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ABSTRACT 

This paper describes an approach to real-time decision-
making for quality of service based scheduling of 
distributed asynchronous data replication. The proposed 
approach addresses uncertainty and variability in the 
quantity of data to replicate over low bandwidth fixed 
communication links. A dynamic stochastic knapsack is 
used to model the acceptance policy with dynamic 
programming optimization employed to perform offline 
optimization. The obtained optimal values of the input 
variables are used to build and train a multi-layer neural 
network. The obtained neural network weights and 
configuration can be used to perform near optimal 
accept/reject decisions in real-time. Off-line processing is 
used to establish the initial acceptance policy and to verify 
that the system continues to perform near-optimally. The 
proposed approach is implemented via simulation enabling 
the evaluation of a variety of scenarios and refinement of 
the scheduling portion of the model. The preliminary 
results are very promising.  

1 INTRODUCTION 

Data replication is the act of creating and maintaining 
multiple copies of data.  Data are replicated to enhance the 
dependability of the system, enhance performance or both. 
Performance is enhanced via locality. Dependability can be 
enhanced by creating redundant copies of the data. 

 Replication can be deployed at the application level, 
the common services level (e.g. a distributed database) or 
as a distributed system (a hypermedia system or a file sys-
tem). Data replication models must determine the replicas 
placement, updates propagation between replicas and how 

 

to keep the replicas consistent. How the model accom-
plishes these tasks greatly influences the performance and 
scalability of the solution. 

The support for network file systems on slow net-
works can be provided in several different ways but the 
general solution is to push the data as close as possible to 
the site where the data is used and to require only remote 
communications for updates. 

 There are two primary update strategies for files in a 
remote file system: logical and physical. The logical up-
date strategy is based on the file abstraction. The strategy 
interprets the file system meta-data and writes the file to 
the remote file system. The current solutions reduce band-
width usage by relaxing file consistency constraints when 
used over low bandwidth connections. The physical update 
strategy duplicates the physical medium on which the files 
are stored without interpretation.  Block level updates are 
then made when updating a file.  Physical update strategies 
are common on high-end data storage products for server-
to-server operations, but have also been implemented for 
increased disk performance over high-speed links such as 
fiber channel. 

The research described in the paper looks to develop a 
solution for one-way data replication to a read-only replica 
when the bandwidth available for replication is low when 
compared to the bandwidth of the storage systems. The 
proposed solution looks to maximize bandwidth utilization 
by exploiting commonality between replicas as in depend-
ent replicas and provide a method where Quality of Service 
(QoS) guarantees can be defined and enforced. The solu-
tion is comprised of three main components: replication 
request, scheduling, and replication. A simulation enables 
refinements of the scheduling solution along with the 
evaluation of a variety of usage scenarios. 
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The remainder of the paper is organized as follows. 
Section 2 provides an overview of related work and exist-
ing replication algorithms. Section 3 describes the pro-
posed QoS data replication model. Section 4 describes two 
case studies. Section 5 concludes the paper. 

2 REPLICATION ALGORITHMS 

A number of file systems have properties that help them 
tolerate high network latency. The Andrew File System 
(AFS) (Howard et al. 1988) uses server callbacks to inform 
clients when other clients have modified cached files.  
Thus, users can often access cached AFS files without 
requiring any network traffic. Leases (Gray and Cheriton 
1989) are a modification to callbacks in which the server’s 
obligation to inform a client of changes expires after a 
certain period of time. Leases’ relaxing of traditional 
consistency guarantees reduces the state stored by a server, 
frees the server from contacting clients who have not 
touched a file in a while, and avoids problems when a 
client to which the server has promised a callback has 
crashed or gone off the network.  The NFS4 protocol 
(Shepler et al. 2000), the most common distributed file 
system,  supports traditional consistency guarantees.  It 
reduces network round trips by batching operations.   

The CODA file system (Kistler and Satyanarayanan 
1992) evolved from AFS and supports slow networks and 
even disconnected operation.  Changes to the file system 
are logged on the client and written back to the server in 
the background when there is network connectivity. CODA 
requires the client have a copy of the files to be updated 
before remote or disconnected operations are performed. 
CODA provides weaker-than-traditional consistency guar-
antees, allowing update conflicts, which users may need to 
resolve manually. CODA saves bandwidth because it 
avoids transferring files to the server when they are deleted 
or overwritten quickly on the client.   

Rsync (Tridgell 2000) is a more efficient replacement 
for the rcp utility.  The rsync utility copies a file or direc-
tory tree over the network onto another directory tree con-
taining similar file(s). Rsync has proven useful for updat-
ing things like Internet mirror sites. Rsync saves bandwidth 
by exploiting commonality between files by considering 
only two files at a time. The recipient breaks its file into 
non-overlapping, contiguous, fixed-sized blocks and 
transmits hashes of those blocks to the sender.  The sender 
in turn begins computing the hashes of all (overlapping) 
blocks.  If any of sender’s hashes match one of the recipi-
ent’s hashes, the sender avoids sending the corresponding 
block, instead the sender tells the recipient were to find the 
block.  An alternative algorithm was proposed in the im-
plementation of a low-bandwidth network file system 
(LBFS) (Muthitacharoen, Chen, and Mazières 2001). 
LBFS considers only non-overlapping chunks of files and 
avoids sensitivity to shifting file offsets by setting chunk 
boundaries based on file contents, rather than on position 
within a file. Insertions and deletions therefore only affect 
the surrounding chunks. 

