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ABSTRACT 

The distribution of possible future losses for a portfolio of 
credit risky corporate assets, such as bonds or loans, shows 
strongly asymmetric behavior and a fat tail as the conse-
quence of the limited upside of credit (the promised cou-
pon payment) and substantial downside if the corporation 
defaults.  Because of correlation, it is not possible to fully 
diversify away this fat tail.  Detailed correlation models re-
quire Monte Carlo simulation to determine the loss distri-
bution for a credit portfolio.  This paper describes an im-
portance sampling method that provides substantial speed 
up for computing economic capital, the rare event quantile 
of the loss distribution that must be held in reserve by a 
lending institution for solvency.   The method, based solely 
on correlation information, provides accuracy in the tail 
while maintaining suitable performance for statistics re-
lated to the center of the distribution.  It is also suitable for 
long/short portfolios. 

1 INTRODUCTION 

Portfolios of bonds or loans generally show asymmetric re-
turns, with limited upside and substantial but rare downside 
risk associated with multiple corporate defaults.  Accurate 
assessment of how large potential losses on a credit portfolio 
may be plays a key role in the management of financial in-
stitutions with large credit portfolios.  For example, a large 
bank with tens or hundreds of thousands of loans will often 
be required to have sufficient capital to withstand 99.9% of 
potential losses.  Questions of to whom to lend and what 
rates to charge are often linked to the effect of the loan on 
the capital requirement and the associated return on capital. 

For very large, homogenous portfolios, it is possible to 
derive a limiting distribution for the portfolio losses (Va-
sicek 1991).  For portfolios that are smaller or are inhomo-
geneous with respect to position size, default probability, 
default correlation or recovery, it is usually necessary to 
use Monte Carlo simulation to determine the loss distribu-
tion unless substantial simplifying assumptions are made.  

 
 

For large inhomogeneous portfolios, the standard 
Monte Carlo simulation of the underlying stochastic proc-
esses may require days of computation time to provide suf-
ficiently accurate calculations of tail events and tail statis-
tics.  This can substantially limit the feasibility of stress 
testing portfolios around composition or parameters.   
Therefore, variance reduction methods that can reduce 
computation time from days to minutes or hours are of 
substantial interest. 

For this paper, we consider a simulation derived from 
the structural model framework for credit first proposed by 
Merton (1974).  Details of the model framework and the 
associated portfolio model can be found in Duffie and Sin-
gleton  (2003) and Kealhofer and Bohn (2001).  In Section 
2 we provide an overview of the portfolio model and asso-
ciated simulation. Section 3 describes an importance sam-
pling method based on manipulation the correlation struc-
ture to induce greater default correlation, thereby leading 
to sampling more extreme loss events from the large loss 
tail of the distribution.  Section 4 describes the application 
of this approach to a simple default/no default credit port-
folio and discusses the convergence results and speed up 
over the standard Monte Carlo method.  Section 5 dis-
cusses the choice of a key parameter that determines the 
performance of the importance sampling method.  Finally, 
Section 6 contains a summary and conclusions about the 
proposed method. 

2 PORTFOLIO MODEL 

The key questions in modeling credit portfolio risk are i) how 
much will each credit instrument change in value over a 
given horizon, say one year, and ii) how are these value 
changes correlated across the portfolio.  To answer these 
questions there are various modeling options available de-
pending on what fundamental stochastic variables are chosen 
and what process is selected to determine their evolution. 

For this paper, we consider the Structural Model ap-
proach first proposed in Merton (1974).  Here the fundamen-
tal stochastic variable is the underlying franchise, or asset, 
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value of a corporation.  A firm defaults when its asset value 
fall below a certain default point derived from its out-
standing liabilities.  The credit quality of the firm, and the 
value of firm’s bonds and loans, increases as the distance be-
tween the firm’s asset value and its default point increases.  
The stochastic process driving the evolution of the asset val-
ues of a pool of firms is often taking to be correlated geo-
metric Brownian motion. 

