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ABSTRACT 

While the literature contains several adaptive sampling 
techniques for statistical comparison of competing simu-
lated system configurations and for embedded statistical 
computations during simulation run-time, these techniques 
are often difficult to apply to air traffic simulations because 
of the complexity of air traffic scenarios and because of the 
variety of model and data types needed to fully describe air 
traffic.  Adaptive sampling techniques can be beneficial to 
the study of air traffic; for example, adaptive techniques 
can use ranking and selection methods to compare the rela-
tive worth of the competing configurations and calculate 
the number of observations required for rigorous statistical 
comparison, often dramatically reducing the run-time dura-
tion of simulations.  In this paper, we will describe the im-
plementation of such procedures in the Reconfigurable 
Flight Simulator for air traffic simulations.  We also dis-
cuss implications for the coordination of simulation, analy-
sis, and design activities. 

1 INTRODUCTION 

Increasing use of simulation for both design and analysis 
motivates models capable of increasingly realistic repre-
sentations of air traffic systems.  System performance can 
be inferred from simulation output in a variety of manners 
from simple queuing times to multifaceted compliance 
with regulations to continuous measures such as flight 
time, cost, and fuel burn. 

Hybrid simulations, that is, simulations capable of si-
multaneously including discrete-event and continuous-time 
models, allow for cost-effective and detailed analysis of 
complex interactions between heterogeneous entities.  
Agent-based modeling is one method for describing such 
heterogeneous entities.  Under this paradigm, each individ-
ual agent autonomously pursues a goal and also interacts 
with other agents inside the simulation.  Agent-based mod-

  

eling provides an inherently modular method for high-
fidelity simulation of air traffic systems.  This approach, 
however, requires the inclusion of a range of models with 
varied output data types such as discrete and continuous.  
For example, an appropriate discrete state variable may be 
the number of aircraft arrivals into a defined airspace, 
while a continuous variable of interest might be the mini-
mum separation between two aircraft. 

Detailed hybrid simulations, including agent-based 
simulations, require an increase in both size and run-time.  
Frequently, the amount of simulation output is determined 
by the availability of computational capacity.  Subsequent 
data analysis, commonly done as a separate activity, often 
reveals either insufficient or excess (wasted) observations 
for the required statistical comparison.  Therefore, embed-
ding statistical estimators within a simulation can ensure 
computationally efficient sampling without requiring stor-
age and post hoc analysis.  

Incorporating an adaptive control technique, such as a 
Ranking and Selection (RS) method, offers an additional 
avenue for increased computational efficiency.  RS meth-
ods calculate the number of required observations while 
ensuring statistically sound comparisons are made with 
modest computational expense.  The methods discussed 
here are sequential and appropriate for general stationary 
output processes.  A new adaptive control technique is 
used here that relies on embedded statistical estimators to 
calculate the number of required observations for each 
simulated configuration.  Additionally, the control tech-
nique differentiates in an adaptive manner between com-
peting simulated configurations by identifying which con-
figurations do not warrant further analysis, potentially 
saving computational resources. 

Bringing together hybrid simulation models, embed-
ded statistical analysis, and adaptive control techniques 
improves the application of simulation to the analysis and 
design of air traffic systems.  This improvement is realized 
in terms of computational reduction and statistically valid 
comparison of competing system configurations.  Addi-
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tionally, this method creates an environment conducive to 
Parallel and Distributed Simulation (PDS), although the 
control techniques employed here do not require the strict 
time management generally required in PDS.  Instead, ex-
periments can be implemented on a Network of Worksta-
tions (NOW) that coordinates observation sampling from 
complementary simulations.  

As part of this research, the Reconfigurable Flight 
Simulator (RFS), a large-scale hybrid simulation, has been 
extended for embedded statistical computations and adap-
tive control techniques.  The analysis of arrival routing 
configurations for Atlanta Hartsfield-Jackson International 
Airport (ATL) is presented as a demonstration. 

