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ABSTRACT

Metamodelling techniques are used in many engineering
applications for efficient exploration of the design space of
complex deterministic simulation systems, and for optimi-
sation purposes and sensitivity analysis. This paper presents
a new sequential design and rational metamodelling tech-
nique which combines adaptive modelling and sampling
algorithms.

1 INTRODUCTION

Metamodelling techniques for simulation and optimisation
purposes are becoming increasingly popular. Quite often
the evaluation of a complex simulator on a dense grid in
the design space (for example using the Nimrod or AppLeS
software packages) is not an option for finding optima or
gaining global knowledge of a system’s behaviour. Adap-
tive or sequential metamodelling frameworks, as presented
in Dhaene et al. (1995), De Geest (2000), Van Beers and
Kleijnen (2004) and Hendrickx and Dhaene (2005), dras-
tically reduce the number of evaluation points needed to
build a high quality metamodel.

A simulator model or system can be seen as a black-box
that maps inputs onto outputs. Most of the time, inputs and
outputs can be represented as vectors of numbers. Then,
the system can be seen as a function

S:RY 5 R x> S(x),

where x are the input variables, and S(x) are the outputs.

An example of a simulator model can be the numerical
implementation of Maxwell’s equations to calculate the be-
haviour of an antenna. Input parameters to the simulator can
be length, angle, etc., of the antenna. Output parameters can
describe the reflection and radiation behaviour (scattering
parameters).

A metamodel or surrogate model (see for example
Barton 1998) is a model of a model in which the latter model
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itself is already an approximation of reality (a simulation
using discretisations and approximations).

In Chung and Alonso (2000) and also in Sgndergaard
(2003) metamodels are used for locating an optimum in the
input space. De Geest et al. (1999), De Geest (2000) and
Hendrickx and Dhaene (2005) use metamodels for gaining
a global view of the system’s behaviour over the input space
or design space . This can be advantageous if evaluating
the system itself takes a very long time (which frequently
happens when simulating complex systems). Sometimes
these metamodels can be used as building blocks for larger
scale simulations.

In the last decade, several researchers proposed itera-
tive sampling schemes for metamodelling. Van Beers and
Kleijnen (2004) build Kriging metamodels and use cross-
validation and jackknifing techniques to iteratively select
new input locations at which to evaluate the system. Krig-
ing techniques are further discussed in Martin and Simpson
(2005) and Santner et al. (2003). Dhaene et al. (1995)
describe a rational modelling technique for one input vari-
able, called AFS (Adaptive Frequency Sampling). This
approach was generalised to the case of more inputs by
De Geest (2000) and De Geest et al. (1999) and is called
MAPS (Multidimensional Adaptive Parameter Sampling).
Polynomial and rational models are used to model the sys-
tem. The AFS and MAPS algorithms are tailored towards
electromagnetic simulators and are commercially available
in ADS Momentum and ADS Advanced Model Composer
software respectively.

Different techniques are used to build metamodels.
Each metamodel is based on a limited set of input points
(the sample set S) at which the system has been evaluated.
Based on these locations (x1, ..., x,,) and their corresponding
function values (fi, ..., f,), an interpolant or approximant
H can be built such that H(x;) =~ f; = S(x;).

Several techniques are at hand to create interpolants.
First of all there are polynomial and rational models, used by
De Geest et al. (1999), De Geest (2000), Lehmensiek and
Meyer (2001), Dhaene (2002) and Hendrickx and Dhaene
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(2005). They are used in this work and therefore we defer
their description to section 2.

Kriging metamodels are inspired by the theory of
stochastic processes. Kriging is named after its first prac-
titioner Krige (1951) and a wide range of work on this
technique has been published since then. Reference pub-
lications on the subject are Sacks et al. (1989), Cressie
(1993) and Santner et al. (2003).

Radial basis functions only recently became popular for
scattered data interpolation. Their form is very straightfor-
ward and easy to implement. When the number of sample
points gets large, several techniques are available to speed
up the modelling process. A lot of theory is available in the
literature. Only recently Buhmann (2003) and Wendland
(2005) have gathered the different aspects into two books
on the subject.

At last, we mention the space mapping methodology,
conceived by Bandler et al. (1994) and further discussed
in several PhD theses (e.g., S¢ndergaard 2003). It tries to
map a low-accuracy metamodel onto the system by a linear
space transformation. This technique has mainly been used
for optimisation and not for global approximation.

This paper will discuss a polynomial and rational based
adaptive sampling methodology for sequential design with
rational metamodels and apply it to several academical and
microwave simulation examples.