A detailed discussion of modeling credit portfolio risk 
in this framework can be found in Kealhofer and Bohn 
(2001).  The basic idea is that over a single time horizon, 
the firm asset returns ie  for a portfolio of corporate credits 
are drawn from a multi-variate Normal distribution with a 
given correlation matrix.  The distribution can be assumed 
to be normalized to mean zero and marginal variance 1.  
Those firms whose asset return falls below a certain 
threshold are considered to have defaulted during the pe-
riod in question.  Their value in default is drawn from a re-
covery distribution.  The bonds or loans of firms with asset 
returns above the default threshold are valued based on 
their credit quality implied by their sampled asset value at 
horizon.  The default threshold iα  for each name is di-
rectly related to the default probability ip  by the formula 
 
 ( )1

i ipα −= Φ , (1) 
 
where ( )Φ i  is the standard cumulative Normal distribu-
tion function.  To be specific, we will consider here a fixed 
horizon of one year so that all default probabilities refer to 
the probability of a firm defaulting over the next year.  The 
assumption of a Normal copula can be relaxed, although in 
practice elliptical correlation structures are almost always 
used. 

To further simplify the model, we consider here a “De-
fault/No Default” implementation.  This means that all 
credit exposures are priced at par, i.e. $1 per unit notional, 
unless the firm defaults.  In other words, a $10 million no-
tional loan to a non-defaulted company with always have 
market value $10 million.  In reality, loans are often valued 
at a discount to the par value.  This leads to an additional 
source of uncertainty in the portfolio valuation that we will 
not consider here.   

Further simplifying assumptions for this article will be 
that the portfolios are homogeneous in exposure size.  For 
example, for a portfolio of N loans, it is assumed that each 
loan accounts for 1/ N of the total exposure.  Also, it will be 
assumed that the Loss Given Default ( LGD ) values of a de-
faulted loans (equal to 1 – recovery) are independent and 
identically distribution according to a Beta distribution.  Fi-
nally it is assumed that the random LGD values are inde-
pendent of the random asset returns. 

Under these assumptions, relative to the total portfolio 
exposure size, the value of the portfolio is 1 under scenar-
ios with no defaults and between 0 and 1 for scenarios with 
defaults.  The loss over the horizon on the portfolio can 
therefore be expressed using the default thresholds of 
Equation (1) as   

 

 ( )
1

1 N

i i i
i

L LGD e
N

α
=

= Χ −∑ , (2) 

 
where X  is the indicator function defined as 
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Thus the portfolio loss for a given default scenario is just 
the losses on the defaulted names normalized by the total 
portfolio exposure. 

It follows for the independence of the iid Loss Given 
Default samples and the asset returns that the mean of the 
Loss distribution, known as the Expected Loss EL , is 
given by  
 
 .EL LGD p=  (3) 
 
Here LGD is the expected value of the Loss Given Default 
random sample.  The quantity p  is the portfolio average 
default probability given by  
 

 
1

1 .
N

i
i

p p
N =

= ∑  

 
It is also possible derive a formula for the loss distribution 
standard deviation, known as Unexpected Loss UL .  If 

ijJDP  is the Joint Default Probability of two firms, defined as 
 

 ( ) ( ) ,ij i i j jJDP E e eα α = Χ − Χ − i  

 
then because the asset returns have a multi-variate Normal 
distribution, we have 
 
 ( )(2) , , .ij i j ijJDP α α ρ= Φ  
 
Here ( ) ( )2 , , ρΦ i i  is the standard cumulative bivariate 
Normal distribution function with correlation .ρ   The UL  
for the portfolio can then be computed as 

 

 

( )

( )
22

2 2

22

      

1       .

UL E L EL

LGD JDP p

LGD p LGD JDP
N

 = − 

= − +

 − 
 

 (4) 
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The quantity JDP  is the portfolio average Joint Default 
Probability obtained by averaging the ijJDP  over all 

( )1 / 2N N −  distinct pairs. 
Historical default data show that defaults are correlated 

by industry and region as well as to general economic condi-
tions.  It is therefore common to use a factor model to de-
scribe correlated asset returns.  A description of the model 
developed by Moody’s KMV can be found in Kealhofer and 
Bohn (2001), while a comparison with other correlation 
models is discussed in Zeng and Zhang (2001).  For this pa-
per, we assume that the factor model has the following struc-
ture.  There exist M  independent ( )0,1N  standard Normal 

factors ( )1, ,T
Mz z z= " describing the systematic risk to 

which all firms are exposed with varying weights 
( )1, ,T i i

i Mβ β β= " .  The weights are assumed to be nor-

malized so that 1T
i iβ β = .  Each firm is also exposed to its 

own idiosyncratic risk, modeled by an additional independ-
ent ( )0,1N random variable iε , one for each firm.  The per-
centage of the asset return variance explained by the system-
atic factors is the firm’s R-square value 2

ir .  The standard 

Normal asset return ie  can therefore be expressed as 
 

 2 21 .T
i i i i ie r z rβ ε= + −  

 
Under this model it is easy to show that the pair wise asset 
return correlation is given by 
 