DRDB (Reisner 2001) is an open source device driver, 
which allows the construction of mirrors over TCP.  The 
connection is dedicated as to provide adequate bandwidth 
for the mirror synchronization.  Mirror synchronization can 
be 1-safe, 2-safe or asynchronous. 

A different approach is the synchronization of mobile 
devices.  SyncML <www.syncml.org> is an industry 
initiative to develop a single synchronization protocol that 
works over wireless and wired networks supporting high 
latency, high cost, limited bandwidth and low reliability.  It 
supports arbitrary networked data and makes use of exist-
ing Internet and Web Technologies, i.e., the Extensible 
Markup Language (XML), and Multimedia Internet Mail 
Exchange (MIME).  

The algorithms for distributed replication require con-
currency control protocols to ensure the serialization 
(Bernstein, Hadzilacos, and Goodman 1987) of updates. 
One-copy serialization (Bernstein and Goodman 1983) is 
the correctness criterion for replicated data, a requirement 
that ensures the performance of logical data operations are 
reflected on the physical copies of the data even in the 
event of failures. Distributed data replication algorithms 
can be generally categorized into two families of protocols, 
Read One Write All (ROWA) and Quorum Consensus 
(QC). In ROWA, each replica is updated and the updates 
occur in the same order as on the primary. Examples of 
ROWA algorithms are Read One Write All Available 
(Bernstein and Goodman 1984), Primary Copy Read One 
Write All (Alsberg and Day 1976) and True Copy Token 
Read One Write All (Minoura and Wiederhold 1982).  The 
family of ROWA protocols favor read operations by allow-
ing them to proceed with only one copy, while requiring 
write operations to be out in up to all the replicas. 

Voting or QC algorithms allow writes to be recorded 
only at a subset of the available sites. The subset of sites to 
be written is known as a write quorum. QC algorithms also 
require that a read query a subset of the sites, which is guar-
anteed to overlap the write quorum. This subset is known as 
the read quorum. Examples of QC algorithms are Uniform 
Majority QC (Thomas 1979), Weighted Majority QC (Gif-
ford 1979) and Random Weights (Kumar 1991).  A more 
comprehensive coverage of data replication algorithms can 
be found in Helal, Heddaya, and Bhargava (1996). 

The distributed replication algorithms discussed pro-
vide a system-wide consistent view of data in the presence 
of concurrency.  If concurrency is not required for a spe-
cific application, the consistency constraints can be re-
laxed.  An example of such a special case is where there is 
a single read-only replica with one-way synchronization. 
This type of replication is common for Disaster Recovery. 

The one-way synchronization is from the primary data 
source to the replica. Implementations for this case of rep-
lication have occurred over data protocols, such as Fiber 
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Channel or SCSI or over LAN protocols such as TCP/IP 
and can replicate the entire disk or logical unit number 
(LUN), without regard to the structure of the data or repli-
cate file or record oriented data. A software or hardware 
based solution can be used to perform the replication with 
the basic replication schemes being server or controller 
based. Replication solutions include server-based, applica-
tion-level, filesystem, driver-based, and controller-based. 

When performing a replication, the replica can be ei-
ther dependent or independent. An independent replica is 
stand-alone image or copy of the data at a single point in 
time. Independent replicas are also known as mirrors. An 
independent replica will require the identical storage as the 
primary image. A dependent replica tracks only data that 
has been over-written and are typically point-in-time im-
ages.  Dependent replicas require additional storage that is 
roughly equivalent to the amount of data being written. 
Hitz, Lau, and Malcolm (1994) provides further discussion 
of dependent replicas called snapshots in his discussion of 
Network Appliance’s Write Anywhere File Layout 
(WAFL) design. Figure 1 shows creation and update of a 
dependant replica. 

 

 
Figure 1: Dependent Replica Creation and Update 
 
Dependent replicas have the advantages of requiring 

less storage and faster replication but they have two prob-
lems. First, if the primary image develops a problem, such 
as a device going off-line, all of the images become un-
available. Secondly, if the amount of data being written 
exceeds the capacity of the replica data repository the de-
pendant copy is no longer valid.  

Patterson et al. (2002) demonstrated two key concepts 
for one-way read-only replications. The first one, the re-
duction in bandwidth, is provided by asynchronous verses 
synchronous updates. The reduction range of his demon-
stration was 52% to 98% with an average of 78%. The sec-
ond, block level updates require substantially less band-
width than file level updates. His experiments found 
reductions of 48% and 39% in two different replicas.  The 
time required for the replication was 3.5 and 9 times longer 
for the file replication. The study used Network Appliance 
filers with the Snapmirror replication utility. 

