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ABSTRACT 

Many simulation experiments require considerable com-
puter time, so interpolation is needed for sensitivity analy-
sis and optimization. The interpolating functions are 
‘metamodels’ (or ‘response surfaces’) of the underlying 
simulation models. For sensitivity analysis and optimiza-
tion, simulationists use different interpolation techniques 
(e.g. low-order polynomial regression or neural nets). This 
paper, however, focuses on Kriging interpolation. In the 
1950’s, D.G. Krige developed this technique for the min-
ing industry. Currently, Kriging interpolation is frequently 
applied in Computer Aided Engineering. In discrete-event 
simulation, however, Kriging has just started. This paper 
discusses Kriging for sensitivity analysis in simulation, in-
cluding methods to select an experimental design for 
Kriging interpolation. 
 
1 INTRODUCTION 
 
A primary goal of simulation is ‘what-if’ or sensitivity 
analysis: What happens to the outputs if inputs of the simu-
lation model change? Therefore simulationists run a given 
simulation program—or computer code—for (say) n dif-
ferent combinations of the k simulation inputs and observe 
the outputs. (Most simulation models have multiple out-
puts, but in practice these outputs are analyzed per output 
type.) To analyze this input/output (I/O) data, classic 
analysis uses low-order regression metamodels; see Klei-
jnen (1998). A metamodel is an approximation of the I/O 
transformation implied by the underlying simulation pro-
gram. (In certain disciplines, metamodels are also called: 
Response surface, compact model, emulator, etc.) Such a 
metamodel treats the simulation model as a black box; that 
is, the simulation model's I/O is observed, and the parame-
ters of the metamodel are estimated. This black-box ap-
proach has the following advantages and disadvantages. 

An advantage is that the metamodel can be applied to 
the output of all types of simulation models, either deter-
ministic or random, either in steady-state or in transient 
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state. A disadvantage is that it cannot benefit from the spe-
cific structure of the simulation model, so it may take more 
computer time compared with techniques such as perturba-
tion analysis and score functions. 

Metamodeling can also help in optimization and vali-
dation of a simulation model. This paper, however, does 
not discuss these two topics. Further, if the simulation 
model has hundreds of inputs, then special ‘screening’ de-
signs are needed, discussed in Campolongo, Kleijnen, and 
Andres (2000). The examples in this paper, however,  limit 
the number of inputs only to one or two. 

Whereas polynomial-regression metamodels have 
been applied extensively in discrete-event simulation (such 
as queueing simulation), Kriging has hardly been applied 
to random simulation. However, in deterministic simula-
tion (applied in many engineering disciplines; see for ex-
ample De Geest et al. 1999), Kriging has been applied fre-
quently, since the pioneering article by Sacks et al. (1989). 
In such simulation, Kriging is attractive because it can en-
sure that the metamodel’s prediction has exactly the same 
value as the observed simulation output. In random simula-
tion, however, this Kriging property may not be so desir-
able, since the observed (average) value is only an estimate 
of the true, expected simulation output. 

Note that several types of random simulation may be 
distinguished: 
 

1. Deterministic simulation with randomly sampled 
inputs. For example, in investment analysis the 
cash flow development over time can be com-
puted through a spreadsheet such as Excel. Next, 
the random values of inputs are sampled—such as 
the cash flow growth rate—by means of either 
Monte Carlo or Latin Hypercube Sampling (LHS) 
through an add-on such as @Risk or Crystal Ball; 
see Van Groenendaal and Kleijnen (1997). 

2. Discrete-event simulation. For example, classic 
queueing simulation is applied in logistics and 
telecommunications; see Van Beers and Kleijnen 
(2003). 
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3. Combined continuous/discrete-event simulation. 
For example, simulation of nuclear waste disposal 
represents the physical and chemical processes 
through deterministic non-linear difference equa-
tions and models the human interventions as dis-
crete events (see Kleijnen and Helton, 1999). 
 

The remainder of this paper is organized as follows. 
Subsection 2.1 sketches the history of Kriging and its ap-
plication in geology and in simulation. Subsection 2.2 de-
scribes the basics of Kriging and gives the formal Kriging 
model. Section 3 discusses classic designs for Kriging and 
mentions criteria for measurement of their performance. 
Subsection 3.1 treats customized designs for Kriging in de-
terministic simulation, whereas subsection 3.2 treats cus-
tomized designs for random simulation. Both subsections 
demonstrate the performance of the customized designs by 
two academic simulation models. Section 4 presents con-
clusions and topics for future research. 
  
