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ABSTRACT 

The consistent growth of air traffic demand is causing the 
operational volumes at hub airports to approach their 
maximum capacities. With this growth, delays are increas-
ing, and safety is becoming a more crucial problem. The 
terminal approaching and landing phases are especially 
important since the airspace is more crowded and opera-
tional procedures are more complicated compared with the 
en route phase.  We have developed an agent-based sto-
chastic simulation model which is useful to analyze the re-
lationship among airport arrival capacity, delay, and safety.  
We first present a simplified queue model to demonstrate 
key ideas.  Then, we give a detailed agent-based model that 
is calibrated to Hartsfield Atlanta International Airport. We 
use the model to evaluate several operational scenarios and 
examine the trade-offs between system capacity and safety. 

1 INTRODUCTION 

With the consistent growth of air traffic demand, the opera-
tional volumes in hub airports are approaching their maxi-
mum capacities. Evidences of the saturation include the 
decline of airline on-time (DoT 2004), increased air traffic 
controllers’ workload, and more separation violations 
(Haynie 2002). Compared with the en route phase, the ter-
minal area has a very complex operating environment.  
This is due to shorter separation between aircraft, more 
complicated airplane routes with ascending, descending, 
turning, and accelerating aircraft, and multiple hand-off 
procedures between controllers.  Thus, terminal delays 
contribute substantially to overall capacity problems in the 
National Airspace System.  

Airport capacity and delay have been analyzed exten-
sively. For example, the NASA ASAC (Aviation System 
Analysis Capability) Airport Capacity and Delay Models 
support the analysis and evaluation of new technologies 
that are designed to address airport capacity constraints due 

 

to runway occupancy times and minimum airborne separa-
tions (Lee, Nelson, and Shapiro 1998). The ASAC capacity 
model uses a family of departure-arrival capacity curves 
that apply under various meteorological conditions or with 
different levels of technology. If more detailed operations 
and situations need to be considered, another model, 
TAAM (Total Airspace and Airport Modeler), provides fa-
cilities to customize the modeled airports and airspace. 
TAAM can be configured to assess the performance of an 
airport under various operating scenarios. To meet the spe-
cific requirement of analysis on airport terminal TRACON 
airspace, MITRE CAASD has been developing a model to 
evaluate the capacity and delay benefits from innovative 
operating procedures, airspace redesign, or navigational 
improvements (Boesel 2003).  

However, when safety becomes an issue to consider, 
very few models analyze safety metrics in combination 
with capacity and delay. With regard to safety, we are con-
cerned with events such as wake-vortex separation viola-
tions, simultaneous runway occupancies (SRO’s), and col-
lisions on the runway. Furthermore, the aviation system is 
a complicated stochastic system.  

The purpose of this paper is to understand the trade-off 
between safety and capacity.  That is, we seek to under-
stand what happens to safety when throughput at an airport 
is increased.  To do this, we first give a simplified queuing 
model to describe basic system characteristics and explain 
qualitatively observed inter-arrival times at the runway 
threshold.  Then, we give a detailed agent-based model that 
is calibrated to Hartsfield Atlanta International Airport. We 
use the model to evaluate several operational scenarios and 
examine the trade-offs between system capacity and safety.  
We compare these trade-offs under different agent models 
for the local controller. 

2 DATA DESCRIPTION 

Flight Explorer is a tool that allows the user to display in-
formation about commercial, passenger, and private flights 
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on IFR flight plans. The Explorer screen refreshes every 10 
seconds with any position changes that have been received 
in the previous 10-second window. We collected data us-
ing Flight Explorer in three randomly chosen workdays in 
the year 2003: 5/7/2003, 5/24/2003, and 6/28/2003. The 
recording period in each day was 7:00 through 24:00 (local 
time).  The data accuracy is subject to the refresh fre-
quency of the Flight Explorer mentioned above and an ob-
servation error around 5± seconds. 

Figure 1 shows a snapshot of ATL terminal airspace. 
We identify the time when an aircraft passes the TRACON 
boundary as TRACON_time.  The time between two suc-
cessive aircraft’s TRACON_time is TRACON_IAT.  We 
identify the time when an aircraft finishes the downwind leg 
and turns to the base leg as BASE_time.  The time differ-
ence between two successive aircraft’s BASE_time is 
BASE_IAT. The time between an aircraft’s TRACON_time 
and BASE_time is  identified as FLIGHT_length. 
 

