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ABSTRACT 

Supply chain management is a critically significant strategy 
that enterprises depend on in meeting the challenges of to-
day’s highly competitive and dynamic business environ-
ments. An important aspect of supply chain management is 
how enterprises can detect the supply chain behavioral 
changes due to endogenous and/or exogenous influences and 
to predict such changes and their impacts in the short and 
long term horizons. A methodology for addressing this prob-
lem that combines system dynamics and neural networks 
analysis is proposed in this paper. We use neural networks’ 
pattern recognition abilities to capture a system dynamics 
model and analyze simulation results to predict changes be-
fore they take place. We also describe how eigenvalue 
analysis can be used  to enhance the understanding of the 
problematic behaviors. A case study in the electronics manu-
facturing industry is used to illustrate the methodology. 

1 INTRODUCTION 

The use of system dynamics (SD) simulation in supply chain 
management (SCM) started with Jay Forrester’s Industrial 
Dynamics (Forrester 1965). Forrester described a produc-
tion-distribution system that consisted of the flows of infor-
mation, materials, orders, money, manpower, and capital 
equipment across a supply chain (SC). Since then, SD has 
been widely applicable to SC applications to address various 
issues. One of the serious SCM problems is the changes in 
the SC behavior due to external market factors and/or inter-
nal system and managerial factors. For example, a change in 
federal policy to allow private companies to sell warfare ma-
terials can cause a sudden increase in demand at weapons 
manufacturing companies. If not detected early enough, 
companies would not be able to respond to the increasing 
demand and would lose potential business to competitors. In 
the service sector, a sudden decrease in interest rates can 
cause sudden increase in demand for loans, which a loan 
company might not be able to satisfy. Both manufacturing 

 

and service sectors need to equip themselves with tools to 
detect changes in their SC and be prepared to counteract any 
undesirable consequences. What makes it a significantly se-
rious problem is that SC behavior is dynamic and controlled 
by nonlinear interrelationships and interactions among its 
components. Small variations in demand, for example, can 
simply cause disproportional major fluctuations and oscillat-
ing reactions along the SC.  
 This paper introduces a methodology for detecting and 
predicting SC behavior changes based on the dynamics of 
the supply chain environment. This methodology has three 
phases: (1) capture the dynamics of the SC, (2) detect 
changes and predict the behavior based on them, (3) make 
modifications to avoid (or mitigate) the unwanted behavior 
in performance. System dynamics is a good methodology to 
model the SC system and the impact of changes in the busi-
ness environment. Neural networks capture the dynamics  
from the system dynamics models and historical data. Then, 
neural networks can be used  to detect and identify the con-
sequences of internal and/or external changes in the behavior 
of the various SC key parameters. Afterward, linearization 
and eigenvalue analysis are used to analyze and locate the 
cause of oscillations, time responses, and support the devel-
opment of new policies and safety stock levels in the SC. 
These new policies and safety stock levels can be used to 
avoid/mitigate the unwanted behavior.  

2 BUSINESS ENVIRONMENT – CASE STUDY 

A system dynamics model of the SC of an actual electron-
ics manufacturing company (based on the work of Lertpat-
tarapong 2002) is used in this paper to demonstrate the 
proposed methodology. This company was facing a prob-
lem of persistent oscillations in its finished goods inven-
tory and desired capacity. Even though the company has 
maintained its market share, it has experienced serious 
competition and demand fluctuations, which in turn im- 
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pacted its work strategies. The company has been imple-
menting the following SC strategies: 
 

• Utilization of several supplier companies to 
minimize their bargaining power (Porter 1979). 

• Utilization of supply relationship management to 
guarantee that suppliers (1) provide excellent 
product quality, (2) meet due dates, and (3) offer 
competitive prices.  