When bandwidth is restricted, the time delays for syn-
chronous replication quickly become prohibitive. Asyn-
chronous replication allows queuing and scheduling of up-
dates thus defining the recovery point objective (RPO) of 
the data in the replica.  One of the key issues to resolve is 
the appropriate RPO for each data item as replication re-
quirements will differ throughout an organization and the 
limited bandwidth makes it infeasible to replicate all data 
to the shortest RPO. While common, it is undesirable to 
define the RPO based on the available bandwidth. A better 
solution is to fine-tune the replication to better reflect and 
adapt to the current and changing requirements. 

3 QOS DATA REPLICATION MODEL 

The proposed QoS based data replication model is 
comprised of three main components: replication request, 
scheduling of replications and the actual replication 
(Figure 2). A primary server hosts the data to be replicated.  
The replication objects on the primary server are identified. 
Request for replication are made to the replication service. 
The replication service schedules and controls the 
replication process. The replication process is controlled 
via messages between the replication service and the 
replica server. A replication protocol performs the 
replication between the primary server and replica server. 

 

 
Figure 2: QoS Based Data Replication 

 
The granularity of the replication is at the file level 

and is defined by the replication object. Replication objects 
are created based on the services provided within a system 
and are user defined. Replication objects contain one or 
more files.  Data files associated with the services are what 
is to be replicated. The attributes associated with a replica-
tion object include timing requirements and a priority. The 
timing requirements define the interval of replication. The 
priority is a QoS parameter, a relative assessment of how 
important it is to have the data replicated during a given 
interval. The scheduler uses the priorities of the replication 
request as the scheduling criteria, maximizing the priority 
while fully utilizing the link capacity. 

Evaluation of application level replication algorithms 
(simulation and real-world results) allows general solutions 
on heterogeneous disk subsystem with a single protocol 
where hardware dependencies and optimizations do not 
bias the research. The replication algorithm operates as a 
peer-to-peer remote copy (PPRC) similar to the remote 
synchronization algorithm, rsync (Tridgell 2000). The rep-
lication algorithm exploits file commonality in an effort to 
gain the efficiencies of block level updates. 
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In evaluating scheduling for QoS based data replica-
tion three characteristics tend to dominate. The first is the 
variability and uncertainty of the quantity of data to repli-
cate. Bandwidth reduction techniques, such as exploiting 
the commonality between replications, are greatly affected 
by the time intervals between asynchronous replications.  
While the deltas between a file being modified at different 
points in time from a single base will tend to grow, this is 
not a certainty. The remaining two characteristics, the ca-
pacity limitations of the communication links and the ex-
pense of long haul communication verses the cost of com-
puting are related.  

The scheduler is looking to maximize the use of the 
limiting component, the fixed low bandwidth communica-
tions link.  The admittance policy of the scheduler can be 
viewed as an optimization problem with file size and prior-
ity as parameters of the replication while the link capacity 
and the length of time to complete the replication as the 
limiting factors.  

The Knapsack model and its variants provide a rich 
model for the exploration of alternative scheduling options. 
An instance of the knapsack problem (KP) can be defined 
by the capacity c and a set of n items where an item i is de-
scribed by its profit pi and weight si. A subset of items is 
selected such that the total profit of the selected items is 
maximized and the total weight does not exceed c. The KP 
can be formulated as a solution for the following linear in-
teger program: 
 

 Maximize O = 
1

n

i i
i

p x
=
∑   

 Subject to
1

n

i i
i

s x c
=

≤∑      (1) 

 { }0,1 , 1,...ix i n∈ =  

 { }1,..., , 1,...i mp P P i n∈ = . 
 
The profit pi belongs to the set of priorities P1,…,Pm. 
Higher priority values represent higher priority items. The 
decision vector x identifies which items are to be inserted 
into the knapsack. A value of one identifies insertion. All 
of the coefficients are positive integers and O is the 
objective function. The weight of each item is less than the 
capacity so that it is possible to be scheduled,  

 
, 1,...is c i n≤ = . 

 
Finally, the weight of all items submitted to the scheduler 
must be greater than the capacity, 

 

 
n

is c>∑ . 

1i=
In the event that the weight of all items submitted to the 
scheduler is smaller or equal to the capacity, all items are 
scheduled. This model is also known as the 0-1 KP. A 
binary decision is made by the optimization to insert the 
item into the knapsack are not.   

Without loss of generality, the 0-1 KP can be used to 
model the scheduling of single files or groups of files that 
must be replicated together.  An example would be a data-
base where its indices are stored in one file and the data in 
a second.  In this case, file priorities are the same and the 
file sizes are treated in the aggregate. The group of files is 
modeled as a single replication object. 

