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ABSTRACT 

Computer simulations can be used to teach complicated sta-
tistical concepts in linear regression more quickly and effec-
tively than traditional lecture alone.  In introductory applied 
statistics classes, the coverage of important statistical topics, 
such as the nature of the sampling distribution of the simple 
linear regression slope, the problem of multicollinearity in 
multiple linear regression, or the danger of extrapolation in 
predictions from multiple linear regression models, may be 
shortened or eliminated entirely for lack of time.  Simulation 
can provide a way to introduce these topics in a brief, but 
memorable, way for introductory students or as the first step 
in a more thorough treatment for higher level students.  This 
paper describes each simulation, discusses its pedagogical 
advantages, and gives sample computer output. 

1 INTRODUCTION 

It is often said that “a picture is worth a thousand words,” 
but this actually understates the power of computer simula-
tions.  For many statistical concepts, including those con-
nected with linear regression that are discussed in this pa-
per, there are no words that can equal the pedagogical 
power of a simulation. 

This paper demonstrates three regression concepts that 
I have taught in both introductory and advanced applied 
statistics courses using simulations: 

 
• the sampling distribution of the simple linear re-

gression slope, 
• the sampling distributions of multiple linear re-

gression coefficients and the effect of multicollin-
earity on them, and 

• the danger of extrapolation in predictions from 
multiple linear regression models. 

 
The power of simulations is such that they can be used not 
only to cover these ideas more effectively, but also more 
quickly.  This allows an instructor to cover (even briefly) 

 

more advanced topics that otherwise might be skipped due 
to time constraints. 

For each of the topics listed above, the pedagogical 
goals of the simulation are defined and an example of a 
simulation is described.  The simulations described were 
programmed in the Data Desk 6.1 software program (Data 
Description, Inc. 1996) and require that program to run.  
Some of these simulations also exist in the ActivStats soft-
ware program (Velleman 2003).  In some cases, many 
equivalent simulations exist for other software platforms. 

2 THE SAMPLING DISTRIBUTION OF THE 
SIMPLE LINEAR REGRESSION SLOPE 

There are many examples of simulations to demonstrate 
the sampling distribution of the simple regression slope.  
Figure 1 shows a simulation of 20 sample regression lines 
(from ActivStats) from a population with regression model 

 
 0 10i i iY X ε= + + . (1) 
 
The red line in Figure 1 is the population regression line, 
while the 20 black lines are the sample regression lines.  
Such a simulation can satisfy several pedagogical goals. 

 

 
Figure 1:  A Simulation of 20 Sample 
Regression Lines 
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First, it demonstrates that the regression slope is a sam-
ple statistic that varies from sample to sample in the same 
way as other statistics, such as the sample mean.  Introduc-
tory statistics students are often so caught up in the com-
plexities of linear regression that they forget that the regres-
sion line produced from a sample of data is only an estimate 
of a theoretical population regression line with its own popu-
lation slope and intercept.  Showing a simulation of the es-
timated regression lines from many samples emphasizes that 
the concepts of parameters and statistics still apply for more 
advanced statistical methods. 

A good simulation should start with a single sample for 
demonstration before repeatedly sampling to create the dis-
tribution.  It is also helpful if the simulation displays the 
equations of the simulated sample regression lines.  This re-
inforces that each iteration of the simulation is a linear re-
gression.  Table 1 lists the 20 sample regression equations 
produced by the simulation in Figure 1. 

