
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A TWO-PHASE SCREENING PROCEDURE FOR SIMULATION EXPERIMENTS

Susan M. Sanchez

Operations Research Department and
Graduate School of Business & Public Policy

Naval Postgraduate School
Monterey, CA 93943-5219, U.S.A.

Hong Wan

Industrial Engineering Department
Purdue University

West Lafayette, IN 47907-2023, U.S.A.

Thomas W. Lucas

Operations Research Department
Naval Postgraduate School

Monterey, CA 93943-5219, U.S.A.
ABSTRACT

Analysts examining complex simulation models often con-
duct screening experiments to identify the most important
factors. Controlled sequential bifurcation (CSB) is a screen-
ing procedure, developed specifically for simulation exper-
iments, that uses a sequence of hypothesis tests to classify
the factors as either important or unimportant. CSB con-
trols the probability of Type I error for each factor, and
the power at each bifurcation step, under heterogeneous
variance conditions. CSB does, however, require the user
to correctly state the directions of the effects prior to run-
ning the experiments. Experience indicates that this can be
problematic with complex simulations.

We propose a hybrid two-phase approach, FF-CSB, to
relax this requirement. Phase 1 uses an efficient fractional
factorial experiment to estimate the signs and magnitudes
of the effects. Phase 2 uses these results in controlled
sequential bifurcation. We describe this procedure and
provide an empirical evaluation of its performance.

1 INTRODUCTION

Screening experiments are intended to eliminate unimpor-
tant factors quickly, leaving a short list of important factors
that can be studied in more detail via higher-resolution
experimental designs. They are useful tools for examin-
ing simulation models that involve a large number of fac-
tors. The most well-known screening designs are saturated
fractional factorials (Box et al. 1978, Montgomery 2000,
NIST/SEMATECH 2005), but other screening methods have
also been developed (e.g., Trocine and Malone 2001). Some
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procedures are specifically intended to facilitate large-scale
experiments on simulation systems by taking advantage of
the sequential nature of simulation experiments. Kleijnen
et al. (2005) provide a general discussion—and numer-
ous examples—of the design and analysis of simulation
experiments. The challenge for those proposing sequential
methods is establishing (either theoretically or empirically)
the “correctness" of the screening results.

Group screening approaches can be efficient and prac-
tical when there are many factors but only a few important
ones. The basic idea behind group screening is straightfor-
ward: if several factors can be aggregated into a group for
testing, and the results indicate that this group of factors
has no significant effect on the outcome, then all factors
in the group can be eliminated from the list of potential
important factors without further testing. Group screening
has been used for years in physical experiments when tests
are expensive, such as in screening a large number of new
soldiers for syphilis during World War II in only a few tests
(Dorfman 1943).

More recently, group screening has been proposed for
simulation experiments. One such procedure is sequen-
tial bifurcation (SB), developed by Bettonvil and Kleijnen
(1997) for deterministic simulation models. They assume
important factors are sparse, that the direction of all ef-
fects is known, and that a main-effects metamodel is a
reasonable approximation of the simulation response over
the region of exploration. SB was extended to stochastic
simulations by Cheng (1997), who assumes that the errors
are normally distributed with constant variance and uses
an indifference-zone approach to avoid excessive sampling
for factors deemed unimportant. Kleijnen, Bettonvil, and
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Persson (2005) also discuss the use of SB for experiments
involving stochastic simulations. Examples and empirical
investigations have shown that SB can be very efficient
(i.e., require a relatively small number of runs) when the
factor effects are sparse. Deterministic SB performs best if
the factors are initially ordered according to increasing (or
decreasing) values of the unknown factor effects. However,
there are no theoretical guarantees of the performance, either
in terms of the number of runs required or the probabilities
of correct classification, in the stochastic case.