 
Figure 1: A Snapshot of ATL Terminal Airspace 
(Courtesy of Flight Explorer) 
 
We recorded TRACON_time and BASE_time for each 

aircraft, and then calculated TRACON_IAT, BASE_IAT 
and FLIGHT_length.  Tables 1 and 2 show the results of 
this collection.  We fitted TRACON_IAT of each stream 
with an exponential distribution, and FLIGHT_length with 
a Gaussian distribution. The average arrival rate for the 
two runways combined is about 58 approaches per hour. 

 
Table 1: TRACON_IAT 

Stream Mean
(sec.) 

std.dev # of data 
points 

Northeast 199 195 908 
Northwest 232 269 818 
Southwest 354 405 541 
Southeast 252 256 721 
Table 2: FLIGHT_length 
Stream Mean

(sec.) 
std.dev # of data 

points 
Northeast 563 79 911 
Northwest 780 133 821 
Southwest 673 95 544 
Southeast 548 94 724 

 
Figure 2 shows the distribution of landing time intervals 

on a runway at ATL.  This data is from a separate study 
(Haynie 2002) in which 364 landings were observed on 
location at the airport.  One simultaneous runway occupancy 
(SRO) was observed from this set. A rough estimate for the 
probability of a SRO is 1/364 = 0.0027, which is consistent 
with a 90% confidence interval 0007.00035.0 ±  calcu-
lated from a landing simulation model (Xie, Shortle, and 
Donohue 2003).  This study also observed runway occu-
pancy times which were fitted using a Gaussian distribution 
N(48, 82) in seconds. 

 

 
Figure 2: Histogram of Landing Time Interval 
from Haynie’s Observation 

3 A SIMPLIFIED MODEL 

In this section, we give a simplified model that predicts the 
distribution of inter-arrival times at the runway (e.g., Fig-
ure 2) based on inter-arrival times at the TRACON (e.g., 
Table 1).  Figure 3 summarizes the model.  We assume the 
two arrival runways of ATL are independent and equiva-
lent, and that each aircraft chooses either runway with 
equal probability, so we only need to consider one of the 
runways.  The arrival stream has an exponential inter-
arrival time, and the service time includes two parts. One is 
the separation S between aircraft at the runway threshold, 
which is modeled as an M/G/1 queue, where the service 
time represents the separation between two aircraft applied 
by the air traffic controller (ATCo).  The other is the run-
way occupancy time, modeled as a random delay. Each 
service time is modeled as a Gaussian distribution.  
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Figure 3: A Simplified Queuing Model 

 
IAT1, IAT2 and IAT3 are the inter-arrival times for each 

phase in the model. IAT1 is the time interval between two 
aircraft as they are ready to land. It is like the 
TRACON_IAT and the model ignores the flight length. 
IAT1 is assumed to be an exponential distribution with mean 
124, where 124 = 2/(1/199 + 1/232 + 1/354 + 1/255), similar 
to the observed arrival process at the TRACON (Table 1).  
(In this model, we ignore the movement of aircraft from the 
TRACON boundary to the final approach and runway 
threshold.  Instead we assume that aircraft arrive directly at a 
“queue” where they immediately land once they leave the 
queue.) We model the separation time S as a Gaussian dis-
tribution N(80, 102) in seconds, where 80 is assumed from 
an average separation distance of 4 nm and an average speed 
180 knots. The 10-second standard deviation is chosen to be 
close to the measured arrival time error 9.85 seconds at final 
approach fix by NASA Langley (Oseguera-Lohr and Wil-
liams 2003). IAT2 is the time interval of two aircraft at the 
runway threshold. The runway occupancy time D is assumed 
to be N(48, 82) (Haynie 2002). IAT3 is the time interval be-
tween aircraft exiting the runway.  

Figure 4 shows the histogram of IAT2 based on simula-
tion of the model. It is similar qualitatively to Figure 2.  
Also, since the model allows for the possibility that two 
aircraft are on the runway at the same time, we can esti-
mate the probability of a simultaneous runway occupancy.  
The model gives a 90% confidence interval for the SRO 
probability of 0002.00033.0 ± . 