2 KRIGING 
 
2.1 History of Kriging 
 
In the 1950s, the South African mining engineer D.G. 
Krige (born in 1919) devised an interpolation method to 
determine true ore-bodies, based on samples. The basic 
idea is that these predictions are weighted averages of the 
observed outputs, where the weights depend on the dis-
tances between the input location to be predicted and the 
input locations already observed. The weights are chosen 
so as to minimize the prediction variance, i.e., the weights 
should provide a Best Linear Unbiased Estimator (BLUE) 
of the output value for a given input. Therefore, Kriging is 
also called Optimal Interpolation. 

The dependence of the interpolation weights on the 
distances between the inputs was mathematically formal-
ized by the French mathematician Georges Matheron 
(1930-2000) in his monumental ‘Traité de géostatistique 
appliquée’ (1962). He introduced a function, which he 
called a variogram, to describe the variance of the differ-
ence between two observations. The variogram is the cor-
nerstone in Kriging. Hence, accurate estimation of the 
variogram, based on the observed data, is essential. Journel 
and Huijbregts (1978, pp. 161-195) present various para-
metric variogram models. The values of its parameters are 
obtained by either Weighted Least Squares (WLS) or 
Maximum Likelihood Estimation (MLE); see Cressie 
(1993). 

So Kriging originated in geostatistics to answer con-
crete questions in the gold mining industry: Drilling for 
ore—deep under the ground—is expensive, so efficient 
prediction methods are necessary. Later on, Kriging was 
successfully introduced into deterministic simulation by 
Sacks et al. (1989). For example, Kriging is nowadays of-
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ten applied in CAE. Van Beers and Kleijnen (2003) intro-
duce Kriging interpolation into the area of random simula-
tion. 
  
2.2 Formal Model for Kriging 
 
A random process Z(•) can be described by }:)({ DZ ∈ss  
where D is a fixed subset of Rd  and Z(s) is a random func-
tion at location D∈s ; see Cressie  (1993, p. 52). 

There are several types of Kriging, but this paper lim-
its to Ordinary Kriging, which makes the following two 
assumptions: 

 
1. The model assumption is that the random process 

consists of a constant μ and an error term )(sδ : 
 

RDZ ∈∈+= μδμ ,with)()( sss  
 

2. The predictor assumption is that the predictor for 
the point 0s —denoted by ))(( 0sZp —is a 
weighted linear function of all the observed output 
data: 
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To select the weights iλ  in (1), the criterion is minimal 
mean-squared prediction error (MSE), defined as 
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Substituting the variogram, defined as 
 

)]()(var[)(2 shsh ZZ −+=γ , 
 
in (2) gives the optimal weights nλλ ,,1 K  

   

1
/

1/

1/
/ 1 −

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= Γ

1Γ1
γΓ11γλ ,                    (3) 

 
where γ  denotes the vector of (co)variances 

/
010 ))(,),(( nssss −− γγ K , Γ  denotes the nn ×  matrix 

whose (i, j)th element is )( ji ss −γ , /)1,,1( K=1 is the vec-
tor of ones; also see Cressie (1993, p. 122). 

Note that these optimal Kriging weights iλ  depend on 

the specific point 0s  that is to be predicted, whereas lin-
ear-regression metamodels use fixed estimated parameters 
(say) β̂  for each 0s  to be predicted.  



Van Beers 
 

However, in (3) )(hγ  is unknown. The usual estimator 
is 
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where )(hN  denotes the number of distinct pairs in 

}{ ,,1,;:),()( njiN jiji K==−= hssssh ; see Matheron 
(1962).  
 
3 DESIGNS FOR KRIGING 
 
An experimental design is a set of n combinations of k fac-
tor values. These combinations are usually bounded by 
‘box’ constraints: with Rba jj ∈,  and kj ,,1 K= . The set 
of all feasible combinations is called the experimental re-
gion (say) H. We suppose that H is a k-dimensional unit 
cube, after rescaling the original rectangular area. 

Our goal is to find the ‘best’ design for Kriging pre-
dictions within H; the Kriging literature proposes several 
criteria (see Sacks et al. 1989, p. 414). Most of these crite-
ria are based on the predictor’s MSE (2). Most progress 
has been made for the IMSE (see Bates et al. 1996): 
 

( ) xxx dYIMSE
H

)()(ˆMSE φ∫=     (4) 

 
where MSE follows from minimizing (2), and )(xφ  is a 
given weight function—usually assumed to be a constant. 