 
As a market leader, this company supplies its products 

to major Original Equipment Manufacturers (OEMs) such 
as Dell and Hewlett-Packard. Many OEMs have changed 
their strategies by adopting Build-To-Order (BTO) and 
Just-In-Time (JIT) processes. These changes in the PC in 
addition to its short life cycles have amplified the 
coordination problems, which in turn have caused excess 
inventories and sometimes difficulties to keep up with de-
mand. Another main factor is the intense competition from 
other companies. The competition has forced the company 
to introduce more product varieties at lower prices into the 
market to protect its existing and potential market share. 
Production capacity is another factor that adds to SC com-
plexity because of its long delays, huge investments, and 
new products with more complex manufacturing processes 
than previous generations. In addition, these complemen-
tary PC products are at the upstream of the SC for PCs and 
their resulting fluctuations are higher. 

3 SD SIMULATION MODELING 

Building the SD model of the company’s SC in the previous 
section followed the steps of Hines (2000). The first step de-
fining the problem. The following steps are understanding the 
formulations, developing the causal loop diagrams, develop-
ing the stocks and flows diagrams, validation, and testing. 

3.1 Problem Definition 

Problem definition includes identifying the relevant parame-
ters and their respective perceived trends, and stating the 
problem statement. Several participants (at different levels 
of the managerial hierarchy) from various departments (e.g., 
information technology, strategic planning, supply chain, 
manufacturing) were interviewed in addition the analysis of 
historical data in order to define the problem. The relevant 
parameters are listed below (Lertpattarapong 2002): 
 

1. Product Life Cycle 
2. Actual Capacity Relative to Desired Capacity 
3. Change in Customer Orders  
4. Raw Materials Inventory Write-0ff 
5. Average OEM Margin 
6. Pre-Assembly Component Inventory 
7. Throughput Time and Work in Process Inventory 
8. OEMs’ Inventory  
9. Product Inventory  
Two problematic issues were then stated as: 
 
• The fluctuations and oscillations in the finished 

goods inventories with relatively large ampli-
tudes, and  

• The growing oscillations in actual capacity rela-
tive to desired capacity. 

3.2 Causal Loop Diagrams 

Causal loop diagrams are the basis on which the SD model 
is built. They depict, graphically, the interactions and 
cause-and-effect relationships among the different system 
parameters. The causal loop diagrams in our case consisted 
of several segmental loops. Figure 1 depicts the complete 
causal loop diagram of the current case study. The princi-
pal causal loops included are described below: 

 
• Market share needs production capacity: Ca-

pacity increase means more orders and this trans-
lates into more future demand. But if demand in-
creases beyond capacity customers will become 
unsatisfied because of delivery delays and might 
shift to competitors. 

• Investments in production capacity depend on 
market share: Higher revenues are realized with 
increases in market share and then more invest-
ments can be made on production capacity. 

• Competition increases with the increase in 
profits and vice versa: Higher profits creates an 
environment that attracts new entrants to the mar-
ket and hence competition, and lower profits cre-
ates less motivation for new entrants. In addition, 
the market growth increases the competition. 

• Growth, new product development and prod-
uct life cycle: Higher revenues are realized with 
increases in market share and then more invest-
ments can be made on new product developments. 
The increase in new product development could 
lead to the obsolescence of old products. 

3.3 Stocks and Flows Analysis 

The following step in building a SD model is converting 
the causal loop diagrams into stocks and flows diagrams 
and defining the mathematical formulation. The basic SD 
model in this paper follows the generic models of Sterman 
(2000). The model is composed of the three connected 
stocks and flows models that are described below. 

3.3.1 The Production Model 

This company runs a push-pull manufacturing process: a 
push process from the pre-assembly processes to the as-
sembly process and a pull process from the assembly proc-
ess to the packaging and shipping. Main state variables 
 
-  
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Figure 1: Causal Loop Diagram for the SD Supply Chain Model 

 

in this production model are the inventories. Three types of 
inventory, which also represented the sequence of the pro-
duction process, were included in this production model. 
These are the pre-assembly inventory (PAI), the assembly 
inventory (AI), and the finished goods inventory (FGI). In 
the system dynamics notations these state variables are rep-
resented as stocks and mathematically as integrations as 
follows: 
 
 PAI = ∫ (PSR – NPR – PR) 
 
where PSR represents the production start rate, NPR the 
net start rate, and PR the production rejection rate. 
 