Our approach is also relevant to random simulations, as
the models constructed by the toolbox approximate rather
than interpolate the data. In fact each model is a least-
squares fit of the rational model to the data; therefore, our
toolbox is also suitable for modelling random simulation
data. We conducted our tests on deterministic data in order
to observe the systematic reduction of the modelling error.
Monitoring the modelling error would have been difficult
with random simulation data. In the toolbox, we provide
an option to add noise to the test sets. This can be useful to
inspect the behaviour of the toolbox in a random simulation
setting.

2  POLYNOMIAL AND RATIONAL METAMODELS

We construct polynomial and rational metamodels. This
section will discuss several aspects of such models.

2.1 Metamodel Definition

Given multiple sample locations x; € R? (input) and cor-
responding function values f; (output), we try to construct
a function H : R¢ — R which approximates the values f;
at x;, i.e., H(x;) ~ f;. Polynomial and rational models are
used.
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Polynomial models are of the form

H(x) = Zouxl

IeZ

(D

where I C Nd, I is finite and x! is a shorthand notation
for x{‘ ...xé‘i. Section 2.2 elaborates on the selection of
suitable Z sets.

Rational models are of the form

@)

where Zy and Zp are the degree sets for numerator and
denominator respectively. Note that such a function H goes
to infinity as x approaches the zero set of the denominator.

The multi-indices in Z can be given a fixed order

Iy, ..., Iy. We can now construct the matrix
Mz(x1,...,xp) 3)
with
(Mz(x1. . xn))ij = x; @)

and the diagonal matrix F = diag(fi,..., fu).

Finding a polynomial with degrees Z that approximates
the values f; at x; in a least squares sense can be done by
solving the least squares system

arn fl

: &)
oy N f n
Incasen = N, the system is square and can be inverted using
Gaussian elimination; otherwise, least squares techniques
such as Q R-factorisation can be used.

Finding a rational function approximating f; at x; can
be done by solving

T
(MIN| _FMID) (“’f"'“’;’@ﬂlf‘"'ﬂlg) =0 (6)

(with (II',..., 1%} = Iy and {I¢,..., 18} = Ip). To
avoid the all-zero solution, one of the unknowns can be
fixed at one. Frequently, one chooses B,...0) = 1.

Note that there is no guarantee an interpolant exists,
even if the number of samples matches the degrees of
freedom. Consider for example interpolating the outputs 0,
1 and 4 at input points (0, 0), (0, 1) and (0, 2) respectively
(corresponding to the function f(x) = x%) using polynomial
interpolation with degree set Z = {(0, 0), (1, 0), (0, 1)}.

Furthermore, calculating the coefficients of the inter-
polant or approximant gets more and more time-consuming
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as the number of unknowns increases. Gohbergetal. (1995)
present an advanced algorithm for interpolation which has
the potential of reducing the computational costs. Unfortu-
nately, we have been unable to create an efficient MATLAB
implementation to use with our code.

2.2 Suitable Degree Sets

Two choices of degree sets Z are quite natural. We define

T, = (G, i) | maxiy < m) ™
j=
and the homogeneous degree set
d
Ih ={G1.....ia) | Y_ij < m}. )
j=1

The first set can be seen as all degrees within a (hyper)cube,
the second as those inside a simplex with vertices at the
origin and at the points with all but one coordinates zero
and one coordinate equal to m.

We argue that degree sets of the second type are more
natural, as an interpolant or approximant stays of the same
form when we apply a linear transformation on our coor-
dinate system. For example, consider Igl in two dimen-
sions and apply the transformation x = ax’ 4+ by’ + ¢ and
y =dx’ + ey’ + f to the monomial x? y, then

x2y = (ax’ + by + ¢)?(dx' + ey + f) =
a’dx” + a’ex?y + a* fx*+ ... (9)

in which all terms are still monomials with degrees in Ié‘.
This is not the case for Zf,.

The homogeneous set is the best choice when all input
variables are of equal importance. In cases where we
want some coordinate directions to have more degrees than
others, a more sophisticated scheme is required. Suppose
one has a weight vector (w1, ..., wy), attaching a degree of

importance to each coordinate axis. Define W; = [ | joki W
We now define '
d
Y = (i1, ... i) | Y Wjij <k). (10)

j=1

For example, in 2 dimensions with weights (w;, wy) =
(1,2) (thus (W, W) = (2, 1)) we have

o ={0.0} I} ={(0,0), (0, D},

and Z)" = {(0, 0), (0, 1), (0,2), (1,0)}. (11)
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Our toolbox contains a utility called a degree manager.
Given certain weights and a number of degrees requested,
the degree manager returns a set Z;. This set is chosen
such that the number of elements in 7} is greater than or
equal to the number of degrees requested.