 2 2 .T

ij i j i jr rρ β β=  
 
If we define Γ  to be the diagonal matrix with 2 ,ii irΓ =  
and B  to be the matrix [ ]1 NB β β= " , then the correla-
tion matrix P can be expressed as 

 
 1/ 2 1/ 2 .TP B B I= Γ Γ + − Γ  (5) 
 
The quantity I  in Equation (5) is the identity matrix.  Note 
that this assumes that all the credit exposures are issued by 
distinct firms and no firms are directly related to other firms 
(e.g. subsidiaries).  These assumptions simplify the account-
ing but do not impact the effectiveness of the method. 

3 IMPORTANCE SAMPLING  
METHOD 

Importance sampling is a technique used in Monte Carlo 
simulation to reduce the number of simulation runs re-
quired to achieve a given accuracy.  The basic idea is to 
change the distribution from which the random samples are 
taken so that a greater concentration of samples are chosen 
from the region in sample space that has the greatest im-
pact on the calculation.  For computing economic capital in 
credit portfolios, this means sampling scenarios that lead to 
large losses.    See Glasserman and Li (2003) for alternate 
approach to applying importance sampling to credit portfo-
lios, Kalos and Whitlock (1986) and Glasserman (2003) 
for an overview of importance sampling methodology, and 
Owen and Zhou (1999) for a discussion of various impor-
tance sampling issues. 

As an example, consider computing capital at the 
99.9% confidence level.  Assume we know the capital 
value C, and are computing the probability of exceeding a 
loss of C.  For a standard Monte Carlo simulation, 100,000 
simulation runs would produce on average 100 sample 
points with losses greater than C.  If the actual number of 
points exceeding C is SN , then the estimate of the prob-
ability for exceeding C is Sˆ /100,000p N= .  Using impor-
tance sampling, however, we might sample 5000 points 
with losses greater than C.  Associated with each sample 
point we define a weight iw  such that the estimate for the 

probability of exceeding C becomes ( )ˆ /100,000ip w= ∑ , 
where the sum is taken over all samples that exceed C.  For 
standard Monte Carlo, all the weights are 1, while for a 
good implementation of importance sampling, there will be 
many more points than SN , and the associated weights 
will all be approximately equal and less than 1. 

3.1.1 Implementation Strategy -  
Theory 

Choosing an appropriate importance sampling distribution 
from which to sample (and which determines the corre-
sponding weight function) is somewhat of an art.  It is very 
problem dependent.  Concentration sample points in one 
region necessarily means that other regions will be less 
represented; problems that depend strongly on these de-
pleted regions may then show a decrease in accuracy of the 
simulation.  Also, if a large number of samples appear in 
the region of interest, but with very small weights, while a 
few samples have very large weights, the accuracy will 
suffer.  This latter problem is a common occurrence in high 
dimensional problems. 

To address these problems, we consider here applying 
importance sampling to a single dimension, leaving the 
other dimensions unchanged.  If we disregard the random-
ness of LGD draws, then a portfolio with N  (unrelated) 
facilities has in effect N dimensions, each represented in 
the simulation by a standard Normal draw for its asset re-
turn.  The goal is to find a single dimension associated with 
these correlated asset returns which has the largest impact 
on the portfolio value. 
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Also, when dealing with Normal distributions, a com-
mon importance sampling technique used when more sam-
ples in the tails are required is to scale up the variance.  In 
low dimensions (in our case a single dimension) with rea-
sonable scale up factors (say increasing the standard devia-
tion by a factor of two), the effect is to widen the distribu-
tion and put more points further out, but still maintain the 
general shape so that no region is extremely depleted.   

An initial thought on how to apply low dimensional 
importance sampling to this problem led to the idea of us-
ing the first global factor in the factor model, or possibly 
the first most dominant factors (as measured by the size of 
the average weights on the factors) from the factor model.  
The problem here is that these factors do not dominate 
enough.  Increasing their variance does tend to push the 
samples toward more defaults, but the independent firm 
specific risk, for firms with R-square values in the usual 
range of 10 to 50%, tends to cloud this effect; and making 
the variance scale up large leads to the problem of many 
samples with very small weights.  Ideally we would like to 
have the firm specific draws correlated so that we achieve 
scenarios in which many default events occur together. 