 

 
Figure 4: Histogram of Landing Time Inter-
val from the Simplified Model 

 
Although the simplified model leaves many important 

factors out of consideration, the similarity of the landing 
time interval histogram with Haynie’s observation and the 
consistency of the SRO probability indicate that the model 
captures some fundamental characteristics of the terminal 
approaching and landing phase.  

However, the model is insufficient to investigate the 
system sensitivity to arrival traffic volume or controllers’ 
operating procedures. For example, the simplified model 
does not account for the variance in applied separation 
based on arriving aircraft types (heavy, B757, large, small), 
nor kinematic drift of velocities and positions, nor  human 
operating errors. In order to provide a more accurate esti-
mation of system performance, we propose an agent-based 
simulation model.   

4 AN AGENT-BASED MODEL 

A generally acceptable definition of a software agent is a 
computer program that performs tasks on behalf of another 
entity without direct supervision or control (Sichman 
1998).  Here, we assume an agent has a goal, is able to 
make decisions and perform actions to achieve its goal un-
der various environments, and has the ability to communi-
cate with other agents. In other words, an agent is autono-
mous, pro-active, adaptive, and social. In this paper, we 
model the local controller as an agent. Its goal is to vector 
as many aircraft as possible to land without compromising 
safety. It has the ability to judge and adjust the separation 
between aircraft, and may reduce separation under high 
traffic pressure. It is also able to communicate with other 
controllers and pilots.  

4.1 Model Description 

Figure 5 shows the available trajectories for arriving air-
craft. ATL has four arrival traffic streams from the north-
east, northwest, southwest and southeast. Historical data 
indicate that the northeast stream has a larger volume than 
the other three streams. In our model, the input inter-arrival 
times have exponential distributions with means given in 
Table 1. Once entering the TRACON area, the aircraft 
 

 
Figure 5: Arrival Aircraft Trajectory 
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follow a standard approach pattern to land on one of the 
two runways with the instruction of controllers. For more 
detailed information on standard approach pattern, please 
see (Nolan 1999). 

Figure 6 shows the basic logic flow of the modeled 
approach process from the corner-post fix to the start of the 
final approach. 

 

 
Figure 6: Logic Flow of Aircraft Approach Process 

 
The controllers choose a desired or target separation 

between two successive aircraft beginning their final ap-
proaches.  In the model, this separation is drawn from a 
Gaussian distribution )8,60(~ 2τ  in seconds. 

The actual time when an aircraft begins its final ap-
proach is calculated based on the following algorithm. We 
suppose that an aircraft is assigned to runway A. Let M be  
 

 

the flight number of this aircraft, and let [A, j] be the flight 
number of the aircraft which is the jth to land on runway 
A. Let Test(k) be the estimated arrival time at the final ap-
proach fix for flight k. The actual approach time Tact(k) is 
given by the following algorithm which ensures that the 
target separation τ is kept between successive aircraft at the 
final approach fix.  In addition, the algorithm sequences 
aircraft on a first-come-first-served basis, based on esti-
mated time to arrive at the final approach fix. 
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The delay then is the difference between the actual fi-

nal approach time and the estimated time. 
The model establishes landing separation at the run-

way threshold as follows:  All aircraft are categorized into 
four classes of aircraft, which are heavy, large, B757 and 
small. The modeled speed of each type of aircraft at the fi-
nal approach fix is listed in Table 3. Each speed variable 
follows a Gaussian distribution. The variance models dif-
ferent kinetic characteristics of different aircraft types in 
the same category and random deviations from desired 
speed.  Once an aircraft begins its final approach, the con-
troller advises the pilot to maintain a certain separation 
from the previous aircraft. The separation should be kept 
along the entire approach. 

To avoid the situation where a faster aircraft catches 
up with a slower aircraft, an extra separation is required for 
the following faster aircraft at the beginning of its final ap-
proach. FAA has an official separation requirement for 
each aircraft mix, and the separations are chosen to avoid a 
wake vortex encounter. The target separation at the thresh-
old is drawn from a Gaussian distribution ~ N(µ, σ2), 
where the mean µ is given in Table 4 based on the leader 
and trailer aircraft types, and the standard deviation σ is 
assumed to be 10 seconds.  The actual separation at the 
threshold depends on several factors including aircraft 
speed and time of arrival at the final approach fix.  

