However, there are additional complexities associated with 
the control side of HBR integration. Specifically, the level 
of control exerted by an HBR model may vary signifi-
cantly from one simulation environment to another. For 
example, one air combat simulation may require low-level 
stick and throttle commands to control the simulated air-
craft, while another simulator may only require high-level 
control where the HBR might generate a flight path and the 
simulated aircraft system may actually generate the low-
level commands to follow that flight path. 

In the cases where the simulation requires low-level 
control input and the HBR tends to focus on high-level de-
cisions (as is the case with most cognitive architectures, 
including Soar, ACT-R, and SAMPLE), it is important to 
separate the high frequency control loop from the low fre-
quency reasoning loop. It is often sufficient to run the HBR 
reasoning algorithms at approximately 1Hz, while the un-
derlying control algorithms should be run at a minimum of 
10Hz to generate effective real-time control of the simu-
lated entity. Therefore, we recommend an architectural 
separation between these two components when real-time 
motor control is required by the HBR. 

Under a USAF-sponsored program to develop tactical 
air combat pilot agents (Mulgund et al. 2000), we developed 
a Pilot Decision Logic (PDL) module for defining combat 
pilot behavior within an air-to-air tactical engagement sce-
nario in the MIL-AASPEM simulation.  The integration of 
the PDL module within the MIL-AASPEM architecture is 
shown in Figure 4-1.  The simulation, which includes high 
fidelity representation of the vehicle and its onboard systems 
(radar, weapon systems, etc.), sends state information and 
target track data to the pilot agent (in the PDL) via the Real-
ist module, which performs an interpretive function between 
simulated entity and PDL. The PDL performs the informa-
tion processing, situation assessment and decision-making 
functions (within SAMPLE) and sends pilot assignment 
commands back to the simulator.  In this situation, we have 
a mismatch between commands generated by the agent and 
those implemented by the vehicle model within the simula-
tion.  The PDL defines pilot assignments such as “perform 
evasive maneuver” to indicate the type of maneuver to be 
applied.  This assignment is sent to MIL-AASPEM’s Realist 
module, which carries out an interpretation function of “per-
form evasive maneuver” to derive the actual control inputs 
(stick and throttle commands) that the simulation’s vehicle 
model will implement to perform the maneuver.  Essentially, 
the PDL defines what to do and the Realist model defines 
how to do it. 
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Figure 4-1: MIL-AASPEM Architecture 

 
If a target simulation environment does not provide a 

Realist-type module to perform this translation of high-
level behaviors into low-level controls, then the HBR inte-
gration architecture should provide this same separation of 
control structures.  

In a previous program (Harper, Ho & Zacharias 2000), 
we mimicked the Realist functionality for the urban opera-
tions domain, where we integrated a SAMPLE-based model 
of individual soldier behavior with Boston Dynamics’ DI-
Guy model <http://www.bdi.com/html/di-guy. 
html>. The physical DI-Guy model responds to simple 
commands that direct its motion within the simulated envi-
ronment.  These commands consist of a state command (e.g., 
stand, walk, run, crawl) as well as position, velocity and ori-
entation information to portray the entity within the simula-
tion.  DI-Guy can also follow a specified path through the 
simulated environment, while carrying out particular actions 
defined through the API (e.g., programmed hand signals, 
etc.).  However, our SAMPLE-based soldier agent con-
trolled DI-Guy’s behavior at a much higher level of abstrac-
tion, producing commands such as “perform serpentine ma-
neuver” to direct DI-Guy to traverse a hallway, for example.  
Therefore, the integration of the SAMPLE agent with the 
physical model required an additional component to inter-
pret the meaning of “perform serpentine maneuver” in terms 
of a path and DI-Guy action calls that were meaningful to 
the physical model.  This translation was accomplished 
through the development of a Command Interpreter module, 
which consisted of an Expert System (ES) knowledge base 
defining agent-produced “behavioral commands” in terms of 
DI-Guy “physical commands”. 

The functionality of the Command Interpreter is di-
rectly analogous to that of the Realist in MIL-AASPEM.  
Our soldier agent defined what to do (e.g., perform serpen-
tine maneuver) and the Command Interpreter defined how 
to do it by deriving DI-Guy inputs of state, velocity and 
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path definition that resulted in the soldier model moving 
through the building in a serpentine maneuver. 

Consider the example of a team of infantry soldiers 
performing a room clearing operation.  There are set, well-
trained procedures for carrying out this type of task (De-
partment of the Army 1979).  Figure 4-2 shows the path to 
be taken by the lead man in carrying out a search of a room 
in such an operation.  Upon entering the room, he checks 
the front corner in the direction of entry.  He then rotates 
90° to check the rear corner.  He then begins to move along 
the side wall to the rear corner, rotating his field of view 
towards the other rear corner as he moves.  By the time he 
reaches the back corner, he should be facing the point of 
entry.  Throughout this procedure, if the soldier recognizes 
a potential target, he must evaluate whether it is a combat-
ant or noncombatant contact, and only fire his weapon 
upon identifying the contact as a threat.  

 

 
Figure 4-2: Path of Number 1 Man in 
Room Clearing Task 

 
Our soldier model carried out this procedure as follows: 
 
• The SAMPLE-based soldier agent produces a 

command to enter and search the room. 
• The Command Interpreter translates this com-

mand, according to the trained procedure and the 
physical characteristics of the environment, into a 
set of state and path point commands for the DI-
Guy model to follow.  These points identify the 
position and orientation of DI-Guy throughout the 
search procedure. 

• As DI-Guy moves through the room, the simula-
tor continues to send state information to the 
agent to be processed.  The agent applies its per-
ception model to search the room and trigger con-
tact events upon finding a potential target. 

• The agent then enters a target identification phase 
to establish the potential threat posed by the con-
tacted entity. 

• If the contact is identified as a hostile threat, then 
the soldier agent sends a command to fire on the 
target back to DI-Guy. 
• The Command Interpreter then derives the DI-
Guy commands to fire on the target, producing 
physical commands identifying location, orienta-
tion and firing stance position. 

 
By effectively separating the low frequency reasoning 

process from the high frequency control loop, we are able 
to minimize the performance lag for real-time control since 
it can continue to process until the reasoning engines 
within SAMPLE generate new high-level directions. Had 
these two processes been fully integrated, then there is a 
much higher risk of unresponsive motor control generating 
delayed responses within the simulation engine. 

5 CONCLUSION 

The application of advanced M&S tools to a range of 
analysis and training functions throughout the DoD re-
quires significantly more focus on the integration of high 
fidelity models of human decision-making behavior. The 
HBR community offers a number of computational model-
ing solutions to meet this need, but there are many chal-
lenges to the effective integration of these models within 
the full range of military simulation tools. Here, we have 
attempted to highlight some of the challenges that we have 
faced through several years of integrating HBRs within 
simulation environments, and offer some advice to support 
these efforts based on our experience. 
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