To address this shortcoming, Wan, Ankenman, and
Nelson (2003, 2005a) propose a variant of SB called the
controlled sequential bifurcation (CSB) procedure. In CSB,
the analyst must specify two thresholds. The lower threshold
(�0) indicates the level the effect must reach to be consid-
ered important, while effects larger than the higher threshold
(�1) are considered critical. They also discuss a cost model
which associates the thresholds and factor settings with a
benchmark cost so the effectiveness of the screening proce-
dure is not influenced by the sometimes arbitrary choices of
thresholds and factor settings (Wan, Ankenman, and Nelson
2003, 2005a). CSB uses a hypothesis-testing approach to
control the probability of Type I error (i.e., the probabil-
ity an effect is classified as important when it is not) and
power (i.e., the probability an important effect is correctly
classified). Factors begin in a single group and the group’s
accumulated effect is tested. If the group’s effect is clas-
sified as unimportant, then all factors within the group are
classified as unimportant. Otherwise, the group is split into
two smaller ones for further testing; if the group contains
only one factor, this factor is classified as important. This
procedure continues until all factors have been classified.
Wan, Ankenman, and Nelson (2005a) provide proof of the
CSB’s performance even when the underlying variance is
heterogeneous. Variance heterogeneity is a pervasive char-
acteristic of large-scale simulation experiments.

One assumption of CSB (as for SB) is that the direction
of the effects is known a priori so that factors with opposite
effects are not included in the same group. This avoids
the problem of full or partial cancellation of factor effects,
which might cause the analyst to overlook one or more
key factors. Unfortunately, for models of complex systems
with several hundred factors, it may be unreasonable to
expect that an analyst (or even a subject-matter expert) can
correctly identify the signs of all potential factor effects.
Experience has also shown that even experts may not be
able to correctly identify the three to five most influential
factors before the study commences: some factors may be
more interesting that originally anticipated, while others
thought to be important might not have significant effects
on the response (Lucas et al. 2002).

In this paper, we propose a hybrid procedure for sequen-
tial screening. An efficient fractional factorial conducted in
phase 1 is used to classify the factors into groups according
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to the signs and magnitudes of their estimated effects. This
classification is the basis for applying sequential CSB in the
second phase of the experiment. We describe the procedure
in detail in Section 2, and provide an empirical evaluation
of its performance in Section 3. Our results show that even
if phase 1 simply classifies the factors as having negative
or non-negative effects, rather than also making use of the
magnitudes of the estimated effects, the hybrid procedure
greatly reduces the possibility of erroneously concluding
that important effects are unimportant because of incorrect
groupings. The additional computational effort is mini-
mal, so the hybrid procedure is a viable, efficient screening
approach for simulation experiments even when little or
nothing is known about the factor effects. Preliminary re-
sults also indicate that sorting the factors after phase 1 does
not affect classification rates, but greatly improves the ef-
ficiency of the procedure. We finish with a discussion of
issues for further research.

2 SCREENING PROCEDURE DESCRIPTIONS

2.1 CSB Procedure

We begin with a description of the CSB procedure. Sup-
pose there are K factors of interest with effect coefficients
β1, . . . , βK . The output from a simulation replication is
denoted by Y , and the underlying metamodel assumption
for employing CSB is the main effects model:

Y = β0 +
K∑

i=1

βixi + ε, (1)

where the ε’s are distributed as N
(
0, σ 2

x
)

and may depend
on the values of x = (x1, . . . , xk). The settings of x are
deterministic and are controlled by the analyst during the
experiment. Note that the assumption of a main-effects
model usually does not hold over the entire factor space,
but it may be a reasonable assumption for, e.g., small
variations in a region of interest. Wan, Ankenman, and
Nelson (2005b) also proposed a version of CSB that gives
unbiased screening results for main effects even if two-factor
interactions exist, although the interactions effects are not
themselves estimated.