The remainder of this paper is organized as follows.  In 
section 2 we discuss current adaptive control techniques.  
Section 3 details embedded statistical analysis methods.  
Section 4 highlights PDS endeavors along with a distributed 
computing method. Section 5 presents a general discussion 
on their application to air traffic simulation.  Preliminary re-
sults are shown in section 6. Section 7 concludes this work 
with a summary and discussion of future efforts. 

2 ADAPTIVE CONTROL TECHNIQUES 

The goal of any selection, screening, and multiple com-
parison problem is to determine the “best” of several com-
peting configurations.  In this context, a configuration im-
plies that we have two or more competing systems that are 
compared by the mean value of some metric describing 
performance, where simulation is required to assess the 
value of this metric.  Bechhofer, Santner, and Goldsman 
(1995) highlight several problem formulations appropriate 
to various experimental designs.  Here, the focus is on the 
indifference-zone formulation where the objective is to se-
lect the system configuration with the highest/lowest (in-
terpreted as “best”) expected value.  In this realm, an ex-
pectation offers insight on long-term performance while 
enabling statistical rigor of the comparative method. 

The experimenter provides (δ*,P*), where δ* is the in-
difference-zone size and P* denotes the threshold for the 
desired probability of correctly identifying a difference be-
tween system configurations.  Note that the indifference-
zone indicates some comparative region where the experi-
menter would not discriminate between competing system 
configurations.  Also, the threshold probability, P*, can be 
interpreted as a confidence level when configuration mean 
values do in fact differ by at least δ*. 

RS methods enable adaptive control of this multiple 
comparison problem.  Ultimately, RS methods determine 
the number of required observations necessary for statisti-
cally rigorous comparison of competing simulated configu-
rations.  RS methods may be single or multistage.  In this 
context, a stage denotes the execution of a simulated con-
figuration for a specified number of observations.  A sin-
gle-stage method determines the number of required ob-
servations from parameters determined by the 
experimenter.  Adaptive control is not possible with a sin-
gle-stage RS method.  However, a multistage RS method 
updates the required number of observations from simu-
lated configuration output, thereby enabling adaptive con-
trol of the comparison process. 

If the variance of a predetermined metric is unknown, 
then Rinott’s method (1978) provides a well known two-
stage technique for comparing configurations.  This 
method relies on the assumptions that obtained data are in-
dependent, identically distributed, and from a normal dis-
tribution.  Goldsman et al. (2002) present an extended ver-
sion of this procedure (R+) and the extended version of a 
procedure due to Kim and Nelson (KN+) (2001).  KN+ is a 
multistage RS method relying on the same assumptions as 
R+.  Note that batch means, i.e., sample means from con-
tiguous batches of observations, are considered to be nor-
mally distributed under certain conditions.  

Benson (2004) details a multistage extension, Ben-
son/Goldsman/Pritchett 4 (BGP4), of the KN+ method in-
corporating embedded statistical analysis.  Detailing this 
method is beyond the scope of this paper.  However, the 
BGP4 RS method has been shown to achieve the desired 
probability of correct selection with moderately to highly 
correlated data.   

3 EMBEDDED STATISTICAL ANALYSIS 

The methods discussed in section 2 require calculations on 
both individual and batched observation data.  Benson 
(2004) describes an architecture that does not require use 
of historical experimental observation values, but instead 
maintains current state variables and certain summed val-
ues.  This architecture allows for both estimator calcula-
tions and availability of these estimators at each simulation 
time step along with inherent reduction of memory usage.  
These time steps can be set to those required by the simula-
tion of each particular configuration.  
 The computational overhead from using embedded es-
timators of this sort was assessed by running the same 
simulated configuration without embedded statistical 
analysis (NOSTAT), with embedded statistical analysis 
(STAT), and lastly with both the embedded statistical 
analysis and the distributed simulation client module (RFS 
Client) discussed in the following section.  Figure 1 high-
lights the overall results.  Addition of embedded statistical 
analysis increased the computational expense of obtaining 
a specified number of observations by less than 1% in this 
example.  Here, the RFS client module increased the over-
all expense by less than 2% for the same number of obser-
vations.  In practical terms, arrivals for an operational day 
at Atlanta Hartsfield-Jackson International Airport can be 
simulated on a single dual processor 2.2 GHz workstation 
with 512 megabytes of RAM in approximately 160 com-
puter-minutes.  An additional 3 minutes of workstation 