 
Table 1:  Sample Regression Equations for 
the 20 Samples Simulated in Figure 1 

Sample # Sample Regression Equation 
1 Y = -0.37 + 8.31 X 
2 Y = 3.02 + 8.9 X 
3 Y = -0.33 + 11.01 X 
4 Y = -0.19 + 10.86 X 
5 Y = 0.56 + 10.37 X 
6 Y = 0.71 + 11.47 X 
7 Y = -0.52 + 10.56 X 
8 Y = -2.54 + 11.34 X 
9 Y = -0.29 + 10.33 X 
10 Y = -1.66 + 9.67 X 
11 Y = 0.22 + 12.22 X 
12 Y = 0.37 + 11.22 X 
13 Y = 1.93 + 10.74 X 
14 Y = -1.02 + 9.75 X 
15 Y = 0.21 + 9.43 X 
16 Y = -2.18 + 9.42 X 
17 Y = -0.71 + 7.63 X 
18 Y = 1.44 + 9.55 X 
19 Y = 1.41 + 10.72 X 
20 Y = 0.26 + 10.57 X 

 
Second, the simulation shows that the method of least 

squares produces unbiased estimates of the population slope 
and intercept.  In Figure 1, the population regression line 
(red) can be seen in the middle of the pattern of sample re-
gression lines (black).  Figure 2 shows a histogram of these 
20 sample slopes with the population slope parameter of 10 
near its center.  The mean of the sample slopes, 10.2, can 
also be used as an indication that the least squares method is 
unbiased.  If time permits, multiple simulations for different 
parameter values and samples sizes could be used to show 
that the estimates remain unbiased in these situations.   
 
Figure 2:  Histogram of the Slopes from 
the Simulation 

 
Third, Figure 2 also shows that under the assumptions 

of the simple linear regression model, the sampling distri-
bution of the slope has a Normal distribution.  Of course, a 
greater number of iterations will provide a more Normal 
shape to the histogram.  Although, I have not attempted 
this, the simulation could be modified to show how viola-
tions of the regression error assumptions (Normality, equal 
variance, and independence) affect the behavior of the 
sampling distribution. 

Finally, the simulation can show how changes to the 
data affect the standard error of the sampling distribution 
of the slope.  The standard error of the slope is (De Veaux, 
Velleman, Bock 2004, p. 567) 
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where es  is the standard deviation of the residuals, and xs  
is the standard deviation of the x-values in the data. 

The equation shows that the standard error of the slope 
is affected by three inputs—the standard deviation of the 
residuals, the sample size, and the standard deviation of the 
x-values in the data.  An effective simulation will allow the 
user to alter the values of these inputs and show their effect 
on the spread of the sampling distribution. 

Before showing students formula (2) above, I usually 
ask for them to guess how changing each input will affect 
the standard error of the slope.  Many students quickly 
grasp the idea that larger errors or a smaller sample size 
will produce a more variable slope, but most students in-
correctly guess that reducing the spread of the x-values will 
reduce the variability in the slope.   

I use a simulation to demonstrate how the standard de-
viation of the x-values ( xs ) affects the standard error of the 
slope.  In the previous simulation (Figure 1), xs  = 1.  Fig-
ure 3 shows the data for one iteration from the set of 20 
shown in Figure 1.  The red line in Figure 3 is the popula-



Walker 

 
tion regression line.  The black line is the estimated regres-
sion line for the plotted sample observations. 

 

 
Figure 3:  One Sample from the Simula-
tion for xs  = 1 

 
Figure 4 shows one sample from a simulation with xs  

= 0.25.  Many programs automatically adjust the scale of the 
plot, but by keeping the scale fixed, the change in the stan-
dard deviation of the x-values is more obvious.  Again, the 
red line is the population regression line, and the black line 
is the estimated regression line of the plotted observations. 

 

 
Figure 4:  One Sample from the Simula-
tion for xs  = 0.25 

 
Figure 5 shows 20 sample regression lines (in black) 

superimposed over the population regression line (in red).  
Comparing Figure 5 ( xs  = 0.25) to Figure 1 ( xs  = 1), the 
change in the standard error of the slope is obvious when 
the x-values are narrowly spread.  Table 2 shows the mean 
and standard deviation of the 20 slopes from the two simu-
lations with xs  = 1 and xs  = 0.25.  The means indicates 
that the least squares slope is unbiased in either case, but 
the standard deviation of the 20 simulated slopes is ap-
proximately 4 times larger when xs  = 0.25—as equation 
(2) would predict.  This simulation is an excellent entry into 
a discussion of experimental design by demonstrating one 
reason why collecting data at widely spaced design points is 
superior to collecting data across only a narrow range. 