The CSB procedure, like the SB procedure of Bettonvil
and Kleijnen (1997) and the SB-under-uncertainty procedure
of Cheng (1997), goes through a series of steps in which
groups of factors are tested. If a group is determined to be
important, then it is split into smaller groups for additional
testing. If a group is determined to be unimportant, then all
factors within that group are considered unimportant and
need not be examined further. The procedure continues
until each factor is classified as either important (i.e., a
factor is in a group by itself and that group is determined
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Table 1: Structure of CSB
Initialization:

Create an empty LIFO queue for groups. Add the group {1, . . . , K} to the LIFO queue.

While queue is not empty, do
Remove: Remove a group from the queue.
Test:

Unimportant:
If the group is unimportant, then classify all factors in the group as unimportant.

Important (size=1):
If the group is important and of size 1, then classify the factor as important.

Important (size>1):
If the group is important and the size is greater than 1, then split the group
into two subgroups such that all factors in the first subgroup have smaller indices
than those in the second subgroup. Add each subgroup to the LIFO queue.

End Test
End While
to be important), or its group is classified as unimportant.
A general description of the algorithm appears in Table 1,
adapted from Wan, Ankenman and Nelson (2003).

CSB is a screening procedure which guarantees that
the probability of Type I error is less than α for any effect
with |βi | < �0, and that the power of detection is greater
than γ for any effect with |βi | > �1. Here α and γ are
user-specified classification error bounds. The error control
of CSB is determined by the error control of the hypothesis
testing that occurs at each bifurcation step. Wan, Ankenman
and Nelson (2005a, 2005b) show that as long as the basic
hypothesis testing procedure is capable of guaranteeing
a maximum probability of Type I error and a minimum
power, CSB can guarantee the Type I error for each factor
and power for each bifurcation step; they propose both
a two-stage and a fully sequential version of CSB which
satisfy the criteria. Both procedures will initially take a
small number of observations (n0, usually n0 ≤ 5). If no
conclusions can be made, more observations are collected.
The fully sequential testing procedure is typically more
efficient since it takes one observation each time and will
terminate as soon as the effect can be classified. Details
of these two tests, and comparisons of their performances,
appear in Wan, Ankenman, and Nelson (2005a, 2005b). We
use the fully sequential version of CSB in this paper.

In CSB, the assumption that the signs of potential
factor effects are accurately known before the experiment
begins means that the factors (xi’s) associated with negative
effects can be redefined to have positive effects. Thus,
without loss of generality, it can be assumed that β1, . . . , βK

are all nonnegative. In fact, the efficiency of the SB or
CSB procedures is highest if the βi’s are ordered so that
β1 ≤ β2 ≤ . . . ≤ βK or, equivalently, β1 ≥ β2 ≥ . . . ≥ βK .
In reality, the directions of the effects can be unknown even
for experts, especially for novel, complex systems where
little prior knowledge exists. The hybrid procedure FF-CSB,
discussed below, was developed to overcome this limitation.
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2.2 FF-CSB Procedure

As Table 2 indicates, the FF-CSB procedure begins with a
saturated or nearly-saturated fractional factorial experiment.
We then explicitly divide the factors into two groups after
phase 1 of experimentation according to their estimated
effects β̂i (i = 1, . . . , K). Two separate groups are con-
structed: one contains all factors that yielded negative β̂i

during phase 1; the other contains all factors that yielded
zero or positive β̂i . CSB is then performed separately on
each of these two groups. At the end of phase 2, every one
of the K factors will either be classified as important or as
unimportant.

Note that the goal of phase 1 is not to obtain accurate
estimates of the β̂. If it did so, there would be no need for
phase 2. However, even without ranking the estimated factor
effects, the fractional factorial design conducted during
phase 1 reduces the chance that two critical effects with
opposite signs are included in the same group. The initial
groups need not be of equal size, but instead reflect the
preponderance of negative (or positive) β̂’s. Because of the
stochastic nature of the response, factors may sometimes
be placed in the wrong initial group after phase 1.

