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ABSTRACT 

In this research, we investigate how well Weibull, Gamma, 
and special bimodal distribution are suited as an alternative 
to the exponential distribution approach in the stochastic 
modeling of machine downtimes and times between failures. 
We also discuss the question whether sampling shop-floor 
data should not only include first order statistics, but also 
measures that allow to monitor and model the variability of 
the equipment and processes and even the correct distribu-
tion of the data. 

1 INTRODUCTION 

A typical semiconductor manufacturing facility contains up 
to 1000 various machines and tools. Besides the 
complexity of handling this vast amount of equipment, 
there are several other factors that make production 
planning and control in this environment particularly 
difficult. (Cf. (Schömig and Fowler 2000) and (Uzsoy et al. 
1992) for a thorough summary of these factors and shop-
floor control problems in semiconductor manufacturing.) 
Unpredictable machine downtimes are believed to be the 
main source of uncertainty in the semiconductor 
manufacturing process. Obviously, downtimes are a severe 
problem, since production capacity is lost and the flow of 
material is disrupted. The reliability of semiconductor 
manufacturing equipment is unusual from a number of 
standpoints. Despite of all efforts to tune and calibrate 
machines to an optimum performance, they are still subject 
to random failures. The failure of equipment or processes is 
often not a hard failure in the sense that something obviously 
breaks or goes wrong; but rather, a soft failure in which the 
equipment begins to produce out of the tolerance region. For 
this reason, the equipment usually completes a lot or batch 
prior to being taken out of service for repair which often 
involves more tuning, calibration, and test rather than 
component replacement. Since some wafer fabrication tools, 
such as ion implanters, may be down 30-40% of the time, 
the impact of periods of unavailability on production control 
as well as overall productivity is tremendous. Hence, 
appropriate modeling of equipment and process failures is a 

 

must to derive meaningful output performance measures. 
The SEMI E10 and E58 standards provide a framework for 
sampling machine-level data in the semiconductor industry. 

Downtime is a period of time during which the equip-
ment is not in a condition to perform its intended function. 
This period does not include any portion of time, where the 
equipment or the entire facility are not scheduled to per-
form fabrication. Generally, it is distinguished between 
scheduled and unscheduled downtimes. 

A scheduled downtime occurs, when the equipment is 
not available to perform its intended function due to 
planned events such as preventive maintenance, production 
test, change of consumables, and machine setup for run-
ning a different process. All of these procedures are clearly 
separable and planned in their respective process. Also in-
cluded are test run times for the required subsequent re-
qualification and re-approval. Waiting times resulting from 
delays in the process are also included. 

Unscheduled downtimes are periods of time during 
which the equipment is not in a condition to perform its in-
tended function due to an unplanned event. Examples are: 
technical failures, unplanned measures to secure operation, 
unplanned shut down of supply infrastructure. These 
events interrupt equipment operation. In resolving these 
interruptions (Interrupts) they are distinguished as follows 
based on timing and personnel requirements: 

An assist is an unplanned interruption that occurs dur-
ing an equipment cycle if all three of the following condi-
tions apply: (1) The interrupted equipment cycle is re-
sumed through external intervention (e.g. by an operator), 
(2) there is no replacement of a part, other than specified 
consumables, (3) there is no further variation from specifi-
cations of equipment operation. An assist usually lasts not 
longer than 6 minutes. A failure, however, is any un-
planned interruption or variance from the specifications of 
equipment operation other than assist. 

2 MODELING EQUIPMENT DOWNTIMES 

Obtaining the averages of uptimes and downtimes are suffi-
cient when these time periods are assumed to be exponen-
tially distributed. This is the prevalent assumption in reli-
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ability and simulation modeling when using simple mod-
els. Previous experiments (Schömig 1999) were concerned 
with exploring the effect of the distribution of down 
events. The results proved the corrupting influence of vari-
ability, that is caused by equipment unavailability, and also 
showed the shortcomings of classical static capacity calcu-
lations, the experiments concerning the type of the down-
time distribution however, found no significant difference 
even when the system reaches a high load. Hence, it was 
concluded that in this case the actual distribution of down-
times play only a minor role in the performance of the fab. 

Further experimentation in the context of an investiga-
tion concerning how simplifying assumptions in the sto-
chastic modeling process for closed form queuing-type 
formulae affect the derived output performance measures 
as well as recent publications (Leemis 2001) gave reason 
to revisit the problem of finding an appropriate distribution 
for modeling the productive time between equipment fail-
ures and the time to repair. 

In (Schömig and Rose 2003), we discussed the prob-
lems of finding the parameters for a Weibull failure model 
from real fab data. In addition, we provided some first re-
sults on the effects of different failure models on cycle 
times for a variety of fab models. We concluded that not 
only the mean and variance of the failure data plays an im-
portant role but also the shape of the distribution. 