Benson, Goldsman, and Pritchett 

 
time allows for embedded statistical analysis in this exam-
ple.  Note the computational expense of embedded statisti-
cal analysis is inversely proportional to the expense of run-
ning the simulation.  The impact of embedding statistical 
analysis is small when the computational requirements of 
the simulated configuration are large and vice versa. 
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Figure 1: Software Infrastructure Overhead Comparison 

 
In order to analyze these results, users of an existing 

simulation generally record all data from a simulation for 
follow-on analysis.  The computational cost of this output 
and storage is not analyzed here.  Presumably, however, 
it can represent both an increase in runtime and a subse-
quent analysis process that is necessary only in the 
“NOSTAT” condition. 
 Embedding this architecture within a steady-state 
simulation whose output is neither independent nor identi-
cally distributed predicates assumptions on simulation ini-
tialization.  Law and Kelton (2000) suggest truncating 
early data in a simulation as one method of avoiding ini-
tialization bias.  Given K,, 21 ii XX  as the simulation output 
from a single replication of the ith  alternative, then after 
appropriate initialization the following assumptions hold: 
 
Stationarity: K,, 21 ii XX  forms a stationary stochastic 
process. 
(Strong) Consistency: ii rX µ→)( as ∞→r with prob-
ability 1, where iµ  is the steady-state mean from system i 
and )(rX i  is the sample mean based on r observations 
from system i.  
Functional Central Limit Theorem (FCLT):  There exist 
constants iµ and 02 >iv  such that 
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for 10 ≤≤ t , where ⇒  denotes weak convergence as 

∞→r  and W(t) is a standard Brownian motion (Weiner) 
process (see Billingsley 1968). 
For the current article, comparisons will be made on 
steady-state means kµµµ ,,, 21 K , which is reasonable due 
to the consistency assumption.  The variance parameter, 

2
iv , will be estimated by batch means.  Note that variance 

estimation from a single long simulation run alleviates the 
issue of initialization bias.  The following batch means 
technique provides an asymptotic estimator for the vari-
ance constant ( )( )rXrv i

ri Varlim2

∞→
≡ . 

If n observations inii XXX ,,, 21 K  are divided into b 
batches of length m, then the jth batch mean from system i is: 
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The observations jmimjimji XXX ,2)1(,1)1(, ,,, K+−+−  comprise the 
jth batch, bj ,,2,1 K= , for system i.  For 1>b , the batch 
means variance estimator is: 
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where 2

dχ  is a chi-squared random variable with 1−= bd  

degrees of freedom and 
D

→  indicates convergence in dis-
tribution. 

4 DISTRIBUTED COMPUTING METHOD 

Parallel and Distributed Simulation (PDS) has been studied 
for many years in an effort to speed increasingly complex 
simulation models.  PDS research has primarily focused on 
manipulating sequential simulations and unifying coupled 
simulation processes for discrete-event systems.  Manipu-
lation of sequential simulations is generally accepted for 
queuing systems or for the mass replication of a particular 
simulation configuration.  Unification of separate but re-
lated simulations spans sophisticated synchronization algo-
rithms and prescribed interfaces such as the DOD High 
Level Architecture (HLA).  Fujimoto (2000) provides a 
comprehensive discussion of current PDS techniques. 

The PDS architecture used here allows for heteroge-
neous processor contribution of observations for a given 
experiment.  Specifically, contributing processors simulate 
different system configurations.  Unlike temporal and spa-
tial decomposition PDS methods that contain coupled dy-
namics, this approach incorporates comparatively inde-
pendent execution of the simulations.  The lack of coupled 
dynamics by this approach avoids causal synchronization 
issues.  Beyond mere mass replication of a particular simu-
lation, this method naturally acquires computational capac-
ity for configuration comparison.  Computational load 
sharing in this manner is related to previous efforts by 
Karatza and Hilzer (2002). 
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This PDS architecture can be implemented on a Net-
work of Workstations (NOW).  Simulation jobs need to be 
assigned by a central server, or controller.  Jobs can be dif-
ferent system configurations or the replication of the same 
configuration.  The controller coordinates NOW usage by 
using ranking and selection methods to determine which 
configurations, and how many observations are required 
from each, to distribute out to participating workstations. 