To evaluate a design, Sacks et al. (1989, p. 416) com-
pare the predictions with the known output values of a test 
set consisting of (say) N inputs. Assuming a constant )(xφ  
in (4), the IMSE can then be estimated by the Empirical 
IMSE (EIMSE): 
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Besides this EIMSE, we will also study the maximum 

MSE; that is, we also consider risk-averse users (also see 
Van Groenigen, 2000). So IMSE—defined in (4)—is re-
placed by 
 

( ){ })(ˆmax x
x
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and EIMSE in (5) by 
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The most popular design type for Kriging is Latin Hy-
percube Sample (LHS). This type of design was introduced 
by McKay, Beckman, and Conover (1979) for determinis-
tic simulation models. Those authors did not analyze the 
I/O data by Kriging (but they did assume I/O functions 
more complicated than the polynomial models in classic 
DOE). LHS offers flexible design sizes n (number of input 
combinations actually simulated) for any k (number of 
simulation inputs). LHS proceeds as follows; also see the 
example for k = 2 factors in Figure 1. 

 
1. LHS divides each input range into n intervals of 

equal length, numbered from 1 to n (so the num-
ber of values per input can be much larger than in 
designs for low-order polynomials). 

2. Next, LHS places these integers 1,…, n such that 
each integer appears exactly once in each row and 
each column of the design matrix. 

3. Within each cell of the design matrix, the exact 
input value may be sampled uniformly. (Alterna-
tively, these values may be placed systematically 
in the middle of each cell. In risk analysis, this 
uniform sampling may be replaced by sampling 
from some other distribution for the input values.) 

x2

x1+1-1

+1

-1

(1)

(2)

(3)

(i): Scenario i (i = 1, 2, 3, 4)

(4)

 
Figure 1: A LHS Design for Two Factors & Four Scenarios 
 

Because LHS implies randomness, its result may hap-
pen to be an outlier. For example, it might happen—with 
small probability—that two input factors have a correlation 
coefficient of –1 (all their values lie on the main diagonal 
of the design matrix). Therefore the LHS may be adjusted 
to become (nearly) orthogonal; see Ye (1998). 

Classic designs simulate extreme scenarios—namely 
the corners of a k-dimensional square—whereas LHS has 
better space filling properties; again see Figure 1. This space 
filling property has inspired many statisticians to develop 
related designs. One type maximizes the minimum Euclid-
ean distance between any two points in the k-dimensional 
experimental area. Other designs minimize the maximum 
distance. See Koehler and Owen (1996), Santner, Williams, 
and Notz (2003), and also Kleijnen et al. (2004). 
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3.1 Customized Sequential Designs for Deterministic 
Simulation 
 
Kleijnen and Van Beers (2004) derive designs that are cus-
tomized; that is, they are not generic designs (such as pk −2  
designs or LHS). More precisely, these customized designs 
account for the specific input/output function of the par-
ticular simulation function at hand. This customization is 
achieved through cross-validation and jackknifing. Fur-
thermore, these designs are sequential, because sequential 
procedures are known to be more ‘efficient’; see, for ex-
ample, Ghosh and Sen (1991) and Park et al. (2002).  

The procedure starts with a ‘small’ pilot design of size 
(say) 0n . To avoid extrapolation, the procedure first selects 

the  k2  vertices of H. Besides these vertices, the procedure 
selects some extra points—space-filling—to estimate the 
variogram. After selecting and simulating the pilot design, 
the procedure selects (say) c candidate inputs—again,  
space-filling—without actually running the simulation 
model for these candidates. To find the ‘winning’ candi-
date, the procedure estimates the variance of the of the pre-
dicted output at each candidate input. Therefore, the proce-
dure uses cross-validation and jackknifing. Figure 2 
demonstrates the procedure for a fourth-order polynomial 
simulation model.  
Figure 2. Fourth-ordFigure 2. Fourth-order polynomia
example, including four pilot observations and three 
candidate inputs with predictions based on cross-
validation, where (-i) denotes which observation i is 
dropped in the cross validationer polynomial example
including four pilot observations and three candidate 
inputs with predictions based on cross-validation, whe
i) denotes which observation i is dropped in the cross 
validationFigure 2. Fourth-order polynomial example
including four pilot observations and three candidate 
inputs with predictions based on cross-validation, whe
i) denotes which observation i is dropped in the cross 
validation 

---  model,   O  I/O data,    ×  candidate locations, 
        •  predictions )( iY −  

 
Figure 2: Fourth-Order Polynomial Example, including 
Four Pilot Observations and Three Candidate Inputs with 
Predictions Based on Cross-Validation, where (-i) Denotes 
which Observation i is Dropped in the Cross Validation 
 