3 BIMODAL FAILURE MODEL 

Because of several practitioners’ comments on our afore-
mentioned paper we investigated bimodal TTF (Time To 
Failure) and TTR (Time To Repair) distributions for our 
factory models. The principal motivation is that real fac-
tory tool failure measurement histograms are also bimodal 
in a lot of cases. This is due to the fact that there are a lot 
of short outages that happen frequently and a few long fail-
ures that occur rarely. 

Due to the lack of real fab data, we developed a simple 
model for this type of machine failures where we can use 
given averages for the TTR and TTF and their coefficients 
of variation (CoV), where the CoV is defined as the stan-
dard deviation divided by the mean. The two CoVs are as-
sumed to be the same for TTR and TTF. 

For simplicity, we construct our bimodal distributions 
from two symmetric triangular distributions of type 

 ( ) ( ) ( )( )tria min,mode,max tria 1 , , 1 ,  

where 0 1.

m m m= − ∆ + ∆

< ∆ <
 

The mean of this triangular distribution is m , its vari-

ance is
2 2

6
m∆ , and its CoV is 

6
∆ . 

In the first part of model description we outline the 
computation of the individual average values for TTF and 
TTR of the two triangular distributions. In the second part, 
we determine the span/range of the triangular distributions 
to adapt the CoV of the bimodal distributions. 

In the following, we introduce the notation of the pa-
rameters used: 

Input parameters: Average TTR R and average TTF 
F , target CoV C . 

Output parameters: Average TTRs 1r and 2r , average 
TTFs 1f and 2f , span of the triangular distributions ∆ . 

In the sequel, subscript 1 will be used for the 
short/frequent failures and 2 for the long/rare ones. 

To compute 5 output parameters from 3 input parame-
ters we need to introduce an additional assumption: Both 
the short/frequent and the long/rare failures lead to the 
same outage percentages 11 a− and 21 a−  which are equal to 
half the outage percentage induced by the input parameters 
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In addition, we need to relate one of output parameters 

to one of the input parameters. In our case we choose 1r  

from the interval ;
2
R R 

  
. 

Smaller values of 1r lead to larger CoVs and larger val-
ues to smaller CoVs of the resulting bimodal distribution. 

After some algebra we end up with 
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Based on these 4 average values, the probability 

1α that a short/frequent outage is computed results in 
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The variance of the bimodal distribution for the TTR 
generated from the two triangular distributions is derived 
as 

 ( )
2

2 2
1 1 2 2

6
6

r r Rα α+ ∆ + − . 

 
This leads to a minimum CoV of the combination of 

triangular distributions of 
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for 0∆ = and a maximum CoV of 
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for 1∆ = . Hence, 1r  has to be selected appropriately to 
provide an adequate range of CoV values [ ]min max;C C  to 
choose from. Note, that after a value for 1r  is determined, 
all other variables apart from ∆  can be computed. Arbi-
trary CoV values from [ [0;∞  can be generated. For 

1r R= , we obtain min 0C = , and 1 2
Rr →  leads to 

maxC → ∞ . 
Given a target CoV [ ]min max;C C C∈ for the bimodal 

distribution, parameter ∆  is computed by 
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In summary, the two steps to determine the parameters 

of the triangular distributions are to find a value for 1r  that 
provides the appropriate interval [ ]min max;C C  and then to 
fine-tune the CoV by computing ∆  with the above formula. 
All dependent parameters are given explicitly. Thus, no nu-
merical problems are expected for the above formulae. 

4 SIMULATION EXPERIMENTS 

As test models we used the MIMAC (Measurement and 
Improvement of MAnufacturing Capacities) test bed data-
sets 1, 3, 4, 5, 6, 7. Dataset 2 was not used because the 
simulation package reported problems in the dataset. For 
further details on the datasets and their download: see 
<www.eas.asu.edu/~masmlab>.  

The simulation runs were carried out with Factory Ex-
plorer 2.8 from WWK. We simulated 7 years of fab opera-
tion with product mixes as given. The first two years were 
considered as warm-up phase and not taken into account 
for the statistics. We checked the length of the initial tran-
sient both by the cycle time over lot exit time charts and 
the Schruben test. If there was an indication of initial bias 
problems the warm-up phase was increased appropriately. 
The measurement interval was 5 years in all cases. As per-
formance measures we considered the average and the 
95%-quantile of the cycle times of all lots. 