Defining a job as a requirement for a specific number of 
simulated observations and a machine as a workstation high-
lights the scheduling problem inherent to this distributed 
simulation architecture.  Typical scheduling problems are 
NP-hard (Hopp and Spearman 2000).  Assuming simulated 
configurations are similar, acquisition of first-stage observa-
tions requires approximately the same time when using ho-
mogeneous processors on the contributing workstations.  
However, heterogeneous workstation use and latter-stage 
observation requirements obtained from ranking and selec-
tion methods complicate the estimation of job duration.   

With this distributed simulation architecture, job re-
quirements can be dynamically resized using RS methods.  
The differing observational requirements, or job size, dra-
matically increase the difficulty of efficient job queuing.  
However, the decreased computational expense achieved 
through the deletion of jobs, i.e., simulated configurations 
that are no longer competitive, offers increased computa-
tional efficiency. 

This distributed simulation architecture allows for job 
allocation in several manners.  If the experimenter lacks 
knowledge of simulator job duration and believes combining 
simulated configuration output is inappropriate, then job al-
location should be sequential.  For example, if there are six 
configurations and three workstations then workstation one 
receives job A, workstation two job B, etc.  If combining 
simulated configuration output is considered appropriate 
then all configurations can be distributed to each work-
station.  Note that combining simulation output relies on as-
sumptions of sufficient and accurate variance estimation 
along with the integrity of combining such output.   

The specific client-server architecture is shown in Fig-
ure 2.  The server acts as the controller.  Competing configu-
rations such as systems A, B, and C are run on participating 
workstations providing observations using a simulation ex-
ecutable program that allows for external control in terms of 
run, pause, and terminate commands.  Additionally, the 
simulation executable program is required to make embed-
ded statistical calculations. 

Participating workstations function as individual cli-
ents.  Clients act as an interface between the server and the 
simulation executable program.  Each client manages one 
or more simulation executable program and monitors the 
associated simulation status.  It is assumed that more than 
one instantiation of the simulation executable program may 
execute on a participating workstation.  Additionally, the 
client prepares simulation output for the server.  For this 
implementation, if a client is tasked with more than one job 
Server(Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Maintain Job Queue
•Consolidate Data

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE
•EXIT

Client
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Configuration A
•SimController  Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Control Computation

Server(Controller)
•Issue Commands
•Prepare scripts
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•Maintain Job Queue
•Consolidate Data
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•RUN
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•TERMINATE
•EXIT

STATUS
•RUN
•PAUSE
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•TERMINATE
•EXIT

Client
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Configuration A
•SimController  Object
•Data Analyzer Object

Configuration A
•SimController  Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Control Computation  
Figure 2: PDS Architecture 

 
then it must be differentiable.  Also, job execution is se-
quential when more than one is assigned 

The server interacts with the clients as it compares dif-
ferent configurations’ metrics in a statistical sense at appro-
priate intervals.  Beyond monitoring status, the server also 
consolidates simulation output required for ranking and se-
lection methods.  Because these comparative intervals can 
be much greater than time steps within the simulations and 
because the comparisons are only used to start and end simu-
lation runs, the distributed simulations are much more 
“loosely” coupled than in most PDS implementations.  
Therefore, strict time synchronization is not required.  

The server uses RS methods to calculate the number of 
required observations and also to discriminate between 
competing system configurations.  Here, if one particular 
configuration is deemed unworthy of further analysis, due 
to poor performance, then it is eliminated from further 
computational analysis.  The server also maintains the 
status of participating clients, and manages job allocation. 

Communication between the client and the existing 
simulation is accomplished through the use of text scripts.  
The server and clients communicate by the use of operat-
ing system managed TCP/IP Ethernet.  This generalized 
approach is extensible.  Additionally, it is easily reconfig-
ured for varying experimental designs.  

This distributed computing method can provide near lin-
ear computational performance increases for a small number 
of contributing workstations as shown by Benson (2004).  