KP is NP-hard and can be solved a number of ways 
with one such approach being dynamic programming (DP). 
DP is a common approach as it provides solutions to KP in 
pseudo-polynomial time. Keller, Pferschy, and Pisinger 
(2004) provides a further discussion of techniques for solv-
ing the KP. The complexities in finding exact solutions to 
KP problems impact the scale to which the solutions are 
practical. Furthermore, in order to use the knapsack model 
in real-time scheduling, knowledge of future scheduling 
requirements would have to be known.  

An alternative approach would be to use the relation-
ship between the expenses of long haul communication 
verses the cost of computing to our advantage. Gray (2003) 
equates cost parity between: one database access, ten bytes 
of network traffic, 100,000 instructions, 10 bytes of disk 
storage, and one megabyte of disk bandwidth. This parity 
implies a gigabyte of data transmitted over the Internet 
would require a CPU day of computation to be in balance. 
Gray’s conclusion is this parity forces the structure of 
Internet-scale distributed computing to place the data as 
close as possible to the computation in order to minimize 
the expensive network traffic. The premise of this work is 
that the data must be replicated, thus transmitted, but a 
trade-off of disk bandwidth, disk storage, database access 
and computation for reduced network traffic is a beneficial 
trade-off. The benefit is based on the fact, also brought out 
by Gray, that over the last 40 years telecom prices have 
fallen much more slowly than any other information tech-
nology.  The greater is the disparity between price defla-
tions, the stronger is the argument for long-haul bandwidth 
optimization at the expense of computing resources. 

The proposed approach is to divide the scheduler into 
two parts, an off-line optimization and an on-line imple-
mentation of the acceptance policy.  The off-line optimiza-
tion is based on solving the KP as described by the linear 
integer program (1).  The off-line optimization results are 
used to train a neural network of the appropriate accep-
tance policy.  The neural network makes real-time binary 
decisions on acceptance of replication requests. The repli-
cation requests are also processed by the off-line optimiza-
tion in order to verify the performance of the network. The 
offline processing continues to train a new network on the 
data and when necessary replace the in-line network. 
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In the next section two case studies are presented 
which look to simulate this proposed scheduling approach 
to QoS data replication in the area of disaster recovery.  

4 CASE STUDIES 

The management of a data replication system includes an 
assessment of potential risks. This risk assessment includes 
an evaluation of acceptable loss on a service basis. This 
evaluation provides a foundation to build business 
continuity were the cost of recovery can be weighed 
against the risk of a disaster and the impact on the survival 
and prosperity of the business.  Acceptable losses are 
identified in terms of lost availability, how old the 
information supplied to and from the services can be, and 
the amount of lost data when a service is restored.  

The cost of the recovery solution will be directly re-
lated to how quickly the business must be restored and how 
much data needs to be protected. It is a business decision 
based on cost verses effectiveness and efficiency whether 
the business should avoid, mitigate or absorb the risk of a 
disaster condition on each service. The restoration of value 
to a service is dependent on the restoration of the service’s 
data. The importance of data, the availability requirements 
and currency requirements of the data for the different ser-
vices will vary between services and over time. 

Disaster recovery (DR) planning requires a separation 
of resources, assumes data is the single most important 
component of any DR solution and that the prioritization of 
critical functions for restoration is a fundamental part of 
Continuity of Operations Planning. The decision as to what 
to replicate and how often is dynamic.  The observation is 
made that to support varying levels of data value, availabil-
ity and currency requirements, a QoS replication mecha-
nism is needed to ensure minimum guarantees of data cur-
rency, maximizing the currency and availability of highly 
valued data and fully use the available network capacity 
allocated to DR data replication.  

4.1 Simple Replication Scheduling Simulation 

The case study presented here establishes a simulation to 
evaluate the approach of a real-time optimization using a 
Multi-Layer Perceptron Network as a viable scheduler for 
a QoS based data replication. The purpose of the data 
replication is to create a remote data vault over a fixed low 
bandwidth connection. Bandwidth is defined as low when 
compared to the data bandwidth. The data synchronization 
between the primary and replica is asynchronous. 

4.1.1 Simulation Overview 

The simulation consists of a three components: submission 
of replication request, scheduling the replications, and 
finally, the replication. This case study is an evaluation of 
the scheduling portion of the simulation.   
When replication request are made they have a timing 
requirements and a priority.  The timing requirement is the 
periodicity of the replications, which provides the interval 
for the completion of the replication. The priority is a rela-
tive assessment of how important it is to have the data repli-
cated during a given interval.  The scheduler uses the priori-
ties of the replication request as the scheduling criteria, 
maximizing the priority while maximizing the use of the link 
capacity. For example, a set of files associated with a given 
service can all be assigned a replication interval of 60 min-
utes and a priority of 100 (low).  Every 60 minutes the files 
are scheduled for replication.  The acceptance policy of the 
scheduler decides if the replication can complete within the 
60-minute interval. If the replication cannot complete within 
the interval, it is rejected. These replication intervals create a 
repeating pattern of replication request. 