The process of air traffic controller’s sequencing and 
spacing aircraft is portrayed in Figure 6. 

Figure 7 shows a histogram of landing time intervals 
for a runway, as output from the model. The histogram has
Table 3: Modeled Aircraft Speed Matrix (knots) 
Heavy Large B757 Small Speed(knots)\Category 

Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev 
Final Approach Gate 175 8 155.5 8 169 6 152 4 
Runway Threshold 145 6 140 6 140 4 130 4 
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Table 4: Separation Standard Matrix (Seconds) 
 Trailer 

Leader Heavy B757 Large Small 

Heavy 99 
(4nm) 

129 
(5nm ) 

129 
(5nm) 

166 
(6nm) 

B757 99 
(4nm) 

103 
(4nm) 

103 
(4nm) 

138 
(5nm) 

Large 62 
(2.5nm) 

64 
(2.5nm) 

64 
(2.5nm) 

111 
(4nm) 

Small 62 
(2.5nm) 

64 
(2.5nm) 

64 
(2.5nm) 

69 
(2.5nm) 

 
multiple modes, which indicate the distinct separation dif-
ferences between different aircraft mixes. For instance, the 
separation of a small aircraft after a heavy one, 166 sec-
onds, is much larger than the separation of a heavy after a 
small, 62 seconds. The tail results from gaps in the arrival 
process. 
 

 
Figure 7: Histogram of Landing Time Interval 
when Using Separation Standard Matrix 

 
However, the simulation result is not consistent with 

field observation, which was conducted by Haynie at ATL 
in 2002. The histogram of the landing time interval is plotted 
in Figure 2.  In Haynie’s histogram, there is only one distinct 
mode around 80 seconds. Specifically, the mean of separa-
tion for near separated aircraft mixes is around 12 seconds 
more than the separation standard, while the mean for far 
separated aircraft mixes is around 17 less than the separation 
standard (Xie, Shortle, and Donohue 2003). Therefore, in 
real VFR operation, controllers may allow pilots to blur the 
separation difference between different aircraft mixes, and it 
will reduce workload especially at busy traffic situation. Ac-
knowledging such a phenomenon, we adjusted the working 
logic model of the local controller agent, and its separation 
allocation mechanism is listed in Table 5. 

From the histogram of the simulation result, Figure 8, 
one can see that the model has been calibrated to be very 
similar to the real situation. However, it must be kept on 
mind that the system is hybrid and stochastic, and both the 
observation and a simulation are only a realization of the 
stochastic system. 
Table 5: Hypothetical Reduced Separation (Seconds) 
 Trailer 

Leader Heavy B757 Large Small 

Heavy 82  
(3.3nm) 

85 
(3.3nm) 

85 
(3.3nm) 

91 
(3.3nm) 

B757 82 
(3.3nm) 

85 
(3.3nm) 

85 
(3.3nm) 

91 
(3.3nm) 

Large 67  
(2.7nm) 

69 
(2.7nm) 

69 
(3.3nm) 

91 
(3.3nm) 

Small 67  
(2.7nm) 

69 
(2.7nm) 

69 
(2.7nm) 

74 
(2.7nm) 

 

 
Figure 8: Histogram of Landing Time Intervals 
from Simulation 

 
Since current model configuration has produced rea-

sonably consistent result with the real observation, we will 
take the current model as the baseline situation. We are in-
terested in several system performance metrics that reflect 
the capacity and safety of the system, shown in Table 6.  

 
Table 6: System Performance Metrics 

Capacity Airborne delay, Runway landing 
rate, maximum landing rate 

Safety Simultaneous runway occupancy 
probability per landing 

 
An aircraft has to wait in holding pattern if the land-

ing glide slope is occupied and no more aircraft can enter 
the queue of final approach, thereby the induced waiting 
time is airborne delay. Runway landing rate is the number 
of aircraft landed on a runway per hour. When an aircraft 
touches down on a runway before the pre-landing aircraft 
exits the same runway, it is a case of simultaneous run-
way occupancy. 