5 AIR TRAFFIC SIMULATION 

Air Traffic Control (ATC) systems ensure the safe travel of 
an aircraft from one airport to another and Air Traffic Man-
agement (ATM) systems schedule and sequence aircraft to 
increase throughput and reduce delay.  This section provides 
a general description of ATC and ATM simulations.   

ATM simulation can determine the impact of flight re-
strictions on delay, throughput, and traffic congestion.  
Wieland (1998) describes the Detailed Policy Assessment 
Tool (DPAT) as a large-scale simulation capable of calcu-
lating traffic conditions for entire airspace regions, for ex-
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ample the continental United States.  DPAT models the 
National Airspace System (NAS) as a sequence of capaci-
tated resources in a parallel and discrete-event manner.  
Much of the data used within DPAT is obtained from ex-
ternal models.  DPAT has successfully simulated NAS op-
erations for the entire continental United States in faster 
than real time for specific models.  

The Total Airspace and Airport Model (TAAM) simu-
lation is a high-fidelity simulation modeling NAS compo-
nents such as gates, terminals, taxiways, and airspace.  
Holden and Wieland (2003) incorporated simulation opti-
mization methods with TAAM to optimize runway sched-
uling.  For this particular analysis, the scheduling impact of 
adding a new runway was simulated.  Potentially, this 
method could assist controllers with the allocation of air-
craft to runways.  

ATM simulation can also provide predictive insight on 
the impact of new equipment on airport throughput.  For 
example, Schwartz et al. (1997) describe the use of simula-
tion to evaluate the introduction of new Flight Manage-
ment System (FMS) equipment in aircraft cockpits along 
with new routing procedures.  They assumed that more so-
phisticated (that is, higher cost) FMS equipment corre-
sponded to decreased controller-pilot verbal communica-
tion.  Then, they simulated various combinations of traffic 
throughput and percentage of FMS equipped aircraft.  Note 
that the capability of installed FMS equipment also varied 
in terms of acquisition cost.  This method of sensitivity 
analysis provided insight that capacity could be increased 
by equipment fielding; and it also offered a cost-benefit 
element for determining the required sophistication in new 
FMS equipment. 

Simulation of aircraft routing procedures has also been 
pursued as a method to increase capacity.  Tofukuji (1993) 
provides an example in which various routing configura-
tions were simulated to assess throughput.  Results from 
this experiment included a relationship between throughput 
and required controller interventions.  Additionally, this 
experiment compared existing route configurations along 
with proposed modifications. 

The competing tradeoff between increased capacity 
and improved safety has also been investigated through the 
use of simulation.  Zeghal and Hoffman (2000) explored 
model performance of ATC operations where the require-
ment of maintaining separation was delegated to individual 
aircraft.  Here the sequencing of self-separating aircraft 
was simulated to predict future capacity and controller 
workload.  Safety, in this case violation of a minimum 
separation threshold, was indirectly assessed using rules 
for sequencing aircraft that ensured safe separation. 

Combining discrete-event and continuous-time models 
enables cost-effective and detailed analysis of complex 
systems such as ATC and ATM.  Agent-based modeling is 
one method for describing the heterogeneous entities com-
prising these hybrid models.  In contrast to many ATC and 
ATM simulations that often look exclusively at factors 
such as capacity or safety, hybrid models allow for analysis 
of both discrete and continuous-valued variables.  Agent-
based modeling provides an inherently modular paradigm 
for high-fidelity simulation.  

Modeled ATC and ATM systems have been simulated 
in an effort to obtain predictive measures of performance 
by numerous agencies with varying fidelity.  Common to 
all efforts is the need for metric assessment and computa-
tional efficiency.  Application of adaptive control tech-
niques within a distributed simulation architecture not only 
reduces the computational requirement but speeds experi-
mental execution.  Versatile, embedded data encapsulation 
methods enable these control techniques. 