Files submitted for replication consist of a record con-
taining four fields: a system generated primary key, the full 
pathname for a file, the priority of the file, and the size of 
the file. The priority of each file is 100, 200, 300 or 400, 
the higher the number the higher the priority, 

 
{ }100,200,300,400 , 1,...ip i n∈ = . 

 
A uniform distribution is used to generate the random 

priorities for the simulation. All of the filenames and sizes 
were obtained from four file systems on a single work-
station.  Table 1 is an excerpt from the database used for 
replication request for the simulation. 

 
Table 1: Replication Request Database Excerpt 

PK PRIORITY SIZE FILENAME 
0 300 42546201  /…/2.6_Recommended.tar.Z
1 100 351363  /…/gcc-2.95.2/.brik 
2 400 345  /…/.cvsignore 
3 200 212246  /…/ChangeLog 

 
To take into consideration the effects of file modifica-

tions requiring a variable size update over multiple replica-
tion intervals, the simulation uses a uniform random per-
centage of each file to be replicated when it is submitted to 
the scheduler.  

4.1.2 Off-Line Processing 

In this simulation, the capacity of the knapsack is defined 
as the capacity of the fixed bandwidth connection for the 
replication between the primary data source and replica. 
The value of the items used for optimization, p, is their as-
signed priority.  The optimization function, O as described 
by the linear integer program (1), is calculated after a pre-
determined timeframe or time slice. The resultant decision 
vector, x, used to calculate O, provides the optimal accep-
tance policy for a time slice. Based on this policy, two 
queues are created, one containing the items accepted for 
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replication and the second for the rejected items rejected. 
In the next time slice, new replication request are added to 
the items in the rejected queue and the process repeats.  
Items that cannot be scheduled during their replication in-
terval specified as an integer number of time slices are re-
jected. The MinKnap algorithm developed by Pisinger 
(1997) is used to calculate O. 

4.1.3 Real-Time Processing 

The neural network works within the pattern in which it is 
trained.  The pattern is a replication interval, which repeats. 
While the files to replicate repeat over time, whether the 
file is modified and the size of the modification varies. The 
neural network used in this study is a Multi-Layer Percep-
tron (MLP), which is built and trained using the NeuroSo-
lutions software tool. NeuroSolutions uses the back-
propagation of errors to train the MLP network (Figure 3).  
The MLP used has a single hidden layer with three inputs 
and a single output.  

 

 
Figure 3: Multi-Layer Perceptron 

 
As items are accepted or rejected for replication from 

the off-line processing, a comma-separated record is writ-
ten to an output file. Each record contains seven fields: a 
primary key (PK), time slice of replication request 
(TIME), time spent in queue before admittance (TIQ), 
admittance or rejection (A/R), priority of request 
(PRIORITY), size of request (SIZE), the percentage of 
the capacity used when the item is queued for transmis-
sion (CAPACITY_USED), and the full file pathname 
(FILE). The input parameters of the MLP are: 
PRIORITY, SIZE, and CAPACITY_USED. All of these 
parameters are numeric.   

The desired output is the A/R parameter.  The A/R 
parameter is our decision vector. The parameters PK, 
TIME, TIQ and FILE are not used by the MLP. The pa-
rameters TIME and TIQ are used by the off-line process-
ing to determine when a replication interval has expired. 
The replication algorithm uses the parameters PK and 
FILE. This output file is used in training the MLP net-
work. Table 2 is an excerpt from the results of testing a 
MLP network. As seen in Table 2, the MLP provides real 
outputs for the accept/reject criteria. To use the MLP re-
sults as the acceptance policy for the scheduler, the re-
sults are rounded as follows to provide integer results: 
 

0.5 0.5, 0i ix x− ≤ < =  for i = 0, …, n, 

0.5 1.5, 1i ix x≤ < =  for i = 0, …, n, 

otherwise 2ix =  for i = 0,…, n, (an error condition). 
 

Table 2: MLP Results 
   Des A/R    Out A/R 
  0.000000  -0.002276 
  0.000000   0.004267 
  0.000000   0.004334 
  1.000000   1.006103 

 
Once the MLP network is trained and validated, pro-

duction data is submitted to the network. The results of the 
MLP network are validated by submitting the same pro-
duction data to the off-line processing optimization and 
comparing results. This validation determines a valid MLP 
network and identifies when the input pattern is changing 
and the network requires retraining.  

4.1.4 Results 

The first example presented uses 13,760 events over 10 time 
slices.  The 10 time slices represent one replication interval 
for each of the replication request. The acceptance policy 
was biased by varying the capacity of the link plus and mi-
nus one order of magnitude from a base value. The off-line 
processing produced the results shown in Table 3. 

 
Table 3: Off-Line Optimization Results 

 Capacity DP Time Accept Reject 
Biased 
reject 

18874 22.462s 2,881 10,879 

Unbiased 188743 21.879s 6,808 6,952 
Biased      
accept 

1887430 22.290s 12,207 1,553 

 
A MLP network was created for each of the cases.  