 AI = ∫ (ASR – NAC – AR) 
 
where ASR represents the assembly start rate, NAC the net 
assembly completion rate, and AR the assembly rejection 
rate. 
 
 FGI = ∫ (NAC – S) 
 
where S represents the sales rate of the final product. 
3.3.2 The Market Share and Shipment Model 

This consists of two sub-models: the market share sub-
model and the inventory, backlog and shipping sub-model. 
The market share sub-model mainly represents the causal 
relationship involving demand, orders filled and company 
market share. The inventory, backlog, and shipping sub-
model represents the links of inventories and shipment or-
ders filled from the finished goods inventory to customers. 
Main state variables of interest are the finished goods in-
ventory (given above) and the channel order backlog level 
(COB), which is represented mathematically as follows: 
 
 COB = ∫ (CD – OFR) 
 
where CD is the channel demand for the company’s prod-
uct, and OFR is the order fulfillment rate.  

3.3.3 The Demand Forecast and Capacity Model 

This model represents the link from demand to production 
capacity.  The state variables of interest are the perceived 
present demand (PPD) on the company’s product, which is 
mathematically the integration of the change in the per-
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ceived demand over time (this change is a function of his-
torical demand and present channel demand), and the 
available capacity (AC), which is represented mathemati-
cally  as follows: 
 
 AC = ∫ (CA – CO) 
 
where CA represents the rate of capacity acquisition, and 
CO represents the rate of capacity obsolescence.  
 The SD model was built in Vensim SD simulation en-
vironment. For the details of the development of the SD 
model and its mathematical structure and validation results 
refer to (Lertpattarapong 2002). 

4 USING THE NEURAL NETWORK ANALYSIS 

Neural network (NN) analysis is used to detect changes in 
the SC behavior and map them into the future. NN, with 
their pattern recognition capability, are effective mecha-
nisms for that use. This can be very practical, as neural 
networks can be encapsulated in a software agent that can 
in turn use the company’s ERP records and business intel-
ligence data to perform this task routinely in real-time in an 
actual system. Using NN to detect changes in the SC will 
empower companies to detect any changes occurring in the 
business environment that can affect their SC and hence 
give the company enough time to adjust its business strate-
gies in order to counteract the impact of these changes 
(Bruzzone and Orsoni 2003).  
 To analyze the SC and generate the data that will be 
used for NN analysis, 17 variables were identified as inde-
pendent and used as inputs to the SD model (to generate dif-
ferent scenarios). Some of them are variables that the com-
pany can control. Others are controlled by the market and 
level of competition. Beside these variables, an aggregate 
representation of the current state  (i.e., the current values of 
the state variables: Historical Demand, Available Capacity, 
Desired Capacity,  Pre-assembly Inventory, Assembly In-
ventory,  Finished Goods Inventory, and  Channel Order 
Backlog.) and trends (i.e., recent trend of the state variables) 
was used as well. Changing some of these variables would 
require the company to change production policies as for the 
desired inventory levels. On the other hand changes in others 
would require the company to consider significant financial 
investments (i.e. buying new equipment or implementing 
corporate productivity and quality initiatives such as six-
sigma). The selected input variables are the following: 
 

1. Manufacturing Cycle Time 
2. Minimum Order Processing Time 
3. Time to Complete Assembly 
4. Time to Adjust Backlog 
5. Time to Perceive Present Demand 
6. Capacity Acquisition Delay 
7. Safety Stock Coverage 
8. Forecast Horizon 
9. Backlog Switch 
10. Line Yield 
11. Component per Lot Yield 
12. Time to Adjust Assembly Inventory 
13. Pre-assembly Inventory Adjustment Time 
14. Time to Adjust Finished Goods Inventory 
15. Time to Update Channel Orders 
16. Competitors’ Attractiveness 
17. Channel Demand 
 