The best way to achieve this effect is to orthogonalize 
the covariance matrix of the asset returns (i.e., the correla-
tion matrix), and work with the eigenvector decomposition.  
The eigenvector direction corresponding to the largest ei-
genvalue is exactly the single dimension that has the larg-
est impact on the portfolio.  In this orthogonal framework 
we can scale up the variance in one coordinate direction 
(corresponding to the largest eigenvalue) independently of 
the other dimensions.  This leads to sampling scenarios 
with substantially higher numbers of defaults.  In addition, 
the weight function, derived below, takes a particularly 
simple form. 

In order to derive the formulas, let us assume that we 
have the true correlation matrix for the asset returns of the 
facilities in the portfolio and its eigenvalue - eigenvector 
decomposition.  For large portfolios these are unwieldy to 
work with; methods for addressing these problems are dis-
cussed in the next section on practical implementation.  Let 
P be the correlation matrix, Q  be the orthogonal matrix 
whose columns are the orthonormal eigenvectors of P , 
and Λ  be the diagonal matrix of eigenvalues sorted such 
that 1 2 0Nλ λ λ≥ ≥ ≥ ≥" .  Then 

 
 .TP Q Q= Λ  
 
Let 1q  be the first column of Q , corresponding to the 
largest eigenvalue so that 1 1 1Pq qλ= .   

The problem we are interested in solving is to find the 
probability ( )p J  that the (normalized) loss value will lie 
in a given interval J .  For example, we would typically 
take [ , )J C= ∞  to find the probability that losses exceed 
the capital level C .  This probability can be expressed as 
the integral  

 
 ( )( )( ) ( | 0, )

N
J

R

p J L e N e P deχ= ∫ . (6) 

 
Here ( | 0, )N e P is the Normal density function for vector 
e  with mean zero and covariance matrix P :  

 

 ( )11( | 0, ) exp .5
(2 ) | |

T

N
N e P e P e

Pπ
−= − . 

 
The notation | |P  indicates the determinant of P .  The 
function ( )Jχ i  is the characteristic function of the interval 

J , and ( )L e  is the (normalized) value of the portfolio loss 
given the asset returns e .   

To apply importance sampling to this problem, we 
represent this integral as  

 
 ( )( ) ( )( ) ( | 0, )

N
J

R

p J L e w e N e P deχ= ∫ � , 

 
where P�  is another positive definite symmetric N N×  
matrix and the weight function is defined as  

 

 

( )1 1

( | 0, )( )
( | 0, )

| |       exp .5
| |

T

N e Pw e
N e P

P e P P e
P

− −

=

 = − − 

�

� �
. 

 
The key to the method described here is in how P�  is cho-
sen.  Let us define  

 
 TP Q Q= Λ� � , 
 
where 2

1 1λ σ λ=�  and , 2j j jλ λ= ≥� .  In other words, P�  
is the covariance matrix which results from scaling up the 
largest eigenvalue by a factor 2σ .  From the properties of 
orthogonal matrices, it follows that  

 

 
( )2

1

2
1

1( ) exp .5 1 .
Tq e

w e σ
λσ

 
  = − −   

 

 

 
Note that when ( )| 0,e N e P�∼ , it is easy to show that 

( )2
11 / | 0,Tq e Nλ ε σ∼ .  This makes it possible to com-
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pute what percentage of samples will have weight less than 
one as a function of σ .  A necessary condition for im-
proved accuracy is that over the interval J , the conditional 
expectation ( )2 1JE w <  when the expectation is with re-

spect to the P�  measure. 
In order to implement this importance sampling ap-

proach, we need to be able to sample ( )| 0,e N e P�∼ .  Now 

suppose we have a random sample ( )* * | 0,e N e P∼ .  This 
is just the standard asset return sample that can be obtained 
from the factor model as 

 
 ( )1/ 2* 1/ 2 Te B z I ε= Γ + − Γ , (7) 
 
where z  is an 1M ×  standard iid Normal vector and ε  is 
an 1N ×  standard iid Normal vector.  If we define the di-
agonal matrix Σ  such that 11 ,  and 1  , 2jj jσΣ = Σ = ≥ , 
and we define  

 
 ( ) *Te Q Q e= Σ , 
 
then it is easy to show that ( )| 0,e N e P�∼ .  With a little 
algebra we have that 

 
 ( ) ( )* *

1 11 Te q e q eσ= − + . (8) 
 
Moreover, we also have that  

 

 ( ) ( )2*
12

1

( ) exp .5 1
Tq e

w e σ σ
λ

 
 = − −
 
 

. (9) 

 
Thus we can generate the scaled up sample e  and the ap-
propriate weight function from the original unscaled sam-
ple *e , the largest eigenvalue, the corresponding or-
thonormal eigenvector, and the scale up factor. 