Each MLP network used 40% of the data for training (5504 
rows), 20% (2752 rows) for cross validation during the 
training and 40% (5504 rows) for testing previously unseen 
data. The results of the testing are shown in Table 4. 

 
Table 4: MLP Test Results 

 Desired 
accepted 

Desired 
rejected 

Test 
data 

correct 

Test 
data 

wrong 
Biased reject 1008 4496 5504 0 
Unbiased 2318 3186 5504 0 
Biased accept 4768 736 5504 0 
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A more advanced example is to enhance the simula-
tion to support multiple replication intervals. If a file can-
not be replicated during the replication interval, the event 
is rejected for admission. The training in this example used 
30,000 rows of data that represent three replication inter-
vals for 10,000 files.  Replication requests were made at a 
constant rate of 1000 per time unit for ten time units.  
Three replication intervals were run. Each replication in-
terval consisted of 10,000 request of the same files, same 
priorities, but with different modification sizes and a re-
sulting different capacity utilization. The format of the test 
was the same as the previous example, 40% for training, 
20% for cross validation and 40% for testing. Table 5 pro-
vides an interval breakdown of the results of the off-line 
programming optimization. The off-line processing took 
24.12s. The 30,000 entries were randomized before train-
ing, cross validation and testing. The training time was 
13:33 with a MSE of 0.000193. The validation test proc-
essed 12,000 files; 6125 for acceptance and 5875 were re-
jected.  All files were processed correctly as compared to 
the optimal solution. 

 
Table 5: Off-Line Processing Optimization Results 

Interval Accepted Rejected 
1 5402 4598 
2 5440 4560 
3 5448 4552 

 
Once the MLP network was trained and validated, two 

production runs of six 10,000-file replication intervals 
were made.  The first run consisted of the three intervals 
used in training, validation and testing plus three additional 
intervals.  To validate the results of the MLP network, the 
same replication request provided to the MLP network 
were provide for offline processing optimization. The in-
terval breakdown of the off-line processing is provided in 
Table 6.  The offline processing took 50.138s.   
 

Table 6: Production Run 1 Off-Line Processing Results 
Interval Accept Rejected 

1 5402 4598 
2 5440 4560 
3 5448 4552 
4 5457 4543 
5 5390 4610 
6 5408 4592 

 
The resultant acceptance policy from the offline proc-

essing and the MLP network were compared for the 60,000 
files processed.  All files were processed correctly based 
on the optimal solution with 32,545 files accepted and 
27,455 files rejected. 

The second production run also consisted of 60,000 
files, comprised by six 10,000-file replication intervals.  All 
six of the intervals were new data to the MLP. Again the 
replication requests were provided both to the off-line proc-
essor and the MLP network (Table 7). The resultant accep-
tance policy from the offline processing and the MLP net-
work were compared for the 60,000 files processed. Again 
all files were processed correctly based on the optimal solu-
tion with 32,426 files accepted and 27,574 files rejected. 

 
Table 7: Production Run 2 DP Optimization Results 

Interval Accept Reject 
1 5405 4595 
2 5378 4622 
3 5396 4604 
4 5425 4575 
5 5412 4588 
6 5410 4590 

 
There were several lessons learned in training the neural 

network.  The most significant was that if the training data 
was largely biased, not enough training data will be provided 
for the policy against the bias.  In this case, results have 
shown the acceptance policy for the cases against the bias to, 
basically, be a guess.  For example, one result of the dy-
namic programming optimization was 1075 accepted and 8 
rejected events.  The MLP used 40% for training (434 rows), 
20% for cross validation (215 rows) and 40% for testing 
(434 rows). The training time took only 51 seconds and the 
mean square error was 0.000086.  The results of the test 
showed 433 files processed with 430 accepted and 3 re-
jected.  The MLP network processed 431 of the files cor-
rectly with 2 files processed incorrectly. Upon inspection of 
the rejected events, one was correct and two were incorrect 
as seen in the output below: 

 
Desired: 0.000000 : Output: 0.117583 
Desired: 0.000000 : Output: 0.730678 
Desired: 0.000000 : Output: 0.940221. 

4.2 Enhanced Scheduler for  
DR Data Replication 

The aforementioned model does not prevent starvation and 
in some cases promotes it.  As each file is submitted for 
replication, it is placed in a queue.  At predetermined times 
the queue of request is evaluated and the calculation of 
objective function is made.  The files defined by the 
objective function are replicated; those not identified for 
replication remain in the queue.  If the file is not replicated 
in the number of time slices that make up the replication 
interval for the file, the replication request is denied.  The 
file would again be scheduled for replicated for replication, 
but this replication request would include all former 
modifications and any modifications made during the 
previous replication interval. Figure 4 provides an example 
of replication request for a file, f0, every four time slices. 
Unless modifications made during previous replication 
intervals have been deleted, the file deltas will tend to 
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increase in size. Since the priority of the file is generally 
constant, the likelihood of replication tends to diminish 
slightly with each replication interval, thus increasing the 
likelihood of starvation from replication for a given file. In 
order to diminish the impacts of starvation, the model 
previously presented is enhanced.  In the simulation, deltas 
between replications are allowed to grow or shrink. The 
delta is determined randomly as a zero to one hundred 
percentage of file size. 