 

 
Figure 5:  A Simulation of 20 Sample 
Regression Lines for xs  = 0.25 

 
Table 2:  Summary Statistics for the Simulated Slopes 

xs  Mean( 1b ) SD( 1b ) 
1.00 10.20 1.12 
0.25 10.05 4.42 

3 MULTIPLE LINEAR REGRESSION AND THE 
PROBLEM OF MULTICOLLINEARITY 

Since multiple linear regression is even harder to visualize 
than simple linear regression, the use of technology to dem-
onstrate important concepts is even more valuable.  Not only 
is multiple regression harder to understand, but it can be af-
fected by data problems, such as hidden extrapolations 
(Kutner et al. 2004, p. 231) and multicollinearity (Kutner et 
al. 2004, pp. 278-289) that are difficult to diagnose and can 
have a catastrophic effect on the regression results. 

In demonstrating multiple regression, I typically use 
two separate simulations.  Both simulate multiple regres-
sions with two predictor variables.  The first simulation is a 
three-dimensional simulation of the behavior of the sample 
regression function, a two-dimensional function or plane.  
The second simulation uses partial regression plots (also 
known as added variable plots, Kutner et. al. 2004, pp. 384-
390) and so cannot be used unless that topic is also covered. 

3.1 Simulation Using the Regression Plane 

The goals of this simulation are:  first, to demonstrate the 
variability of the sample regression function from sample 
to sample; second, to show that this variability increases as 
the correlation between the predictor variables increases; 
and third, to show how this correlation between the predic-
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tor variables makes prediction using the regression equa-
tion extremely dangerous. 

The first simulation is done for data with no correla-
tion between 1X  and 2X .  Figure 6 shows a simulated 
sample of 100 observations from a population with a re-
gression relationship described by the model equation 

 
 1 20 1 1i i i iY X X ε= + + + , (3) 
 
which is plotted as the red plane in the graph.  The sample 
regression function estimated from the data is 

 
 1 2ˆ 0.038 1.063 1.125y x x= − + + , (4) 
 
which is plotted as the green plane in the graph.  Table 3 
summarizes the estimated coefficients, standard errors, and 
p-values for this regression.  The simulation should be re-
peated many times to demonstrate the variability of the 
sample regression plane. 
 

 
Figure 6:  Plot of Y vs. 1X  and 2X  
Showing the Population (Red) and Sam-
ple (Green) Regression Planes with No 
Correlation between 1X  and 2X  

 
Table 3:  Output for the Regression in Figure 6 

Statistic Value Std. Err. P-Value 
0b  -0.038 0.129 0.769 

1b  1.063 0.162 < 0.001 

2b  1.125 0.156 < 0.001 
 

For the next simulation 1X  and 2X  have a 0.995 cor-
relation.  Figure 7 shows the same population regression 
plane as in (3) plotted in red.  The equation for the esti-
mated regression equation, which is plotted in green, is 

 
 1 2ˆ 0.106 1.671 0.250y x x= + + . (5) 
 
The results for this regression are summarized in Table 4.  
This example allows students to see how much the stan-
dard errors of 1b  and 2b  are inflated by the correlation be-
tween predictors.  In this case, the effect of the multicollin-
earity is so large that the p-values for the individual 
predictors are both insignificant at a 5% significance level 
while the F-statistic of the overall regression (not shown) is 
a highly significant 83.5 with a p-value < 0.001. 