3.1.2 Practical Implementation 

In order to implement the above equations it is necessary to 
first determine the largest eigenvalue and corresponding 
eigenvector.  There is a simple iterative procedure known 
as the Power Method which does just this.  See Golub and 
Van Loan (1996) for a detailed account of this method.  
Moreover, it only requires matrix-vector multiplication, i.e. 
computing *P v  for some vector v .  This is important be-
cause this multiplication can be carried out without explic-
itly computing the potentially very large matrix P , but 
rather can be based on the factor model which requires 
storing only the factor loadings and R-squares. 
The N N×  correlation matrix of the facility asset re-
turns can be expressed as in Equation (5).  In a typical factor 
model implementation, either there will only be a few fac-
tors, or when the number of factors is large (on the order of 
100), each firm only has a relatively small number of non-
zero factor loadings.  Therefore the N M× matrix B  is gen-
erally sparse.  It is clear then that *P v  can be computed 
with at most three vector-vector multiplies and two sparse 
matrix-vector multiplies, without any additional storage re-
quired (in particular, P  need not be computed or stored). 
 

The Power Method works as follows.  Define the ini-
tial vector 0v  to be the vector of all ones: ( )0 1,1, ,1 Tv = " .  
The iteration is then 

 
 *                                              kz P v=  
 max max( ),      | ( ) | | ( ) | for all z i z i z j jλ = ≥ . 
 1 / .                                             kv z λ+ =  
 
This is repeated until λ  converges to the largest eigen-
value 1λ  and kv  converges to the corresponding eigenvec-
tor 1v .  The orthonormal eigenvector is then computed as  

 

 1
1

1 1
T

v
q

v v
= . 

 
This method usually converges after a few iterations. 

With 1 1and qλ  available, we can sample 

( )| 0,e N e P�∼  and compute ( )w e .  The Monte Carlo 
simulation runs exactly as in the standard simulation ex-
cept that the loss value of Equation (2) is evaluated at the 
sample points given by Equation (8) as opposed to Equa-
tion (7), and that the expected values which were previ-
ously estimated as 

 

 *

1

1( ) ( )
N

i
i

E f f e
N =

≈ ∑  

 
are now estimated as  

 

 
1

1( ) ( ) ( ).
N

i i
i

E f f e w e
N =

≈ ∑  

 
In particular, for computing the loss distribution, instead of 
counting the number of sample points that fall in a given 
bin, the estimate is now the sum of the weights of the sam-
ples points that fall in that bin. 
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4 APPLICATION TO SAMPLE  

PORTFOLIO 

To illustrate the effectiveness of the method proposed in 
Section 3, we consider two test cases.  In each case the 
portfolio is constructed by randomly selecting the default 
probabilities, the factor loadings and the R-square values 
based on the factor model described in Section 2 with 50 
factors.  The factoring loadings for each exposure in the 
portfolio are chosen randomly as follows.  The loading on 
the first factor is sampled uniformly on the interval [0.21, 
0.31].  The loadings on the second through fifth factors are 
chosen uniformly and independently on the interval [0.11, 
0.21].  Finally, two factors are chosen uniformly and inde-
pendently from the remaining 45 factors.  If the factors 
chosen are identical, the factor and the next succeeding 
factor are selected, unless the two identical factors selected 
are the last, in which case, factors 6 and 50 are selected.  
The loadings on these two factors are sampled uniformly 
and independently on the interval [0, 0.1].  All other fac-
tors have a weight of zero.  Finally, the factor loadings are 
normalized to a square sum equal to one. 

The R-square value for each exposure is also sampled 
uniformly and independent on the interval [0.1, 0.4].  The 
default probability for each exposure is defined in terms of 
the R-square value according to the formula 

 

 
2

10.01 1 .i

i

p
r

 
 = −
 
 
i  (10) 

 
This formula is essentially arbitrary.  It gives default prob-
abilities in the range of 0.58% to 2.16%; these are reasonable 
one-year default probabilities for a portfolio of high yield, 
non-distressed firms.  Equation (10) establishes the general 
property that higher R-square firms, i.e. firms that are more 
tied to the overall market, tend to be larger and have lower 
default probabilities.  As stated in Section 2, it is assumed 
that the LGD distribution for each name in the portfolio is 
Beta distribution with mean 0.5 and standard deviation 0.25.   