In the baseline case, 20 trials were run, and in each 
trial, 20,000 aircraft were landed. The average landing rate 
is 27 arrivals per hour, and maximum rate is 44.  

The average airborne delay is 18 seconds. The delay is 
so small and it means that the system has enough capacity 
to accommodate the current traffic demand. 
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The probability of simultaneous runway occupancy is 
0.0031 per landing. It is worthy to mention that the esti-
mate of SRO probability here is consistent with that from 
the Haynie’s observation. 

4.2 Experimental Analysis 

To evaluate the system performance under different air 
traffic volumes, we carried out three experiments for sensi-
tivity analysis on safety and capacity with respect to the 
change of aircraft arrival rates.  

The current traffic volume is defined as the baseline, 
and the volume change is set in terms of a multiple of the 
baseline. The scenarios considered include lighter-than-
baseline situations, where the volumes are 0.1, 0.25, 0.5, 
and 0.75 times the baseline, and heavier-than-baseline 
situations, where the volumes are 1.25, 1.35, 1.45, 1.55, 
1.75, 1.85, and 2 times the baseline. We scale all four-
arrival streams uniformly. 

4.2.1 Experiment 1 

With the first experiment, air traffic controllers do not re-
spond to the traffic volume change. They perform a con-
stant maneuver strategy regardless of traffic pressure.  The 
desired separation matrix is the one used in Table 5. 

Figure 9 shows the results of this simulation. The 
runway landing rate exhibits a linear relationship between 
landing rates and traffic volume growth ratio until the 
growth ratio reaches 1.75. When traffic becomes more than 
1.75 of the current volume, the system is almost operated 
at its maximum capacity, and the landing rate rests on a 
plateau at 47 landings per hour on average. The maximum 
landing rate, which achieves 54 landings per hour, is de-
termined by the separation strategy deployed by control-
lers. Since the service rate cannot be increased any more, 
while the arrival rate is higher than the service rate, the 
system losses the stationarity. In this case, when traffic 
doubles, each runway has arrival rate of 58 per hour on av-
erage, while a runway only can land 54 aircraft per hour at 
the most. Therefore, although the average delay among the 
simulated 20,000 landings seems to be endurable, the ac - 
 

 
Figure 9: System Performance vs. Traffic Growth  
cumulated delay might be huge since the system is not 
steady anymore. The safety measure (simultaneous runway 
occupancy) changes almost linearly with the arrival rate 
with the consistent separation strategy. The correlation co-
efficient of them is 0.9876. As traffic volume grows, more 
and more aircraft have to be separated close to the mini-
mum acceptable distance, and more cases of simultaneous 
runway occupancy are likely to happen. 

The distributions of landing time intervals are different 
in light, medium, and high traffic volume situations. When 
the traffic is very light, the distribution has a long tail due to 
long periods of time when no airplanes arrive (Figure 10). 
When the traffic is heavy, the distribution displays more 
symmetry, see Figure 11, and variance mainly comes from 
system disturbance, such as airplane kinetic deviation, hu-
man performance limitation, weather noise, and so forth.  
 

 
Figure 10: Histogram of Landing Time Interval 
when Traffic is Very Light 
 

 
Figure 11: Histogram of Landing Time Interval 
when Traffic is Medium and Heavy 
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4.2.2 Experiment 2 

The second experiment allows air traffic controllers to be 
more adaptive to the traffic pressure. Figure 12 shows a hy-
pothetical continuous adaptive model, in which the VMC 
separation allowed by controllers changes as a function of 
the traffic volume.  That is, when traffic is light, controllers 
employ the separation standards given in Table 5.  When 
traffic is heavy, the controllers decrease the standards in an 
effort to accommodate the traffic. The formulas are  

 

 Far-Separated:  7.2*6.0 )5.1*(5)5.1*(5

)5.1*(5)5.1*(5
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 Near-Separated: 1.2*6.0 )5.1*(5)5.1*(5
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The near-separated mix includes aircraft pairs whose sepa-
ration standard is less than 4 nautical miles. Others are far-
separated mixes. The separation variance is converted from 
the variance in time domain using expected average speed 
(Oseguera-Lohr and Williams 2003).  
 