3 EMPIRICAL PERFORMANCE EVALUATION

To assess the screening capabilities of the procedure, we
conduct empirical experiments to compare the performance
of FF-CSB with the original CSB for various values of K

(K = 2m − 1 for m = 3, . . . , 9). We fix the threshold for
important factors �0 = 2, and the threshold for critical
factors �1 = 4. The required maximum Type I error is
specified to be α = 0.05, the power requirement for critical
effects is fixed at γ = 0.95, and the initial sample size
for CSB is n0 = 5. We assume that a main effects model
suffices, and that the random errors are normally distributed
with mean 0 and (common) variance 1.
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Table 2: Structure of FF-CSB
Initialization:

Create two empty LIFO queues for groups, NEG and POS.

Phase 1:
Conduct a saturated or nearly-saturated fractional factorial experiment and estimate β̂1, . . . , β̂k . Order the
estimates so that β̂[1] ≤ . . . ≤ β̂[z] < 0 ≤ β̂[z+1] . . . ≤ β̂[K]. Add factors {[1], . . . , [z]} to the NEG LIFO
queue, and factors {[z + 1], . . . , [K]} to the POS LIFO queue.

Phase 2:
For queue = POS and queue = NEG, do

While queue is not empty, do
Remove: Remove a group from the queue.
Test:

Unimportant:
If the group is unimportant, then classify all factors in the group as unimportant.

Important (size=1):
If the group is important and of size 1, then classify the factor as important.

Important (size>1):
If the group is important and the size is greater than 1, then split the group into two subgroups
such that all factors in the first subgroup have smaller [i]’s (ordered indices) than those in the
second subgroup. Add each subgroup to the LIFO queue.

End Test
End While

End For
Factor effect values βi , i = 1, . . . , K are set as follows:

βi =
⎧⎨
⎩

(−1)
(
−5 + 10

(
i−1
K−1

))
if i < p

−5 + 10
(

i−1
K−1

)
otherwise,

(2)

for several values of p ≤ (K + 1)/2.
If p = 0 then roughly half of the factor effects are

negative. This is an extremely bad situation for CSB since
the positive and negative effects will essentially cancel each
other and CSB will conclude that most of the factors are
not important. On the other hand, if p = (K +1)/2 then all
factor effects are positive, and CSB will work well without
adding the initial fractional factorial experiment. We also
consider other values of p that correspond to intermediate
situations for CSB. To facilitate comparisons, we let p be
a function of K , rather than a constant. The five cases we
consider will be referred to as follows:

• none negative: p = (K + 1)/2,
• small negative: p = 3(K + 1)/8,
• medium negative: p = (K + 1)/4,
• large negative: p = (K + 1)/8, and
• half negative: p = 0.

The negative effects are assigned to smaller values of β first,
to reflect the possibility that subject-matter experts might be
more likely to know the magnitude of critical factors (and so
the factor levels could be set so that the corresponding β’s
were positive). Regardless of p, approximately 20% of all
factors are critical, 40% are important (but not critical), and
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40% are unimportant. This approximation is more accurate
for larger K .

Ideally, the FF-CSB procedure will meet or exceed the
probabilistic guarantees for CSB regardless of the signs of
the βi’s. Since one of our motivations for this work was our
belief that good indications about the signs and magnitudes
of the effects might not be available before the experiment,
we randomly reorder the initial values of β1, . . . , βk for each
replication. 1000 replications are conducted for experiments
with K ≤ 127, and 400 replications are conducted for
experiments with K = 255 and K = 511.

We begin by investigating a simplification of the FF-
CSB procedure, called unsorted FF-CSB, where the sam-
pling during phase 1 is used only to classify the β̂i’s as
negative or non-negative, rather than to rank them within
these categories. This allows us to determine whether or
not estimating the signs of the factor effects can, by itself,
yield a procedure that performs well without requiring the
analyst to specify the directions of the factor effects before
conducting the experiment.