For the first test case we consider a portfolio of size 
1000 exposures.  We compare the simulation error for the 
standard Monte Carlo simulation to error of the importance 
sampling method described in Section 3 with a scale factor 
of 2σ = .  For this portfolio, we consider the simulation er-
ror in computing the expected and unexpected loss, EL  and 
UL , for which exact formulas are given in Equations (3) 
and (4).  Table 1 shows the results for the estimated standard 
simulation error for these quantities based on a 100,000 
sample points.  Here Sσ  refers to the standard deviation of 
the standard Monte Carlo method integrand so that the ac-
tual simulation error would be of size /S Kσ  where K  is 
the number of simulation runs.  Similarly, ISσ  is the stan-
dard deviation of the importance sampling integrand (includ-
ing the weight function) with respect to the importance sam-
pling distribution.  Because the importance sampling method 
requires only a minor amount of additional computation to 
evaluate Equations (8) and (9), the computational speed up 
is given approximately by the ratio of the squared standard 
errors.  For this case, we see that the expected loss could run 
2.4 times faster, while for the unexpected loss calculation, 
the speed up is about a factor of 20. 

 
Table 1:  Portfolio of 1000 Exposures 
 Expected Loss Unexpected Loss 

True Value 0.5496% 0.8845% 

Sσ  0.8845% 0.0552% 

ISσ  0.5646% 0.0122% 
2 2/S ISσ σ  2.45 20.4 

 
Substantial improvement in accuracy in the first two 

moments in somewhat unexpected in a method designed to 
increase accuracy of the rare event tail of the loss distribu-
tion.   This is a consequence of the simplified modeling of 
the portfolio as Default/No Default.  The expected and un-
expected loss are both driven by default events that are en-
hanced under this method.  For more realistic portfolio 
models that capture exposure value change due to credit 
migration (not just default), as well as changes in the expo-
sure cash flow properties (e.g. time to maturity), we have 
found that the accuracy of the expected and unexpected 
loss calculations may deteriorate slightly relative to the 
standard Monte Carlo approach.  This is balanced by the 
very substantial gains in accuracy of the tail statistics. 

For the second test case, we consider a portfolio of 
10000 exposures and examine the accuracy of the simula-
tion in determining the tail confidence levels C of the loss 
distribution at probability levels q = 1%, 0.1% and 0.01%.  
Again the importance sampling calculation was run based 
on a scale factor of 2σ = .  Figure 1 shows a graph of the 
loss distribution on a log scale that was calculated with the 
importance sampling method.  The expected loss for this 
distribution is 0.552%, while the unexpected loss is 0.87%.  
A truncated Gaussian distribution with similar mean and 
variance is also plotted for reference. From the graph it is 
clear that this is a very fat-tailed distribution given that the 
0.1% confidence level is around 8.6% (over 9 standard de-
viations out, versus about 3 standard deviations for a Nor-
mal distribution), and the 0.01% confidence level is around 
14% (over 15 standard deviations out compared with 
around 3.7 for the Normal case). 

The error analysis is more straightforward for the inte-
gration problem of estimating q given the loss level C  
than for the order statistics problem of estimating C  given 
q , although the same simulation is used for each case.  For 
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Figure 1:  Portfolio Loss Distribution 

 
the standard Monte Carlo method, the relative error of es-
timating the probability q of exceeding the loss C is de-
termined by standard deviation of the random variable 

( )( )J L eχ  with respect to the standard distribution (see 

Equation (6)), where [ , )J C= ∞ .  Because this is just an 
indicator function that has value 1 with probability q , its 

standard deviation is ( )1S q qσ = − . The relative error 
in the estimate of p is then given by 
 

 ( )( )1/ 22 2ˆ / sE q q q
q K

σ
− = , 

 
where K  is the number of simulation runs.  The relative 
error for the importance sampling simulation follows the 
same formula, except that the variance of the estimator is 
determined from 
 

 ( )( ) ( )( )22 ( | 0, )
N

IS J
R

L e w e q N e P deσ χ= −∫ �  (11) 

 
which is approximated by 

 

 m ( )( )2
2

1

1 ˆ .
1

K

IS J j j
j

L w q
K

σ χ
=

= −
− ∑  

 
Table 2 shows the results for the three quantile levels 

based on a simulation with 100,000 runs.  This includes the 
loss estimate at each quantile based on the importance 
sampling calculation along with the two standard deviation 
confidence interval based on the standard error 

/ISm Kσi where m is the slope of the loss distribution 
function.  The accuracy of the importance sampling and 
standard Monte Carlo methods is described by ISσ  and 
Sσ .  Finally, the computation speed up of using impor-

tance sampling is estimated by ( )2 2/S ISσ σ . 
 