We simulated factory loads from 70% to 98% of the 
bottleneck tool group capacity. As dispatching rules we 
used First In First Out (FIFO) and Critical Ratio (CR) with 
a target flow factor of 4.0. In the original fab models, all 
Time To Failure (TTF) and Time To Repair (TTR) distri-
butions were set to exponential. This leads to a coefficient 
of variation of 1 for TTF and TTR. In our experiments, we 
replaced the given exponential distributions by Gamma 
and Weibull distributions or our new bimodal failure 
model with the same mean values but different Coeffi-
cients of Variation. The following Gamma and Weibull 
distributions were considered: 

 
• CoV = 0.5: less variation than exponential distri-

bution, 
• Gamma distribution: shape parameter α = 4, 
• Weibull distribution: shape parameter α = 

2.10135, 
• CoV = 1.0: exponential distribution, 
• CoV = 2.0: more variation than exponential dis-

tribution, 
• Gamma distribution: shape parameter α = 0.25, 
• Weibull distribution: shape parameter α = 

0.54269. 
 
For the bimodal model we had to replace each of the origi-
nal unimodal exponential distributions by two triangular 
distributions running in parallel. Here, it is important that 
the simulator does not ignore down events that happen dur-
ing an ongoing down phase of a tool. If this happens the 
simulator has to prolong the current downtime by the 
amount of the new downtime. 

In Table 1, 2 and 3 we list the average cycle times of 
all lots for all fab models under a load of 98%. The cycle 
times are given as multiples of the lots’ raw processing 
times. The tables contain both the FIFO and the CR results. 
The 95%-quantiles are not given because they show essen-
tially the same behavior as the average cycle time results. 
As expected, the cycle times increase when the CoV values 
of the TTF and TTR distributions increase. For the low 
CoV values the cycle time results match. For the high CoV 
values, however, the shape of the distributions matters. 
Whether Gamma, Weibull, or bimodal models lead to 
higher cycle times depends on the fab model. In all cases, 
the results for the Exponential distribution are between the 
low and the high CoV results. 
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The conclusions from our simulation study are as fol-
lows. The CoV values of the TTF and TTR distributions 
have a considerable impact on the fab performance meas-
ures. The effect is less critical for CoV values less than 1 
than for CoV values larger than 1. The magnitude of the ef-
fects is model dependent. In general, the effects are stronger 
under FIFO than under CR dispatch regime. In addition to 
the CoV, the shape of the distribution also matters. 

 
Table 1:  Average Cycle Times for CoV=0.5 

FIFO Gamma Weibull Bimodal 
m1 2.2 2.2 2.4 
m3 1.8 1.8 1.8 
m4 1.5 1.5 1.6 
m5 1.8 1.8 1.8 
m6 2.2 2.2 2.2 
m7 1.3 1.3 1.3 

 
CR Gamma Weibull Bimodal 
m1 3.2 3.2 3.3 
m3 2.5 2.5 2.6 
m4 1.7 1.7 1.8 
m5 2.9 2.8 2.9 
m6 2.4 2.4 2.5 
m7 1.3 1.3 1.3 

 
Table 2:  Average Cycle Times for CoV=1.0 

FIFO Exponential Bimodal 
m1 3.1 3.0 
m3 1.8 1.8 
m4 1.9 1.9 
m5 1.9 1.9 
m6 2.6 2.5 
m7 1.4 1.5 

 
CR Exponential Bimodal 
m1 3.8 3.8 
m3 2.6 2.6 
m4 2.2 2.1 
m5 3.0 2.9 
m6 2.8 2.8 
m7 1.4 1.5 

 
 

Table 3:  Average Cycle Times for CoV=2.0 
FIFO Gamma Weibull Bimodal 

m1 7.4 6.2 5.4 
m3 1.9 1.8 1.9 
m4 4.1 4.2 3.0 
m5 2.6 3.0 2.7 
m6 4.7 3.7 3.4 
m7 1.8 1.8 2.0 

 
CR Gamma Weibull Bimodal 
m1 4.9 4.8 4.1 
m3 2.7 2.7 2.7 
m4 4.0 3.1 3.1 
m5 3.2 3.3 3.2 
m6 5.1 3.5 3.4 
m7 2.0 2.2 2.0 

 
Therefore it is questionable to use exponential distri-

butions for modeling TTF and TTR distributions if the 
CoV value measurements from the fab indicate that this 
value is not too close to 1. If it is larger than 1 it is recom-
mended to spend some effort on finding the appropriate 
class of model distributions because the shape of the distri-
bution has a considerable influence on the quality of the 
results. This does not only hold for the cycle-time esti-
mates but also for the on-time delivery performance esti-
mates as can be concluded from the 95%-quantile results. 

5 CONCLUSION 

In our research we investigated the appropriateness of non-
exponential distributions for modeling machine time to re-
pair (TTR) and time to failure (TTF) in semiconductor wa-
fer fabrication facility models. We examined whether a 
change in the type of TTR and TTF distributions had an 
effect on the performance measures, e.g., average cycle 
times, of a wafer fabrication facility. It turned out that both 
the variability and the shape of the distribution used for 
modeling TTR and TTF had a considerable effect on the 
factory performance estimates. Simplifying assumptions 
like using exponential distributions for that purpose will 
cause misleading simulation results. 
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