The results are summarized in Table 3. The proportions
of correct classifications for the critical, important, and
unimportant factors are provided for both CSB and the
unsorted FF-CSB procedures. Ideal values for all these
proportions are 1.00. Table 3 also reports the average
numbers of runs required, under various patterns of the
underlying βi values, for both the CSB and the FF-CSB
procedures. If the procedure is able to meet or exceed
the guaranteed classification probabilities, then a smaller
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Table 3: Performance of CSB and Unsorted FF-CSB Procedures for Randomly Ordered Factor Effects

CSB Unsorted FF-CSB
Pattern of Correct Classification Proportions Avg. Correct Classification Proportions Avg.
β values K Critical Important Unimp. Runs Critical Important Unimp. Runs

7 1.000 0.788 0.999 100 1.000 0.809 0.999 110
15 1.000 0.425 1.000 248 1.000 0.432 1.000 268

None 31 0.999 0.503 1.000 610 0.998 0.493 0.999 656
Negative 63 1.000 0.492 1.000 1,488 0.999 0.490 1.000 1,563

127 1.000 0.506 1.000 3,559 1.000 0.507 1.000 3,692
255 1.000 0.495 0.000 8,192 1.000 0.497 1.000 8,704
511 1.000 0.500 1.000 19,099 1.000 0.497 1.000 19,528

7* 1.000 0.788 0.999 100 1.000 0.809 0.999 110
15 0.998 0.401 1.000 241 0.999 0.431 1.000 251

Small 31 0.991 0.458 1.000 581 0.999 0.498 0.999 605
Negative 63 0.994 0.453 1.000 1,424 1.000 0.487 1.000 1,461

127 0.993 0.469 1.000 3,428 1.000 0.506 1.000 3421
255 0.992 0.460 1.000 7,824 1.000 0.496 1.000 8,024
511 0.992 0.461 1.000 17,958 1.000 0.499 1.000 18,132

7 0.972 0.671 1.000 92 1.000 0.804 0.999 100
15 0.909 0.332 1.000 202 0.999 0.432 1.000 250

Medium 31 0.879 0.384 1.000 491 0.999 0.502 0.999 586
Negative 63 0.880 0.381 1.000 1,169 0.999 0.494 1.000 1,407

127 0.879 0.393 1.000 2,811 1.000 0.508 1.000 3,307
255 0.878 0.382 1.000 6,568 1.000 0.496 1.000 7,550
511 0.877 0.386 1.000 15,361 1.000 0.499 1.000 17,703

7 0.744 0.297 1.000 66 1.000 0.785 0.999 100
15 0.684 0.142 1.000 140 0.999 0.427 1.000 234

Large 31 0.664 0.164 0.999 339 0.997 0.495 0.999 558
Negative 63 0.663 0.187 1.000 781 0.999 0.489 1.000 1,329

127 0.662 0.201 1.000 1,827 1.000 0.505 1.000 3,171
255 0.636 0.185 1.000 4,219 1.000 0.494 1.000 7,440
511 0.661 0.200 1.000 10,041 1.000 0.499 1.000 17,595

7 0.000 0.000 1.000 10.7 1.000 0.770 1.000 99
15 0.000 0.000 1.000 10.7 0.999 0.431 1.000 231

Half 31 0.000 0.000 1.000 10.6 0.998 0.494 0.999 556
Negative 63 0.000 0.000 1.000 10.6 0.999 0.489 1.000 1,313

127 0.000 0.000 1.000 10.7 1.000 0.507 1.000 3,143
255 0.000 0.000 1.000 10.7 1.000 0.495 1.000 7,441
511 0.000 0.000 1.000 10.6 1.000 0.499 1.000 17,370

∗Same as the "none negative" case
average number of runs required indicates a more efficient
procedure.