Different values were given to each of the inputs based 

on the feasible ranges/distributions. The number of possi-
ble combinations of the different inputs was enough for a 
number of simulation runs/scenarios in the order of tril-
lions. However, we wanted to capitalize on the generaliza-
tion capabilities of NN so that we only needed to generate 
five different sets each with 800 different combinations, 
for these input variables. The number of 800 different 
combinations was provided by following an estimate of the 
prediction risk as provided by Akaike’s final prediction er-
ror (Akaike 1970, Moody 1994, Moody and Utans 1994). 

The simulation of the SD model was started in equilib-
rium before changing (i.e., perturbing) the input variables. 
The simulation was run for 24 months (after the changes) 
with each combination. It is important to note that when 
some of the changes were made, the resulting behavior ap-
peared several months later and it was not initially evident. 
The main focus was to study the future behavior of  demand, 
capacity, and inventory levels during the 24 months. The fu-
ture behaviors of the state variables were of interest. These 
were the Historical Demand, Available Capacity, Desired 
Capacity,  Pre-assembly Inventory, Assembly Inventory,  
Finished Goods Inventory, and  Channel Order Backlog. 

4.1 Data Classification 

The behaviors of each SD stock (i.e., state variable) were 
observed during the future 24 months and classified in cate-
gories. The first set of 800 simulation runs was utilized to 
classify the future behavior of the stocks. We studied the 
simulation output graphs. Clustering techniques were used to 
develop and verify the different categories of behaviors. 
Fuzzy Adaptive Reasoning Theory (ART) neural networks 
were utilized for this clustering (Carpenter et. al. 1991). 
Fuzzy ART is a class of neural networks which self-organize 
categories in response to arbitrary sequences of input pat-
terns in real time for pattern recognition. Fuzzy ART has 
fuzzy operators which are added in order to handle analog 
patterns. Behaviors of each of the seven state variables were 
studied. The classification performed by the Fuzzy ART 
neural networks can be explained  on a qualitative basis. For 
example, a behavior can be described as initially increasing, 
then decreasing with fluctuations, or decreasing then oscil-
lating and so on.  
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Table 1: Some Behavior Categories of Finished Goods 
Inventory 

 
Increasing initially, having fluctuations and distortions 

and ending up at the level above the initial level 

 
Decreasing initially, having fluctuations and distortions 

and ending up at the level same as the initial level  

 
Increasing initially, having fluctuations and distortions 

and ending up at the level same as the initial level  
 

 The different categories of each stock were validated 
using the second set of 800 samples. The validation of the 
categories using this data set was 100% correct. Figure 2 
shows some of the possible behaviors of the finished goods 
inventory level.  

4.2 Neural Networks Calculations 

Input data and behavior classifications (output) were prop-
erly scaled and pre-processed. In training the supervised 
neural networks the backpropagation approach was used. 
We used the last three data sets. One data set was for train-
ing, another for validation, and the last one was for testing 
(each data set had 800 samples). 

Many epochs were run through each training set, and 
the possible minimum training error was obtained for differ-
ent architectures and learning algorithms. The architecture 
with the minimum validation error was used for the testing 
purpose. Several learning algorithms were tested. These al-
gorithms were those involving gradient descent optimiza-
tion, regularization parameters, Bayesian, Levenberg-
Marquardt (using second order derivatives), and conjugate 
gradient-based schemes (Hagan et. al. 1995). The different 
backpropagation algorithms (Werbos 1994) were trained and 
compared to search for a suitable algorithm for the problem. 
The execution of a trained network was on the order of mi-
croseconds for all algorithms. Levenberg Marquardt pro-
vided the most reliable and fast training option. 