After selecting and simulating the winning candidate, 
the procedure adds the new observation to the current de-
sign. With respect to the augmented design, the procedure 
selects a new set of candidates. The sequential procedure— 
selecting a set of candidates, estimating the variance of the 
predicted output, simulating the winning candidate and 
augmenting the design—is stopped when a specified crite-
rion is reached. Kleijnen and Van Beers (2004) use the 
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Successive Relative Improvement (SRI) after n observa-
tions: 

 

1
2

1
22 }~{}~{}~{ −−−= nj

j
njjnjjn smaxsmaxsmaxSRI  

 
where njj

smax }~{ 2  denotes the maximum jackknife variance  

over cj ,,1 K=  candidates after n evaluations. Note that 
there are several stopping rules; for example, Sasena et al. 
(2002) use the Generalized Expected Improvement func-
tion, which selects inputs that have high model inaccuracy. 
They stop their tests—rather arbitrary—after 100 calls of 
this function, whereas Schonlau (1997) proposes to stop-
ping once the ratio of the expected improvement becomes 
sufficiently small, e.g. 0.01. 

Kleijnen and Van Beers (2004) test their Customized 
Sequential Designs (CSD) through two academic applica-
tions:    

1. the hyperbolic I/O function 
x

xy
−

=
1

 with 

10 << x  
2. the fourth-order polynomial I/O function 

2+14.1071+x6.845-x1.11+x-0.0579y 234 x=  
with 100 ≤≤ x . 

 
 To quantify the CSD’s performance, they use a test set, 
consisting of 32 true test values, and compare the Kriging 
prediction error for the CSD with the prediction error for a 
LHS design of the same size. Both EIMSE and EMaxIMSE  
have substantial smaller values for the CSD than for the 
LHS designs. Moreover, both examples show that the CSD 
procedure simulates relatively many input combinations in 
those sub-areas that have interesting I/O behavior. Figure 3 
shows the final design for the fourth-order polynomial ex-
ample with RSI < 1% and n = 24 observations. 
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Figure 3: Final Design for Fourth-Order Polynomial Ex-
ample with  n = 24 Observations 
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3.2 Designs for Random Simulation 
 
To select an experimental design for interpolation in ran-
dom simulation, especially discrete event simulation, Van 
Beers and Kleijnen (2004) propose a new method. Unlike 
LHS, the method accounts for the specifics of the model’s 
I/O function. More precisely, the method is customized. To 
estimate the prediction uncertainty at unobserved input 
combinations—caused by the noise and the shape of the 
I/O function—the method uses bootstrapping; i.e., for each 
scenario already simulated the outputs are re-sampled (for 
bootstrapping in general see the classic textbook, Efron 
and Tibshirani 1993; for bootstrapping in the validation of 
regression metamodels in simulation see Kleijnen and 
Deflandre, 2005). 
 Similar to the CSD for deterministic simulation, the 
procedure starts with a small pilot design with input com-
binations equally spread over the experimental area. Van 
Beers and Kleijnen (2004) use a maximin design, which 
maximizes the minimum distance between any two points 
of the design; see Koehler and Owen (1996, p. 288). 
 Next, for each input value ix  of the pilot design the 
procedure simulates (say) im  IID replicates until a pre-
defined accuracy level for the estimated output iy  is 
reached. Then, per input ix  the procedure bootstraps im  
outputs; i.e., the im  observed outputs per input ix  are re-
sampled with replacement. Further, the procedure com-
putes the bootstrap averages )(*

ii my  per input ix . (The 
superscript * indicates a bootstrapped value, as traditional 
in bootstrap literature.)  The re-sampling per input ix  is 
repeated (say) B times (B is called the bootstrap sample 
size). Now, the B bootstrapped designs are used to com-
pute B Kriging predictors for the expected outputs of a new 
set of (say) cn candidates. 
 To quantify the prediction uncertainty, the procedure 
computes the bootstrap variance for each candidate: 
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;

* ˆˆ . 
The candidate that has the largest bootstrap variance (7) is 
added to the current design and simulated until the desired 
accuracy is reached.   