 
Figure 12: A Hypothetical Controller Adaptive 
Model to Traffic  

 
Figure 13 shows the output of this experiment.  The 

airborne delay is not as serious as in the previous example 
(compare Figures 9 and 13 for large traffic volumes).  
However, the safety risk (probability of an SRO) increases 
much more dramatically.  In this experiment, doubling the 
 

 
Figure 13: System Performance vs. Traffic Growth 
traffic volume results in a 6-fold increase in P(SRO), with 
only a 2-fold increase in capacity.  In experiment 1, where 
controllers maintain a consistent separation distance, SRO 
probability only doubles when the arrival rate doubles.   

Figure 14 shows a histogram of the landing separation 
times for the two experiments with a traffic volume at 1.75 
times the current level.  The histogram of the scenario with 
the adaptive separation shifts to the left of the histogram of 
that with consistent separation. The long right tails of the 
two curves dilute the differences on the left tails and make 
the global averages very close. However, it is the left tail 
of the curve that influences the runway safety significantly. 
Therefore, when we are estimating runway safety, the in-
formation about landing rate is not enough, and the distri-
bution of separation time is very important. 
 

 
Figure 14: Histograms of Landing Time Interval 
from Experiment 1, 2 

4.2.3 Experiment 3  

The third experiment is to demonstrate the advantages of a 
more synchronized schedule, where traffic is metered uni-
formly in the TRACON area.  In particular, we use a Gaus-
sian distribution with a small variance (instead of an expo-
nential distribution) to model the inter-arrival times at each 
of the four arrival streams. We keep the mean arrival times 
the same.  Although the four streams do not synchronize 
with each other, the arrival schedules will not be as unsyn-
chronized as those will so far. With the controller’s strat-
egy used in the Experiment 1, we will compare the safety, 
capacity and delay using synchronized arrival times with 
those using exponential arrival times.  Without losing gen-
erality, we only choose a high traffic volume situation, 
which doubles the current volume, to analyze the influ-
ence. The results are shown in Table 7. The means and 
standard deviations are calculated from the 20 trials of the 
simulations. 

Synchronized schedules are more efficient than the 
current random schedule because of the higher landing rate 
and less delay. Although average simultaneous runway oc-
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cupancy probability is a little higher than random sched-
ules, the standard deviation is much lower. Higher SRO 
probability comes from the fact that fewer aircraft must fly 
a further distance. 
 

Table 7: System Performance in Experiment 3 
Random 

Schedules 
Synchronized 

Schedules 
Double 
Traffic 
Volume Mean Std.Dev Mean Std.Dev 

SRO Prob. 0.0075 0.0009 0.0081 0.0001 

Landing 
Rate /hour 47 5 50 0.1 

Delay 289 125 89 1 
 
The runway efficiency is also improved, which can 

be shown in the histogram of runway landing rates. See 
Figure 15. 
 

 
Figure 15: Histogram of Landing Rate when Traf-
fic is Very Heavy 

 
A synchronized schedule can lead to a landing rate 

with smaller variance. That is the reason that 3 more air-
craft are able to land per hour on average.  

It is worthy to point out that the simultaneous runway 
occupancy probability 0.0081 is possibly very close to the 
true risk level of current operations. It is higher than the 
field-measured SRO risk 0.0031, and it warns us that the 
current operations are not as safe as what we are feeling 
right now. The reasons for the higher risk involve two 
points. The first is that current traffic volume is not large 
enough; another is that random schedule leads to a longer 
right tail of landing time interval distribution. 

5 SUMMARY 

This paper presents an agent-based simulation to model 
airport terminal approach and landing operations. The pa-
per first gives a simplified queuing model to demonstrate 
the essence of terminal approach and landing process.  To 
give a more detailed and accurate analysis of the system 
performance, we build an agent-based model. We then 
calibrate the model to the current operational situation at 
ATL airport by inputting real arrival statistics and output-
ting landing time intervals and estimates of simultaneous 
runway occupancy probability that are consistent with field 
observation data.  