 

 
Figure 4: Replication Intervals 

 
The proposed model expands the objective function of 

the 0-1 Knapsack model to include an exponential time 
component. An instance of the enhanced knapsack problem 
(EKP) can be defined as given a set N, consisting of n item 
i with priority pi and size si, and the capacity value c. The 
priority pi is a element of the set {2, 3, 4}. Select a 
subset of N such that the total priority of the selected items 
is maximized, while each item is selected at least once dur-
ing its replication requirement with high likelihood and the 
total size does not exceed c. 

Formally, an EKP can be formulated as a solution for 
the following linear integer programming formulation: 

 

Maximize O = 
1

n
t
i i

i

p x
=
∑   

Subject to
1

n

i i
i

s x c
=

≤∑  (2) 

{ }0,1 , 1,...ix i n∈ =  

{ }2,3,4 , 1,...ip i n∈ = . 
 
The exponent t is defined as the replication interval, 

1…m, until the first replication. After that, t is set to 1. 
The decision vector x identifies which items are to be in-
serted into the knapsack. The value m is defined as the ra-
tion of RR/RI where RR is the required replication and RI 
is the replication interval. The value t is incremented after 
a replication interval in which the item was not replicated. 
At the expiration of the RR, the value of t is reset to 1 and 
the filename is logged as not having been replicated. The 
object function escalates the values faster for the shorter 
interval replications and slower for the items that have 
longer replication intervals.  
Replication request are made to the scheduler in four 
flows.  Each flow has its own flow rate per replication in-
terval, the items per replication, its own replication interval 
definition, RI, and replication requirement definition, RR. 
Table 8 provides simulation parameters. The MLP used in 
this case study has two hidden layers with three inputs and 
a single output as before. 

 
Table 8: Simulation Flows 

Input Items / replication Primary key RI RR 
Flow1 298    0 – 297 4 96 
Flow2 422 300 – 721 16 96 
Flow3 200 750 – 949 32 672 
Flow4 2038   950 – 2987 96 672 

 
Validation consisted of a simulation run for 1,347 time 

slices. The training took 4:15:02 and provided a MSE of 
0.002338. Testing included 33,546 items, 100,643 items 
used for training and 33,546 items used for cross valida-
tion. The average t value in the simulation is 1.035. The  
results  of comparing the acceptance policy from the off-
line processing and the MLP network for the 33,546 files 
produced 33,545 correct decisions, 1 incorrect decision 
with 27,423 files accepted and 6,123 files rejected. This 
simulation is 99.997% of optimal. The incorrect decision 
came from a desired value of 1.000000 with an output 
value of 1.548140 which was treated as a error condition. 

5 CONCLUSIONS 

The simulations have shown the approach of a real-time 
optimization using a Multi-Layer Perceptron Network to 
work extremely well for determining acceptance given a 
QoS policy for a replication scheduler. The main issue with 
this approach is ensuring that the patterns in the data are 
adequately represented in the training data and recognizing 
when a pattern is changing or a new pattern is present.  The 
solution presented is to continue the offline processing of 
the data, comparing scheduler and optimal results with 
subsequent updating of network weights as required. In 
situations were patterns are known and repeating, changing 
to a predetermined MLP works well. 

ACKNOWLEDGMENTS 

This work has been supported in part by an Academic 
Fellowship from the Dahlgren Division of the Naval 
Surface Warfare Center (NSWCDD) and the Submarine 
Launched Ballistic Missile (SLBM) program. 

REFERENCES 

Alsberg, P. A. and J. D. Day. 1976. A principle for resilient 
sharing of distributed resources. In Proceedings of the 



Adams, Gračanin, and Teodorović 

 

2nd International Conference on Software Engineer-
ing, 627 – 644. 

Bernstein, P. A. and N. Goodman. 1983. The failure and 
recovery problem for replicated databases.  In Pro-
ceedings of the 2nd ACM Symposium on Principles of 
Distributed Computing, 114-122. 

Bernstein, P. A. and N. Goodman. 1984. An algorithm for 
concurrency control and recovery in replicated distrib-
uted databases. ACM Transactions on Database Sys-
tems, 9(4): 596-615. 

Bernstein, P. A., V. Hadzilacos, and N. Goodman. 1987. 
Concurrency Control and Recovery in Data base Sys-
tems. Addison-Wesley. 

Gifford, D. K. 1979. Weighted voting for replicated data. 
In Proceedings of the 7th Symposium on Operating 
System Principles, 150-162. 