 

 
Figure 7:  Plot of Y vs. 1X  and 2X  Showing 
the Population (Red) and Sample (Green) Re-
gression Planes with Correlation 0.995 between 

1X  and 2X  
 

Table 4:  Output for the Regression in Figure 7 
Statistic Value Std. Err. P-Value 

0b  0.106 0.118 0.372 

1b  1.671 1.557 0.286 

2b  0.250 1.551 0.873 
 

This simulation can also be used to highlight the dan-
gers of extrapolation when using the regression equation 
(5) for prediction.  Figure 7 shows a large gap between the 
position of the population regression plane (red) and the 
sample regression plane (green).  The two planes are 
widely separated for any combinations of 1X  and 2X  that 
lie far away from the sample data.  Figure 8 is a plot of 1X  
vs. 2X .  Predictions for values ( 1X , 2X ) that lie within 
the sample data are likely to be reliable, despite the multi-
collinearity, because this is where the planes cross in Fig-
ure 7.  However, predictions for other values ( 1X , 2X ) are 
very unreliable because the prediction ŷ  on the green 
plane is far from the mean response E(Y) on the red plane. 

 

 
Figure 8:  Plot of 1X  vs. 2X  Showing 
Correlation 0.995 
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3.2 Simulation Using Partial Regression Plots 

A partial regression plot (Kutner et al. 2004, pp. 384-390) 
displays the multiple regression coefficient of a single pre-
dictor variable in a two-dimensional graph.  (Contrast this 
with a scatterplot, which shows the simple regression coef-
ficient.)  The plot shows the relationship between the re-
sponse and a predictor variable after removing any linear 
relationship with the other predictor variables.  In the 
model for a response variable Y and two predictors, 1X  
and 2X , there will be two partial regression plots, one for 
the coefficient of 1X  and another for the coefficient of 

2X .  The slope of the least squares regression line applied 
to the data on a partial regression plot of 1X  is the multiple 
regression coefficient of 1X . 

The partial regression plot for 1X  displays “the part of 
Y not linearly related to 2X ” on its vertical axis and “the 
part of 1X  not linearly related to 2X ” on its horizontal 
axis.  These adjusted variables are denoted 2Y X•  and 

1 2X X•  respectively to represent that Y and 1X  have been 
adjusted with respect to 2X .  This adjustment is made by 
fitting a linear regression for Y vs. 2X  and 1X  vs. 2X  (in 
which 1X  is the response) and keeping only the residuals, 
which are not linearly related to 2X . 

The next simulation uses animated partial regression 
plots to demonstrate the behavior of the multiple regression 
coefficients from the population regression model 

 
 1 20 1 0.5i i i iY X X ε= + − +  (6) 
 
under different degrees of multicollinearity. 

Let r denote the correlation between 1X  and 2X .  
Figures 9 and 10 show regression lines for 20 samples of n 
= 50 from the partial regression plots of 1X  and 2X  re-
spectively when r = 0.  For each graph, the slope of the red 
line is the parameter value while the slopes of the 20 black 
lines are the estimated multiple regression coefficients. 

 

 
Figure 9:  A Summary of Regression Lines 
from the 20 Partial Regression Plots of 1X  
for r = 0 

 

 
Figure 10:  A Summary of Regression Lines 
from the 20 Partial Regression Plots of 2X  
for r = 0 

 
Table 5 shows the mean and standard deviation of the 

estimated coefficients from the 20 samples.  The means 
can be used to discuss the unbiasedness of the least squares 
estimators while the standard deviations provide a baseline 
for later comparisons when 1X  and 2X  are highly corre-
lated.  As in the simple regression simulation, a table 
showing the 20 estimated regression functions is provided 
but is not shown here. 
 

Table 5:  Summaries of the 20 Estimated Coeffi-
cients for r = 0 

Statistic Mean SD 
1b  1.000 0.068 

2b  -0.488 0.082 
 
The simulation in ActivStats allows the user to adjust 

the correlation between the two predictors.  To introduce 
the idea of multicollinearity, I set r = 0.995 and repeat the 
simulation.  When 1X  and 2X  have a very strong linear 
relationship, the part of each that is not linearly related to 
the other is very small.  Therefore, 1 2X X•  and 2 1X X•  
will have a much smaller spread than 1X  and 2X . 