After that, we conduct a sensitivity analysis to exam-
ine the performance of the terminal approaching and land-
ing system under different traffic loads. If controllers 
maintain the current separation standards that they are de-
ploying, delay increases non-linearly with the traffic load.  
This is consistent with the theoretical delay of a queue that 
is near its steady-state operating capacity.   

A reasonable reaction that controllers might take under 
high traffic pressure is to relax the separation distance be-
tween aircraft to gain more capacity. With a simplified 
adaptive model, the simulation illustrates that by relaxing 
separation distances, it is possible to eliminate the non-
linear growth in delay, but this comes at the cost of a non-
linear increase in simultaneous runway occupancies and 
substantially reduced safety. 

A potential way to increase capacity without compro-
mising safety is to synchronize the flight schedules.  Even 
the strategy that only independently synchronizes each arri-
val stream can demonstrate the advantage. Our experiments 
illustrated a substantial reduction in delay with little change 
in safety for a system with synchronized arrival streams. 

ACKNOWLEDGMENTS 

This work has been partially supported by the WakeVAS 
program at NASA Langley Research Center, under Wayne 
Bryant, and the National Institute for Aerospace, contract 
NAS1-02117. 

REFERENCES 

Boesel, J. R. 2003. An Air Traffic Simulation Model That 
Predicts And Prevents Excess Demand. In Proceedings 
of the AAIA Modeling, Simulation and Technology 
Conference, Austin, Texas. 

Department of Transportation. 2004. Available Aviation De-
lay. 2004. Available online via <www.dot.gov/PerfPlan 
2004/mobility_delay.html> [accessed August 18, 2004]. 

Haynie, C. R. 2002. An Investigation of Capacity and 
Safety in Near-Term Airspace for Guiding Information 
Technology Adoption, doctoral dissertation, George 
Mason University, Fairfax, Virginia. 

Lee, D. A., C. Nelson, and G. Shapiro. 1998. The Aviation 
System Analysis Capability Airport Capacity and De-
lay Models. Logistics Management Institute, McLean, 
Virginia, NASA/CR-1998-207659. 

Nolan, M.S. 1999. Fundamentals of Air Traffic Control, 
Pacific Grove, California. 



Xie, Shortle, and Donohue 

 
Oseguera-Lohr, R. M., and D. H. Williams. 2003. Evalua-

tion of Trajectory Errors in an Automated Terminal-
Area Environment. NASA Langley Research Center. 
2003. 

Sichman, J. S. 1998. Multi-Agent Systems and Agent-
Based Simulation. Springer. 

Xie, Y., J. Shortle, and G. Donohue. 2003. Runway Land-
ing Safety Analysis: A Case Study of Atlanta Harts-
field Airport. In Proceedings of the 22nd Digital Avi-
onics Systems Conference, Indianapolis, Indiana. 

AUTHOR BIOGRAPHIES 

YUE XIE is currently a Ph.D candidate in Department of 
Systems Engineering and Operations Research, George 
Mason University. His research interests include modeling 
and simulation of aviation system and the application on 
aviation safety analysis. He received his M.S. in 2001 and 
B.S. in 1998 both from HuaZhong University of Science 
and Technology, China. His e-mail address is <yxie@ 
gmu.edu>. 

JOHN SHORTLE is currently an assistant professor of 
systems engineering at George Mason University.  His re-
search interests include simulation and queueing applica-
tions in telecommunications and air transportation.  Previ-
ously, he worked at US WEST Advanced Technologies.  
He received a B.S. in mathematics from Harvey Mudd 
College in 1992 and a Ph.D. and M.S. in operations re-
search at UC Berkeley in 1996.  His e-mail address is 
<jshortle@gmu.edu>. 

GEORGE DONOHUE, formerly Associate Administrator 
of Research and Acquisition in the Federal Aviation Ad-
ministration, who has broad experience in managing major 
research and technology projects in both the public and 
private sector, was named the FAA visiting Professor for 
Air Transportation Technology and Policy in July, 1998. 
He assumed his current position as Professor of Systems 
Engineering and Operations Research in February of 2000. 
His e-mail address is <gdonohue@gmu.edu>. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1349
	02: 1350
	03: 1351
	04: 1352
	05: 1353
	06: 1354
	07: 1355
	08: 1356
	09: 1357