6 TEST CASE: ANALYSIS OF  
ARRIVALS TO ATLANTA 

The Reconfigurable Flight Simulator (RFS) is a large-scale 
agent-based simulation.  RFS is used as a test case for sev-
eral reasons.  First, it is hybrid in nature and models a com-
plex system that cannot be simplified for an analytic solution 
without loss of fidelity.  Second, it is a significant develop-
ment effort in terms of personnel-hours as well as high-level 
software engineering.  Minor modifications within the RFS 
software architecture enabled the application of adaptive 
control techniques.  Also, as the name implies, RFS is easily 
initialized for alternative configurations of the NAS by the 
use of script files.  Lastly, RFS supports analysis of both dis-
crete and continuous state variables. 

Pritchett and Ippolito (2000) discuss the Object-
Oriented (OO) structure and capabilities of the RFS.  Also, 
Lee, Pritchett, and Goldsman (2001) detail the RFS timing 
mechanisms and their application to a hybrid, agent-based 
simulation of air traffic.  The OO structure of the RFS is 
extensible and modular.  Instantiation of the base classes 
produces objects that compose the simulation; these ob-
jects can be configured by a script file during initialization.  
In this context, an object is also considered an agent if it 
can autonomously interact with other agents while pursu-
ing a particular goal or set of goals.  Note that each agent is 
also self-describing in terms of identity, performance pa-
rameters, and current state.  Here, the combined agent be-
havior models complex system performance.  Other objects 
in the simulation may not have two-way interactions with 
the agents, but instead serve other purposes such as graphic 
displays, date loggers, and analyzers. 

An air traffic scenario with varied configurations pro-
vides an interesting large-scale simulation as a test case for 
the application of adaptive control and distributed simula-
tion techniques.  Specifically, different arrival routing den-
sity configurations for the Atlanta Hartsfield-Jackson In-
ternational Airport (ATL) Macey-Two Standard Terminal 
Arrival Route (STAR) are compared.  Figure 3 specifies 
the waypoints to be followed in the Macey-Two STAR.   
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Figure 3: Atlanta Hartsfield-Jackson International Airport 
Macey-Two STAR 

 
Of interest, the intersection at MACEY involves the 

incorporation or merging of traffic from the navigation aids 
Volunteer (VXV) and Spartanburg (SPA) and the “fix” 
AVERY.  Arriving aircraft are assigned to one of these 
three entry points by an air traffic manager much earlier in 
the flight depending upon their location and expected air-
craft density.  Once on the route, an air traffic controller 
maintains spacing between the aircraft. 

RFS waypoint following aircraft (WPT) agents model 
arriving aircraft for this scenario.  Each WPT agent uses 
numerical integration routines to update continuously-
varying state variables including speed, heading, latitude, 
longitude, and altitude.  The trajectory of WPT agents is 
defined by a list of waypoints initialized at instantiation.  
In this test case, WPT agents adjust their internal dynamics 
to cross each waypoint at a specified speed. 

WPT agents are instantiated by the RFS Random 
Plane Generator (RPG) agent with initial performance pa-
rameters.  The RPG agent creates WPT agents as discrete 
events based on a random stationary Poisson process.  The 
inter-arrival time for this Poisson process is set at RFS ini-
tialization.  While actual arrivals to ATL are more closely 
modeled by a non-homogeneous Poisson process, this sim-
plification still allows for relevant system analysis.   

The RFS ATC agent provides a basic model of the 
air traffic controller.  The ATC agent monitors waypoint 
following aircraft agents to ensure safe separation.  The 
ATC agent maintains a list of WPT agents within a de-
fined sector and provides calculated along route speed 
commands to the WPT agents.  The ATC agent also de-
termines WPT agent sequencing in merging arrival 
streams.  Additionally, the ATC agent can model missed 
communication, communication delay, and misinter-
preted command behavior (Lee 2002).  

Currently, approximately 615 aircraft arrive daily at 
ATL.  The majority of these aircraft arrive between 6 am 
and 12 pm.  This equates to an approximate 100 second in-
ter-arrival time between aircraft although this can be much 
higher during banks of arriving aircraft.  Varying the allo-
cation of aircraft on the three merging arrival streams of 
the Macey-Two STAR approach defines comparable con-
figurations for this test case. 