We first discuss the classification results for CSB. When
the β’s are all non-negative, CSB exceeds the probability
and power specifications, as expected (since the β’s are
not in the least-favorable configuration for error and power
calculations). CSB rarely misclassifies a critical factor as
unimportant, or an unimportant factor as important, and it
correctly classifies about half of the important, non-critical
factors. CSB also performs well when only a small pro-
portion of effects are negative, but its performance deteri-
orates rapidly as the number of negative effects increases.
When roughly 25% of the effects are negative, the clas-
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sification probabilities for critical factors drop to around
88%—significantly below the nominal value of 0.95 (p-
value< 0.001); the classification probabilities for important
factors also drop significantly from their values when all
β̂i ≥ 0 (p-value< 0.001). Perhaps the most striking result
from Table 3 is that CSB is completely unsuccessful at
classifying important factors when half the β’s are nega-
tive. Not once in the 5800 trials is any factor classified as
important.

Next, consider how FF-CSB performs in terms of clas-
sifying factors. When all the βi are non-negative, its classi-
fication probabilities are indistinguishable from that of CSB
(p-values> 0.50). The classification rates are insensitive to
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the proportion of negative factors in the study; regardless
of the initial pattern of the βi , FF-CSB correctly identi-
fies essentially all the critical and unimportant factors, and
about half of the important, non-critical factors. FF-CSB
may place some factors (particularly unimportant ones) in
the wrong initial group. For example, 13% of the 5800
experiments involving only non-negative β̂i’s classify two
or more factors as having negative effects after phase 1.
Nonetheless, FF-CSB appears to be a procedure for which
only the magnitudes (not the signs) of the factor effects
influence its classification rates.

Table 3 also provides the average number of runs re-
quired to complete the experiment. Note that for the hybrid
procedure, the runs include both the phase 1 sampling (K+1)
and the phase 2 sampling (using CSB). Clearly, experiments
involving more factors require a greater number of runs. The
effects are not sparse, so both procedures require substan-
tial sampling to completely classify the factors in the cases
where they correctly identify at least 95% of the critical
factors (the none negative and small negative situations for
CSB, and all situations for FF-CSB). FF-CSB takes slightly
more samples than CSB when all βi > 0, but the results for
FF-CSB also indicate a small, but statistically significant
decrease in the average number of runs as the proportion
of negative effects increases. For example, if half of the
effects are negative and K = 511, using FF-CSB requires
9% less sampling, on average, than is needed if all factor
directions could be accurately determined. This might at
first appear counter-intuitive, since one would expect not to
improve on the performance when all factors are known to
have non-negative effects. However, the fractional factorial
does impose a partial ordering on the factor effects which
may account for the improved performance. The expected
range of βi within the NEG group is less than the range
for CSB (max(βi) − min(βi)).

The variability in the number of runs required is also a
useful measure of FF-CSB’s performance, since an analyst
running a single experiment might be interested in how
likely it will be to take a extremely long time to finish. In
all cases, the coefficient of variation (CV, equal to the ratio
standard deviation / mean) associated with the total runs
ranges from 0.15 to 0.33, with an average of 0.26 (values
associated with the K = 7 range from 0.38 to 0.48).

We now examine the effects of sorting in more detail.
The results in Table 3 are intended to demonstrate the po-
tential effectiveness of FF-CSB, relative to CSB. Sequential
bifurcation is known to be most efficient when the propor-
tion of important and critical effects is lower than the cases
in Table 3. We conduct another set of experiments to assess
the impact of sorting the β̂i’s (over and above the impact of
determining their direction), in a situation more favorable
to CSB. In this set of experiments, we take the βi’s from
equation (2) (with p = 0) and modify them as follows:
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• critical effects are set to -5 or +5, according to the
sign of the original βi ;

• all other effects (both important and unimportant)
are set to zero.