Van Beers and Kleijnen (2004) test the CSD through 
two classic academic simulation models, namely the 
M/M/1 model with one input—the traffic rate (say) ρ —
and an (s, S)  inventory model with two inputs—the reor-
der level s and order up-to level S. They compare the per-
formance of the CSD with a LHS design of the same size. 
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For the M/M/1 example, Figure 4 displays simulation 
results for both the CSD and the LHS design. The stopping 
criterion is that 10=n  traffic rates have been simulated. 
The figure shows that LHS simulates fewer ‘challenging’ 
inputs; i.e., high traffic rates. 
ρ

y

ρ

---:   True I/O function  

 * :   Simulated output for Customized Sequential Design 

 O:   Simulated output for Latin Hypercube Design 

 
Figure 4: Two Designs for M/M/1 with 10 Traffic Rates ρ  
and Average Simulation Outputs y  
 

Van Beers and Kleijnen (2004) use a test set with N = 
32 equidistant traffic rates (Sacks et al. 1989 also use test 
sets to evaluate their procedure). They compare the 
Kriging predictions of the two designs with the ‘true’ out-
puts of the test set. Figure 5 illustrates the 32 predictions 
for the CSD and the LHS design. 
 

tx

---:   True I/O function 

 * :   Customized Design prediction 

 O:   LHS prediction 

ŷ

 
Figure 5: 32 Predictions ŷ  for the Test Set for M/M/1, for 
Two Designs 
 

To compare the performance of the CSD design and 
LHS, they use the EIMSE criterion, defined in (5). How-
ever, the final numbers of replicates in the two designs 
may differ, so they calculate the corrected EIMSE: 
 

( )∑
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−×=
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t
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xyxy
n

CCEIMSE
1

2)()(ˆ1 ,       (8) 
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where C is the ratio of the total number of replicates in the 
LHS design and in the CSD, tn  is the number of I/O com-
binations in the test set (so 32=tn ), and t

ix  is the  i th in-
put of the test set. It turns out that CSD give smaller 
CEIMSE than LHS designs. 

To test their procedure for a model with two inputs, 
Van Beers and Kleijnen (2004) use the (s, S) features of 
Law and Kelton (2000)’s example 12.9. Law and Kelton 
use an equally spread design of 36 input combinations.  
They simulate five replicates for each of the 36 inputs. 
Based on these 180 I/O data, they fit a second-order poly-
nomial regression model for the average monthly total 
costs R. They compare this model’s predictions with the 
‘true’ E(R) estimated from 10 replicates for each of 420  
new and old combinations. Van Beers and Kleijnen, how-
ever, use  the CSD to select 36 input combinations. They 
simulate each of their 36 inputs five times and fit a Kriging 
model to 36 I/O data (implying 36 average outputs). They  
compare the Kriging predictions for the 420 inputs from 
the test set with the 420 ‘true’ outputs. They find that the 
Kriging model gives substantial better CEIMSE and EMax-
IMSE—defined in (8) and (6)—than the regression model. 

Figure 6 shows a CSD for 16 input combinations  for 
Law and Kelton’s (s, S) example. Note that the procedure 
selects again more input combinations in the sub-area 
where the metamodel shows steep slopes. 

 
Figure 6: I/O Simulation Data for (s, S) Inventory Model 
with 16 Scenarios Denoted by  
 
4 CONCLUSIONS AND FUTURE RESREARCH 
  
For expensive simulation, it is important to find an efficient 
design for the experiments with the simulation model. Clas-
sic standard designs—such as pk −2  or LHS designs—are 
general designs that do not account for the characteristics of 
the input/output (I/O) function that is implied by the simula-
tion model at hand. As an alternative design a Customized 
Sequential Design (CSD) for metamodeling in simulation is 
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derived. The CSD is sequential, because in general sequen-
tial procedures are more ‘efficient’ than fixed-sample proce-
dures; tests confirmed that property. Moreover, the method 
generates a design that is specific for the given simulation 
model: it is customized (tailor-made). For deterministic 
simulation, this customization is achieved through cross-
validation and jackknifing—which are two general statistical 
techniques. For that simulation type, the method is tested 
through two academic applications, namely a hyperbolic I/O 
function and a fourth degree polynomial. For random simu-
lation experiments, the customization uses bootstrapping—
which is also a general statistical technique (related to jack-
knifing). The procedure is tested for this simulation type 
through two classic Operations Research/Management Sci-
ence (OR/MS) applications, namely the M/M/1 queueing 
model and an (s, S) inventory management model. Tests 
showed that for both deterministic simulation and random 
simulation, customized designs performed better than the 
classic LHS designs with the same sample size. An interest-
ing property of our procedure is that it simulates relatively 
many input combinations in those sub-areas that have inter-
esting I/O behavior.  
 The main conclusions are summarized as follows: 
 

• Kriging metamodels give more accurate predic-
tions than low-order polynomial regression mod-
els do, 

• Customized Sequential Designs for Kriging 
metamodels give smaller prediction errors than 
standard one-shot LHS designs of the same size. 
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