Table 2:  Tail Quantile Results for Portfolio of 10,000 
Exposures Based on 100,000 Simulation Runs 

Quantile q 1% 0.1% 0.01% 

Loss C 4.24% 8.63% 14.0% 
2σ  Confidence 

Interval ± 0.05% ± 0.07% ± 0.14%

/S qσ  9.95 31.6 100. 
/IS qσ  3.85 5.63 7.91 

2 2/S ISσ σ  6.68 31.5 160. 
 
The results in Table 2 show that the importance sam-

pling method yields a significant improvement in accuracy 
that increases further into the tail.  For example, at the 
0.1% level and 100,000 runs, the standard Monte Carlo 
method gives Sσ =0.001, so that with 96% probability, the 
estimate of q lies in the interval [0.0008, 0.0012].  Taking 
the value of C to be 8.63% and the slope of the loss distri-
bution at this point to be about 2000, this corresponds to a 
confidence interval in the estimate of C to be [8.2%, 9.0%]. 
In contrast, the importance sampling method gives 

ISσ =0.0056, so that with 96% probability we have the es-
timate for q in the interval [0.00096, 0.00104].   The corre-
sponding confidence interval for C  is [8.56%, 8.70%].  In 
terms of computational speed, the same accuracy obtained 
with standard Monte Carlo at 100,000 runs could be 
achieved with the importance sampling method using 
around 3200 runs for a speed up of about a factor of 31. 

Further out in the tail the accuracy improvement be-
comes even more pronounced.  At the 0.01% level, in or-
der to achieve a standard error of 10% relative accuracy in 
estimating this probability, it is necessary to use about 1 
million simulation runs.  This gives on average 100 points 
in the tail exceeding this 0.01% tail.  For the importance 
sampling simulation, this accuracy can be achieved with 
under 10,000 runs.  For this simulation, there were over 
3200 sample points in this tail. 

5 SCALE PARAMETER  
SELECTION 

The question of the optimal choice for the scale parameter 
used in the importance sampling method is clearly problem 
dependent.  However, by considering Equation (9) for the 
importance sampling weight function and properties of the 
quantile confidence levels we would like to estimate, it is 
possible to derive some general guidelines. 
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We begin by observing that the quantity ( )*
1 1/Tq e λ  

in Equation (9) is a ( )0,1N standard Normal random vari-
able.  It follows that the weight can also be considered a 
random variable with probability distribution function 

 

 ( ) ( )
2

2 log /
2 1

1
w

P w
σ

ω
σ

  −  < = − Φ
  −  

i  (12) 

 
for 0 .w σ≤ ≤  We consider now how this fact can be used 
to select σ  to minimize the error of the quantile estimation 
while balancing the need to maintain accuracy for proper-
ties that depend on the center of the distribution. 

Basis for this approach is the observation that the 
weight associated with a random sample from the loss dis-
tribution is generally decreasing with increasing loss.  This 
is not strictly true because of the independence of the 
LGD  draw from the weight, as well as because of the in-
homogeneous nature of the portfolio.  However, there is a 
dominant trend that the weights decrease as the losses in-
crease.  Therefore it makes sense to look for a threshold 
level a  for the weights corresponding to the confidence 
level C for the loss at quantile q such that  

 
 [ ] ( )( )0,aq E w wχ= , 

 
where the expectation is with respect to the distribution in 
Equation (12).  Thus given σ  and a quantile q , we can 
solve for a .  Once a  has been determined, it is then pos-
sible to compute 
 

 [ ] ( )( )
1/ 22

0, .IS aE w w qσ χ  = −    
 

 
The goal is to minimize this quantity with respect to the 
scale factor for a given quantile. 