Table 1 presents the three route density configurations 
under analysis.  Configuration C1 is the base case with 
equal 300 second expected inter-arrival times on each of 
the three arrival streams for a system-wide expected inter-
arrival time of 100 seconds.  Configuration C2 involves a 
higher arrival density, i.e., a lower inter-arrival time, on the 
northern stream, resulting in a system-wide expected inter-
arrival time of approximately 83 seconds.  Lastly, configu-
ration C3 involves higher arrival densities on the two 
southern streams with the same system-wide inter-arrival 
time as configuration C2. 
 

Table 1: Test Case Configurations 
Expected Inter-Arrival Time (sec) 
Configuration Description 

C1 
VXV – 300 

AVERY – 300 
SPA – 300 

C2 
VXV – 150 

AVERY – 375 
SPA – 375 

C3 
VXV – 500 

AVERY – 200 
SPA – 200 

 
Varying route densities in this manner addresses ques-

tions about efficient and safe allocation of aircraft to arri-
val streams.  One potential safety metric is the average 
minimum separation distance between aircraft.  A larger 
value for this metric is considered safer.  Without modeling 
all the factors contributing to a near-miss or aircraft colli-
sion (NMAC) event, low average minimum aircraft separa-
tion provides good initial insight into potentially problem-
atic system configurations.  It can be inferred that a smaller 
average minimum separation implies a reduction in allow-
able reaction time from both pilots and controllers.  The 
indifference-zone parameter, *δ , is set to 1500 feet for this 
metric.  This equates approximately to a six-second reac-
tion time differential for pilots and controllers. 

Several diagnostic tests are required before applying 
ranking and selection methods to these simulated configu-
rations.  First, the simulation, in this test case the Recon-
figurable Flight Simulator, must be validated as adequately 
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mimicking the real-world system.  In this case, validation 
was performed subjectively; extensive validations are often 
conducted for such simulations, but are beyond the scope 
of this study.   

The Reconfigurable Flight Simulator was set to mimic 
aircraft arrivals into ATL.  Initial random number seeds 
were varied in an incremental manner controlled by the 
server module.  Diagnostic tests allowed for the estimation 
of an appropriate simulation initialization period to avoid 
bias.  A 30 simulation-minute warm-up period was deemed 
sufficient as aircraft had been generated on all arrival 
streams along with at least one arrival into ATL. 

Next, a sampling rate must be found that provides ob-
servations with acceptable serial correlation.  The perform-
ance of ranking and selection methods, such as BGP4, de-
termines the level of acceptable correlation.  Benson 
(2004) showed BGP4 achieved the probability requirement 
with highly correlated unbatched observations, i.e., a corre-
lation coefficient value of 0.95, when the means of selected 
performance metrics from competing simulated configura-
tions are assumed to be Equally Spaced (ES).   

For the k competing system configurations in this test 
case, it is assumed the ordered means of minimum average 
separation, kµµµ ,,, 21 K , are equally spaced by a mini-
mum of the indifference-zone factor, *δ .  Specifically, the 
minimal spacing of ordered configuration means is  

*
1

*
1 )1(,, δµδµ −== − kkK  and *δµ kk = .  This approach 

is conservative because it assumes simulated configura-
tions are differentiated by at least some significant factor.  

Arrival data, such as average minimum separation in 
this test case, is highly correlated due to its dependent na-
ture.  Varying the observation sampling rate within RFS 
from 30 to 120 simulation-seconds for raw or unbatched 
observations resulted in correlation coefficients decreasing 
from 0.95 to 0.80 respectively.  Here, a larger sampling 
rate results in slower observation acquisition.  Note the in-
creased computational requirement for obtaining decreased 
unbatched observation correlation.  Given the ES assump-
tion, a 30 second sampling rate is appropriate for this test 
case given the performance of BGP4. 

The batch size must be sufficiently large to ensure 
batched observations fit any normal distribution require-
ments of the ranking and selection method.  Assuming a 30 
second sampling rate is appropriate, the next simulation 
diagnostic involves determining the batch size for the 
Batch Means (BM) method.  A sufficiently large batch size 
results in normally distributed batched observations that 
are approximately uncorrelated.  The key tradeoff in select-
ing a batch size is the computational expense of acquiring 
batched observations versus the relative independence and 
normality of the batched observations.   