Figure 11 shows the partial regression plot of 1X  for 
one sample when r = 0.995.  Note that the spread of 

1 2X X• , which is on the horizontal axis of the plot, is very 
small.  Figure 11 is very similar to Figure 4, the simple re-
gression simulation for a narrow spread of x-values. 

As a result of the earlier simple regression simulation, 
students should already be familiar with the concept that a 
narrow spread of x-values will lead to more variability in 
the estimated slope.  Using this approach, students can cor-
rectly guess that multicollinearity will increase the vari-
ability of the estimated coefficients after seeing only Fig-
ure 11—before they have even seen the full simulation 
shown in Figures 12 and 13. 
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Figure 11:  Partial Regression Plot of 1X  
for One Sample with r = 0.995 

 
Figures 12 and 13 show 20 sample regression lines 

from the partial regression plots of 1X  and 2X  respec-
tively when r = 0.995.  Each plot displays the parameter 
value as the slope of the red line and the estimated coeffi-
cients as the slopes of the 20 black lines.  These displays 
demonstrate that although the estimates are still unbiased, 
their variability has dramatically increased.  This can also 
be seen in Table 6, which summarizes the mean and stan-
dard deviation of the estimated coefficients of the 20 sam-
ples when r = 0.995. 

 

 
Figure 12:  A Summary of Regression 
Lines from the 20 Partial Regression 
Plots of 1X  for r = 0.995 

 

 
Figure 13:  A Summary of Regression 
Lines from the 20 Partial Regression 
Plots of 2X  for r = 0.995 
Table 6:  Summaries of the 20 Estimated Coefficients 
for r = 0.995 

Statistic Mean SD 
1b  0.911 0.651 

2b  -0.412 0.645 
 
This simulation can also be used to show the relation-

ship between the correlation r and the amount of variance 
inflation.  Table 7 displays how the standard deviation of 
the 20 simulated 1b ’s changes when r = 0, 0.5, 0.75, 0.9, 
and 0.995.  The standard deviation of the simulated 1b ’s is 
more than twice as large when r = 0.9 than when r = 0.  
However, when r = 0.995, the standard deviation is almost 
10 times higher than when r = 0.  The last line of Table 7 
shows the ratio of the standard deviations when compared 
to the standard deviation for r = 0. 

 
Table 7:  Standard Deviation of Simulated 1b ’s 
for Different Correlations 
r 0 0.5 0.75 0.9 0.995 
SD( 1b ) 0.068 0.084 0.111 0.143 0.651 
Ratio 1 1.235 1.632 2.103 9.574 

 
Although this simulation is a simplification of the 

problem of multicollinearity in real data, it can give stu-
dents some insight into how large the correlation between 
predictors can be before the variance inflation begins to 
really affect the results of the analysis.  If time permits, this 
can be linked with coverage of the variance inflation factor 
(Kutner et al. 2004, pp. 408-410), a statistic used to detect 
multicollinearity. 

4 CONCLUSION 

The examples described above are only a few of the ways 
that simulation can be used to enhance the teaching of both 
simple and multiple regression concepts.  In addition to 
these, I have also used simulations to teach the concepts of 
leverage and influence and to demonstrate the effect of 
autocorrelated errors on a regression.  In more advanced 
classes simulations could also be used to explore how vio-
lations of the assumptions for the regression errors (Nor-
mality, equal variance, and independence) affect the sam-
pling distributions of the regression estimates. 

Based on my own experience, these simulations in-
crease students’ understanding of the material, stimulate 
class discussion, and in some cases reduce the time re-
quired to cover important topics that might otherwise be 
deemphasized or skipped entirely due to time constraints.  
They can be incorporated into a traditional lecture or used 
in a lab setting where students do the simulations them-
selves.  In either environment, I have found these simula-
tions to be extremely valuable in teaching regression. 
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