Gray, C. G. and D. R. Cheriton. 1989. Leases: An efficient 
fault-tolerate mechanism for distributed file cache 
consistency.  In Proceedings of the 12th ACM Sympo-
sium on Operating System Principles, 202-264. 

Gray, J. 2003. Distributed Computing Economics, IEEE 
Task Force on Cluster Computing. Available online 
via <http://www.clustercomputing.org/ 
content/tfcc-5-1-gray.html>. [accessed 
August 19, 2004].  

Helal, A., A. Heddaya, and B. Bhargava. 1996. Replication 
Techniques in Distributed Systems, 13-60, Kluwer 
Academic Publishers. 

Hitz, D., J. Lau, and M.A. Malcolm. 1994. File System 
Design for an NFS File Server Appliance. In Proceed-
ings USENIX Winter 1994 Conference, 235-246. 

Howard, J., M. Kazar, S. Menees, D. Nichols, M. Satyana-
rayanan, R. Sidebotham, and M. West. 1988. Scale 
and performance in a distributed file system. ACM 
Transactions on Computer Systems, 6(1): 51-81. 

Keller, H., U. Pferschy, and D. Pisinger. 2004. Knapsack 
Problems. Springer-Verlag. 

Kistler, J. J. and M. Satyanarayanan. 1992. Disconnected 
operation in the coda file system.  ACM Transactions 
on Computer Systems, 10 (1): 3-25. 

Kumar, A. 1991. A randomized voting algorithm. In Pro-
ceedings of the IEEE 11th International Conference on 
Distributed Computing Systems, 412-419. 

Minoura, T. and G. Wiederhold. 1982. Resilient extended 
true-copy token scheme for a distributed database sys-
tem.  IEEE Transactions on Software Engineering, 
9(5):172-189. 

Muthitacharoen, A., B. Chen, and D. Mazières. 2001. A 
low-bandwidth network file system, In Proceedings of 
the eighteenth ACM symposium on Operating systems 
principles, 174-187. 

Patterson, H., S. Manley, M. Federwisch, D. Hitz, S. 
Kleiman, and S. Owara. 2002. SnapMirror: File System 
Based Asynchronous Mirroring for Disaster Recovery. 
In Proceedings of the FAST 2002 Conference on File 
and Storage Technologies,117-129. 

Pisinger, D. 1997. A minimal algorithm for the 0-1 knap-
sack problem. Operations Research, 45:758-767. 

Reisner, P. 2001. DRDB, In Proceedings of UNIX en High 
Availability, 93 – 104. 

Shepler, S., B. Callaghan, D. Robinson, R. Thurlow, C. 
Beame, M. Eisler, and D. Noveck. 2000. NFS version 
4 protocol. RFC 3010, Network Working Group. 

Thomas, R. H. 1979. A majority consensus approach to con-
currency control for multiple copy databases.  ACM 
Transactions on Database Systems, 4(2):180-209. 

Tridgell, A. 2000. Efficient Algorithms for Sorting and 
Synchronization. PhD thesis, Australian National 
University. 

AUTHOR BIOGRAPHIES 

KEVIN ADAMS is a senior Scientist for the SLBM pro-
gram at NSWCDD and a Ph.D. student in Computer Sci-
ence at Virginia Tech. He has a B.S in Computer Science 
from James Madison University in 1986. He has a M.S. in 
Computer Science and a M.S. in Electrical Engineering 
from Virginia Tech in 1992 and 1998 respectively. He is a 
member of the IEEE Computer Society and the ACM. His 
email address is  <keadams2@vt.edu>. 

 
DENIS GRAČANIN is an Assistant Professor in the De-
partment of Computer Science at Virginia Tech. He has a 
B.S. and M.S. degree in Electrical Engineering from the 
University of Zagreb, Croatia in 1985 and 1988, respec-
tively. He has a M.S. and Ph.D. degree in Computer Sci-
ence from the University of Louisiana at Lafayette in 1992 
and 1994, respectively, His research interests include vir-
tual reality and distributed simulation. He is a senior mem-
ber of IEEE and a member of AAAI, ACM, APS, SCS, 
and SIAM. His email address is <gracanin@vt.edu>. 

DUŠAN TEODOROVIĆ is a Professor of Civil and Envi-
ronmental Engineering at Virginia Polytechnic Institute 
and State University in Falls Church, VA.  He has a B.S., 
M.S., and Ph.D. degree in Engineering from the University 
of Belgrade in 1973, 1976, and 1982, respectively. His re-
search interest include Transportation Networks, Air 
Transportation, Public Transportation, Traffic Engineering, 
Fuzzy Systems, Neural Networks, Metaheuristics, Swarm 
Intelligence, Operations Research and Artificial Intelli-
gence Applications in Transportation. His email address is 
<duteodor@vt.edu>. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1847
	02: 1848
	03: 1849
	04: 1850
	05: 1851
	06: 1852
	07: 1853
	08: 1854
	09: 1855