Unless the only requirement of the calculation is a 
specific quantile estimation, the desire to improve the ac-
curacy of the quantile estimator must be balanced by the 
need to maintain accuracy for quantities that depend on 
samples from the center of the asset return distribution.  It 
is often that case that the same simulation is used to esti-
mate statistics that depend on all parts of the distribution; 
in particular, the unexpected loss and derivatives of 
UL with respect to exposure size play an important role in 
credit risk management.  Therefore we will also consider 
the accuracy of estimating the basic identity 

 
 ( )1 E w=  
 

in the importance sampling simulation.  The standard error 
estimate for this calculation, 
 

 ( )( ) 1/ 221 ,w E wσ  = −
 

 

 
can be shown to be an increasing function of the scale pa-
rameter.  A criterion for determining a suitable scale factor 
is to minimize the quantity 
 
 / ,w IS qσ σ+  (13) 
 
which is the sum of the relative errors, as a function of the 
scale parameter σ .  Table 3 shows that for the quantile 
q =0.1%, this quantity is minimized for a scale parameter 
around 3, although the relative error is fairly flat for values 
of 2 or greater.  A calculation of the variance estimator 
from Equation (11) for a simulation with scale factor 3 
showed that the estimate of the standard error for the 0.1% 
quantile was indeed about 15% lower than the calculation 
with scale factor 2, while the error in estimating the ex-
pected weight was about 50% higher.  However, because 
the relative error of the quantile estimation problem (the 

/IS qσ term of Equation (13)) is about 5 times larger than 
the relative error of the weight calculation, the net gain in 
accuracy for the quantile calculation was 0.88 while the net 
loss in accuracy for the expected weight calculation was 
0.37, so that by the criterion of Equation (13), the choice of 
scale factor 3 is better. 
 

Table 3: Effect of Scale Parameter σ  on Relative Er-
ror in Expected Weight and 0.1% Quantile Estimation 
σ  a  wσ  /IS qσ  /w IS qσ σ+  

1.1 0.430 0.12 19.2 19.4 
1.5 0.074 0.45 6.92 7.37 
2 0.035 0.72 4.48 5.20 
3 0.025 1.09 3.53 4.62 
4 0.025 1.37 3.51 4.88 
5 0.028 1.60 3.69 5.29 
6 0.031 1.81 3.91 5.72 

6 CONCLUSIONS 

This paper describes a method for improving the accuracy 
of a Monte Carlo simulation used to determine the prob-
ability distribution of losses on a portfolio of credit risky 
assets.  The importance sampling method developed here 
relies on introducing a scalar parameter into the asset cor-
relation model that may be adjusted to increase correla-
tions, thereby inducing a greater number of correlated de-
faults and thus producing samples further out in the loss 
tail.  When applied to the simplified Default/No Default 
portfolio model described here, the method reduces the 
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number of simulation runs by a factor of 30 compared with 
a standard Monte Carlo simulation for the typical problem 
of estimating the 0.1% quantile.   

The method described here has the distinct advantage 
of relying only on the correlation structure of the model, 
not on any valuation properties (exposure size, cash flows, 
etc.) of the individual credits in the portfolio nor on any di-
rect properties of the portfolio loss distribution itself.  In 
particular, the method does not require shifting the mean of 
the samples from the distribution to heavily favor one tail; 
therefore the method is applicable to portfolios with both 
long and short positions.  Underlying the method is the im-
plicit assumption that the credit portfolio is not dominated 
by a small number of large exposures and that there is a 
significant amount of systematic risk (i.e. correlation) in 
the portfolio.  Thus the portfolio loss is the sum of a large 
number of roughly similar random losses on each expo-
sure.  Without correlation, this distribution would be ap-
proximately Normal; the fat loss tail is then driven by the 
correlation.  Credit portfolios of interest in practice always 
have these properties. 

An additional advantage of this method is that it does 
not favor tail losses to the exclusion of samples in the center 
of the distribution.  This means that one simulation can be 
run to determine a range of interesting portfolio statistics in 
addition to the far tail quantiles.  The method essentially 
pushes probability mass into the tail by pressing down on the 
most probable center part of the distribution; however, the 
basic shape of the original probability distribution in the un-
derlying asset returns remains the same, so that no region 
covered by the original distribution is neglected. 

Finally, this method is applicable more broadly than 
just to the model described here.  The assumption of a 
multi-variate Normal distribution for the asset returns may 
be relaxed.  In principal this approach could apply to a 
multi-variate distribution for which the correlation matrix 
is used in the sampling process, although the calculation of 
the weight function may be substantially more difficult.  
However, the multi-variate t distribution, which is the most 
common alternative to the Normal distribution, shares the 
same elliptical correlation structure as the Normal distribu-
tion, so the implementation of the method is essentially the 
same as described here. 
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