NN are chaotic systems and the final training error is a 
function of the starting point such that every time a unique 
result can be obtained. The experiment was run many times 
(25 times) in order to get the best result. NN architectures 
with 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 17, 18, 
19, 20, 30, and 40 hidden neurons were tested. We then 
calculated the validation error, which signifies the amount 
of error of the validation data set.  

The architecture with five hidden neurons showed the 
minimum validation error and was selected for further 
evaluation and optimization using the training data set. It 
was then tested using the testing data set and the final test-
ing error obtained was considerably smaller (~ 0.025 
RMS). The qualitative result based on the category se-
lected, not the root mean squared error indicated a very 
high performance in testing (~99% accuracy). Table 2 
shows training and validation errors for the different arch-  
 

Table 2: Training and Validation Errors for Different 
NN Architectures Using Levenberg-Marquardt 
Architecture Training Error Validation Error 

2 0.0555 0.0611 
3 0.0518 0.0602 
4 0.0497 0.0651 
5 0.0462 0.0595 
6 0.0461 0.0684 
7 0.0432 0.0742 
8 0.0414 0.0643 
9 0.0411 0.0719 

10 0.0398 0.0811 
11 0.0389 0.0797 
12 0.0371 0.0834 
13 0.0345 0.0813 
14 0.0323 0.0799 
15 0.0313 0.0725 
16 0.0300 0.0808 
17 0.0295 0.0901 
18 0.0276 0.0962 
19 0.0268 0.0942 
20 0.0258 0.0929 
30 0.0118 0.128 
40 0.0106 0.1325 
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itectures. Notice that the five-hidden neurons architecture 
shows the minimum validation error. 

To implement this methodology, a database, which 
continuously stores the behavior patterns occurring in the 
supply chain needs to be evaluated in real-time. A com-
puter system utilizing this methodology should be able to 
detect any change and provide predictions such that correc-
tion actions or needed decision could be made to adjust the 
SC behavior. Software agents can be used for this purpose. 

5 EIGENVALUE ANALYSIS OF SC BEHAVIOR 

The third phase of the analysis methodology is the analysis 
of the causes of the unwanted SC behavior. This analysis 
phase provides better understanding of all the different 
classes of the SC behaviors, as well as how they are linked 
to particular causal relationships. The SD simulation model 
for our case study was developed as a system of nonlinear 
differential equations. To analyze the SC model and study 
its dynamic behavior, we used several techniques including 
decomposition, linearization, and eigenvalue analysis. 

As the behavior of the model is non-linear, it does not 
comply with the properties of superposition and homoge-
neity. In addition, not only is the emergent behavior of the 
stocks non-linear, but the individual static relationships be-
tween certain variables are as well. Therefore, we decom-
posed the original model by “linearizing” the differentnon-
linear static relationships. The resulting models (the de-
composed model) applied at specific points in time with 
the same settings reproduced the exact behavior of the 
original model.  

For the purpose of verification, a particular scenario 
with specific settings was used. With these settings and the 
system in equilibrium with no oscillations, the variable 
channel demand experienced a sudden increase of 10% of 
its value at the sixth month. The resulting behavior of the 
different inventories was oscillatory, as shown in Figure 2, 
for the finished good inventory, starting at the eighth 
month (two months after the 10% increase). This was the 
same behavior of the original SC model before decomposi-
tion. Decomposition is discussed in the following section. 