All other conditions, such as the standard deviations and
the random ordering of the β’s prior to each replication,
remain the same. Once again, 1000 replications are made
for K = 15, 31, 63 and 127, and 400 replications are made
for K = 255 and 511. (We do not consider K = 7 since
it would have only a single critical negative and a single
critical positive effect, so sorting will not influence the
results.) The classification results for these experiments
indicate that both the sorted and unsorted version of the FF-
CSB procedure correctly identify all effects in over 99.9%
of the cases, easily exceeding the Type I error and power
requirements. The efficiency results, both with and without
sorting the β̂’s after phase 1, appear in Table 4. The relative
efficiency of the sorted FF-CSB to the unsorted FF-CSB is
also provided; values less than 1.00 indicate that the sorted
FF-CSB procedure is more efficient.

Table 4: Efficiency of Unsorted and Sorted FF-CSB
Average No. of Runs Relative

No. of Factors Unsorted Sorted Efficiency
K NU NS NS/NU

15 105 82 0.79
31 212 137 0.64
63 420 230 0.55
127 865 425 0.49
255 1,908 849 0.44
511 4,159 1,761 0.42

The benefits of sorting are apparent from Table 4. The
sorted FF-CSB requires no more than 79% of the data
of the unsorted FF-CSB when K = 15, and improves to
42% as the number of factors increases. This improvement
in efficiency occurs because the critical effects tend to be
grouped closer together at the beginning of phase 2, so large
groups of unimportant factors can be eliminated in early
bifurcation steps. The coefficients of variation range from
approximately 0.20 (for K = 15) to 0.10 (for K = 511).
This means that the sorted FF-CSB procedure is not only
more efficient, but also has less variation in the number of
runs required, and that the standard deviation of the number
of runs required grows more slowly than the mean as the
number of factors increases.

4 DISCUSSION

These results are the initial part of a larger empirical study
investigating the how CSB performs under various conditions
listed below:

• �0: the threshold below which effects are consid-
ered unimportant;
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• �1: the threshold above which effects are consid-
ered critical;

• other patterns of standard deviations, since variance
heterogeneity is pervasive in complex simulations;
and

• other patterns of β’s, including different propor-
tions of critical and important factors.

The underlying β’s used in our study are small enough
(relative to the error variances) that the fractional factorial
experiment conducted in phase 1 is unlikely to definitively
identify any effects as important. For situations where a
few critical factors dominate the results, some factors might
be classified at the end of phase 1, or at least be separated
from other factors (i.e., placed in their own initial groups)
for phase 2 testing. The procedure’s performance when a
less-saturated fractional factorial experiment is used during
phase 1 (i.e., K + 1 is not a power of 2) is also of interest.

Currently, we are expanding the empirical investigation
to better understand the performance of the sorted FF-CSB
over a broader range of conditions. We are also exploring
better ways to utilize the information from phase 1, such as
other ways of handling effects that are obviously important
(or unimportant) after phase 1.

5 CONCLUSIONS

Group screening approaches have the potential to provide
valuable information to analysts exploring complex simu-
lation models. Yet, to be truly useful, the methods should
be applicable to a broad range of simulation studies while
requiring few assumptions about the simulation model’s per-
formance. The CSB procedure has been shown to control
the probability of Type I error for each factor, as well as
the power of detecting critical factor effects, for stochastic
simulations with heterogeneous variance. However, it does
require that the direction of all factor effects be known be-
fore experimentation begins. The new FF-CSB procedure
overcomes the limitation of CSB that the signs of factor
effects have to be known beforehand. FF-CSB combines
a fractional factorial design with the CSB procedure, and
the resulting hybrid method can effectively screen mixed
positive and negative main effects. The procedure is most
efficient when the factors are sorted by their estimated effects
after phase 1.

A major benefit is that the improvement in efficient
classification will not depend on accurate subject-matter
expertise regarding the directions and magnitudes of effects
for a large number of factors, so the gains in efficiency are
likely to be realized for practical applications. This makes
it a more flexible and useful tool for analysts who seek to
explore simulation models when they have little information
about the nature of its response surface. Modifications to
FF-CSB that make better use of the results from phase 1 of
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the study are currently under investigation. The resulting
procedure will be even more efficient and adaptive.
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