A sampling rate of 30 seconds with a batch size of 100 
obtains one batched mean observation for each 3000 simu-
lation-seconds.  With a dual 2.2 GHz Intel processor work-
station, this equates to approximately 180 seconds of com-
puter time.  Normality tests indicated there is no evidence 
the batched observations are non-normal.  For this reason, 
a batch size of 100 was selected for test case analysis. 

Given unlimited computational capacity, the designer 
could execute independent simulation replications until 
able to make statistically valid conclusions.  However, the 
goal of adaptive control techniques, such as BGP4, is to 
reduce the computational requirements.  A single experi-
ment using the BGP4 RS method provides statistical selec-
tion of the “best” or “worst” configuration.  Multiple ex-
periments can subsequently strengthen the statistical 
argument if desired.  

Table 2 presents the results of the application of BGP4 
to identify the “worst”, i.e., the lowest average minimum 
separation, arrival route density allocation.  Twenty-one 
experimental replications provided estimators of average 
minimum separation, standard error, and the average re-

quired number of unbatched observations, T̂ .  Typical ex-
periment duration was four hours using one dual 2.2 GHz 
Intel processor workstation as the controller with three 
similar workstations contributing computational capacity. 

 
Table 2: Worst Case Arrival Routing Comparison 

Average Minimum Separation 
Configuration  

C1 C2 C3 
Mean (feet) 57569 52174 49706 

S.E. 232 148 155 

T̂  2700 5600 5600 
 
Configuration C3, i.e., the highest route densities on 

the two southern paths in the Macey-Two STAR, is the 
“worst” performing simulated configuration.  For the 
twenty-one experiments, the probability of selecting con-
figuration C3 as the “worst” equaled 1.00.  Also, the stan-
dard error indicates the competing configurations are 
statistically differentiable in post hoc analysis.  Observe 
the early elimination of configuration C1 from further 
comparative analysis shown by the low average number of 
unbatched observations.  Here, the computational savings 
from BGP4 is exhibited.  Configurations C2 and C3, the 
last two competing configurations under analysis, termi-
nate at the same number of unbatched observations when 
one of them is selected as the “worst”. 

7 CONCLUSIONS AND FUTURE EFFORTS 

This effort implements a combination of several techniques 
to enable analysis of complex, large-scale systems.  Hybrid 
simulation, including agent-based simulation, provides the 
representation of system behavior.  Embedded statistical 
analysis along with ranking and selection methods facili-
tate adaptive simulation control.  PDS implementation en-
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ables relatively “fast” execution of otherwise computation-
ally expensive simulations. 
 Relatively small modifications of current simulation 
architectures can allow for extended analysis without ex-
tensive recoding.  One modification involves embedding 
statistical analysis along with a method for measuring rele-
vant performance metrics within the simulation.  Modify-
ing the simulation architecture to allow for external control 
of the simulation executable in terms of run, pause, and ter-
minate enables the application of PDS techniques. 
 RS methods ease the computational expense of com-
parative analysis by determining the number of required 
observations necessary for statistical analysis.  A multi-
stage RS method, such as BGP4, saves computational re-
sources by eliminating simulated configurations from fur-
ther contention for selection that are “poor” performers.  
For the test case presented here, the elimination of configu-
ration C1 saved the computational resources necessary to 
obtain an estimated 2900 raw observations.      
 The use of existing computer systems (e.g., NOW) can 
provide computational resources to ease comparative 
analysis.  Note the overhead of embedding statistical 
analysis is inversely proportional to the complexity of the 
simulation.  Additional workstations provided near linear 
performance increases for a small NOW in this effort.  
 On-going and future efforts involve several pursuits.  
Exploration on the potential application of this method to 
other existing simulation domains is of particular interest.  
RS method incorporation of other test statistics may offer 
increased performance in certain conditions.  Increasing 
the number of workstations contributing computational ca-
pacity to an experiment could potentially speed execution.  
Additionally, the incorporation of “job shop” algorithms 
may provide increased job allocation efficiency.  
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