 
Finished Goods Inventory

2 M

1.65 M

1.3 M

950,000

600,000
0 4 8 12 16 20 24 28 32 36

Time (Month)  
Figure 2: Finished Goods Inventory Oscillations Due 
to 10% Increase in Demand at Time = 6 
5.1 Model Decomposition 

We decomposed the original model into several models to 
linearize individual non-linear static relationships. A sys-
tem  of nonlinear differential equations can be represented 
as )(xgx =& , where x is the vector of state variables, g(x) 
is a nonlinear function of  x, and x&   is the time derivative 
of  x. The following state variables are considered in de-
composing the original model: 
 

1. Available Capacity (AC) 
2. Channel Order Backlog (COB) 
3. Expected Channel Demand (ECDLSMC)  
4. Historical Demand (HD) 
5. Perceived Present Demand (PPD) 
6. Available Inventory (AI) 
7. Pre-Assembly Inventory (PAI) 
8. Finished Goods Inventory (FGI) 
9. Perceived Fraction Orders Filled (PFOF) 
10. Perceived Fraction Orders Filled 1 (LV1) 
11. Perceived Fraction Orders Filled 2 (LV2) 
 
The last three variables; the three versions of the per-

ceived fraction order filled, in the list were required to rep-
resent the smooth function (the 3rd order exponential 
smooth function) that was used to capture the perceptions 
of the electronics company for the fraction of orders filled  
(See Vensim help information related to the function 
SMOOTH3 (Ventana Systems Inc. 2004)).  

Decomposition was needed due to the nonlinearities at 
the function level (static relationships). The original model 
was decomposed into 12 non-linear models. The 12 models 
superposed in time reproduced exactly the behavior of the 
original model.  

5.2 Linearization and Eigenvalue Analysis 

If NNs have detected that the current changes in the SC 
settings would produce undesirable behaviors (i.e., NN 
analysis was applied after the 10% sudden increase in 
Channel Demand), then we would like to investigate more 
of these current settings and detect the loops and/or vari-
ables and/or causal relationships that are (or will be) caus-
ing the negative behavior. Ultimately, we would like to see 
how we can mitigate these effects. Eigenvalue analysis can 
support these investigations. The different behavior modes 
of a linear dynamic system are driven by the eigenvalues of 
the dynamic matrix. Therefore, eigenvalue analysis can tell 
us about the causes of the oscillatory behavior and the sta-
bility of the supply chain.  

5.2.1 Linearization 

The decomposed models are very non-linear. Therefore, 
we decided to linearize them by using Taylor expansion for 
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the current settings of the SC. The slope of a non linear 
curve at a certain point is a good approximation to the 
curve over a small range around the current point. Thus a 
nonlinear system can be treated as linear for a small varia-
tion about an operating point x~  and hence can be repre-
sented by BxAx += ~~& . If x&~  depends upon several ex-
citation variables x1, x2, . . ., xn, then the functional 
relationship is written as ),...,,(~

21 nxxxgx =& . Taylor 
expansion about a certain operating point is useful for a 
linear approximation to the nonlinear function. When the 
higher-order terms are neglected, the linear approximation 
of the different components of x&~  can be written as fol-
lows, where x0 is the operating point.  
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5.2.2 Eigenvalues 

Taking a particular model and the current SC settings and 
its period of time of application, the model is approximated 
at a specific time using Taylor expansion. Matrix A can 
then be found for the modified models. For the square ma-
trix A, if there exists a nonzero vector v and a scalar λ such 
that Av = λv and λI – Av = 0, then the values of λ = λi for 
which the second equation is satisfied are the eigenvalues 
of A, and v is the eigenvector. The equations have a solu-
tion if and only if  |λI – A| = 0.  
 Figure 3 plots the eigenvalues for 11 state variables 
with respect to time, using at each specific time the appro-
priated model. The figure shows the behaviors over  a 36-
month period (the first 12 months the model was in equi-
librium and the perturbations were applied in the 6th 
month). It clearly shows the oscillations in the systems be-
havior due to its settings (and the oscillatory behavior was 
predicted by the neural networks phase). The eigenvalues 
identify the stability of the system; being in equilibrium is 
not a guarantee of robustness. The eigenvalue analysis can 
support the analysis of those conditions and provide even a 
quantification of the oscillatory behavior. 

5.2.3 Sensitivity Analysis 

Now, that we have decomposed and linearized the model, 
we can now experiment by changing some of the input 
control parameters to see if we can avoid or mitigate the 
undesired behavior. We can experiment with the control 
parameters in order of “cost” and implementation time. For 
example, changing the time to adjust inventory policies is 
less expensive than changing the manufacturing cycle time. 
Changing the policies for Time to Adjust Assembly Inven-  
 

 
Figure 3: Eigenvalues over 36 Months; 30 Months after 
the NN Predicted the Undesirable Behavior, for the 11 
State Variables 

 
tory can be done with training and a series of meetings to 
coordinate these changes company-wide. On the other 
hand, changing the manufacturing cycle time can be ob-
tained by “buying more equipment,” and/or implementing 
an aggressive Six-Sigma program which can require more 
investments and time.  
 As an example, the variables of Time to Adjust As-
sembly Inventory (TAAI), Time to Adjust Finished Goods 
Inventory (TAFGI), and Pre-Assembly Adjustment Time 
(PAT) were selected. Several experiments using different 
levels of these variables and changing them (design of ex-
periments) were performed.  
 There were changes in the output of the stocks and the 
way they behaved. Some of the combinations made the 
stocks oscillate more, and some made the oscillations to-
tally damp and become constant. Hence, we conclude that 
if there is a change of time to adjust inventories in the 
manufacturing, it will have an effect on the oscillation in 
the system. The best combination that mitigated the un-
wanted behavior was to set TAAI to four Weeks, TAFGI 
to 8 Weeks, and PAT to  four Weeks. These changes do 
not only mitigate the oscillations, but also make the system 
more robust to perturbations.  
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 For example Figure 4 shows that oscillations were 
eliminated in the finished goods inventory behavior by 
carefully setting these times. The oscillating behavior 
shown is due to current settings when the demand was in-
creased 10% on month six. After adjusting the times to ad-
just inventories the performance reached stability after six 
months after the demand increase. Compare the finished 
goods inventory behavior in Figure 4 to its behavior in Fig-
ure 2 (which is also shown in Figure 4 as well) 
 

Finished Goods Inventory
2 M

1.65 M

1.3 M

950,000

600,000
0 4 8 12 16 20 24 28 32 36

Time (Month)

Finished Goods Inventory : TAAI 4weeks TAFGI 8weeks PAT 4weeks Units
Finished Goods Inventory : original Model Units

 
Figure 4: Sample Results for a Good Combination of 
TAAI, TAFGI, and PAT (in this Particular Figure for 
Finished Goods Inventory). 

 
 It is concluded that the oscillatory behavior is endoge-
nous. Internal actions – including adjusting the times to 
update production inventories such as PAT, TAAI, and 
TAFIG could eliminate or minimize the oscillations. Lert-
pattarapong (2002) reported that this result was not ex-
pected by management, who believed that the main causes 
for their problems were exogenous and not under the com-
pany’s control. 

6 CONCLUSIONS AND FUTURE WORK 

This paper proposed and discussed the use of a methodol-
ogy to detect changes in the SC behavior due to external 
and/or internal factors. Supply chain management solution 
methods available today do not have the capability to de-
tect changes taking place in the business environment and 
hence are not able to provide the companies with accurate 
predictions for the effects of these changes. The proposed 
methodology used systems dynamics simulation and his-
torical data, neural networks, and eigenvalue analysis in a 
three-phase procedure. System dynamics simulation was 
used to capture the dynamics of the supply chain behavior. 
Neural networks and eigenvalue analyses used the simula-
tion results to detect and study the behavioral changes and 
oscillations as well as to locate the causes of them.  
 It is proposed, for future work, that optimization tech-
niques be used with the decomposed, linearized SC mod-
els. In addition, the trained neural networks can be used to 
perform similar analysis to the one developed using eigen-
values. The methodology suggested here can be applied to 
assist in implementing six sigma programs and other lean 
enterprise initiatives as well.  
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