In the modelling toolbox the degree manager just solves
the Diophantine equations (equations with integer coeffi-
cients and solutions) Z?:l W;i; = k for increasing k until
a suitable number of solutions is found. Finding the order
of the degrees is not the main part of the calculations, so
no alternatives for generating the degree sets have been
checked.

2.3 Grid Evaluation

In the tests described in section 4, metamodels are often
evaluated on a rectangular grid. Grid evaluation of ratio-
nal metamodels can be done in a reasonably efficient way
using some basic algebra. Therefore, we claim grid evalu-
ation to be a feasible method for model comparison if the
dimensionality of the input space stays low.

3 SAMPLING AND MODELLING

The algorithm described in this paper uses a sequential meta-
modelling and sampling technique. Each iteration selects
new samples in the design space and builds new metamodels,
until enough accuracy has been achieved.

3.1 The Initial Sample Set

To create an initial sample set, the complexity of each vari-
able is explored. To explore the ith input space dimension,
we fix all but the ith coordinate to the middle of the do-
main and try to fit a one-dimensional model to the system
along the free dimension. The number of samples needed
to create such a one-dimensional model is a measure for
that dimension’s complexity.

The initial sample set is then just a full-factorial design,
where the number of steps along each dimension differs in
accordance with the complexities assigned earlier.

3.2 Polynomial and Rational Metamodel Parameters

Based on a sample set, we build several models. Three model
parameters can be tuned to create a variety of models: vari-
able weighting, degrees of freedom and polynomial/rational
flags.

Different weighting of the variables (as described in
section 2.2) makes one variable more important than another.
The degrees of freedom are given as a percentage of the
number of samples, 100% means an interpolant, any smaller
value indicates an approximant. For example when the
degrees of freedom parameter is set to 60% and the sample
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set contains 100 locations, the degree sets Zp and Zy
will be chosen such that #Zp + #Z = 60 and the sets are
conform to the variable weighting. The polynomial/rational
flags indicates which of the input variables appear in the
denominator. For example, a trivariate metamodel with flags
(true, false, true) will contain monomials in all variables in
the numerator, and monomials in variables 1 and 3 in the
denominator.

Initially, a set number of metamodel parameters is
fixed. Degrees of freedom are assigned randomly (within
certain bounds). Weighting is assigned randomly, but the
complexities derived in 3.1 are taken into account. Poly-
nomial/rational flags are just set at random. Each iteration
the correctness of these metamodel parameters is assessed
and bad parameter sets are replaced, as described in section
3.6.

3.3 Model Building for One Output

For each set of metamodel, parameters selected in the pre-
vious section, a metamodel is built through the samples.
At this stage, only the first of the output is modelled in
order to save time, since each output would require its own
separate metamodel. The first output is used for metamodel
ranking and new sample selection (this will be described
in the next sections). All other outputs are modelled after
the best metamodel parameters have been selected.

3.4 Grid Evaluation and Model Quality Assessment

To make a decent comparison between the models, evaluation
on a large full-factorial design is a suitable choice. Once a
model is evaluated on a grid, it can easily be cross-checked
with the reference data set at all grid locations. When a
test-data set of the system is available, this error information
can be used to verify the accuracy of the models. Of course
in reality the full data set will not be at hand, so the cross-
check results can be used for validation purposes, but not
to select new sample locations.

To assert each metamodel’s accuracy, all metamodels
are compared pairwise. An error matrix E is generated,
with Ej; the root mean square error

1
ng

between metamodels k and / (n is the number of grid points
in the full-factorial design and the x;s are the grid points in
some order). Of course E has zeros on the diagonal, E is
symmetric, and if Ej; is small this indicates the metamodels
k and [ are quite similar.

ng 12
> IHi(xi) — Hz(x,-)|2) (12)

i=1
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All models receive a score according to following for-
mula:

1 1

0 Py Eu

13)

which identifies metamodels which are most similar to other
metamodels. All metamodels are ordered with respect to
their scores ;. Experiments show that models with a small
Q) are better than those with large Q;. An exception to
this rule occurs when two metamodels have very similar
metamodel parameters. In such cases, the Qs for both of
these metamodels will be extremely small. Therefore, we
ignore metamodels with very small Q values.

3.5 Expanding the Sample Set

Using the three best metamodels (by best we mean meta-
models with lowest score), the algorithm selects possible
new sample locations. Locations where two of these meta-
models differ the most are nominated as possible new sample
points. We gather all qualified sample locations in the new
sample set N.

If the error is large at a point x, other points nearby x
are likely to have large error values too. Just taking the set
of points where the error is largest will probably just select
all points around such point x. Therefore we take some
measures to avoid clustering of points in N. Points are
removed so that the minimal distance between two sample
points in N is greater than some threshold. Furthermore, the
number of sample points added in each iteration is restricted
by two bounds. If, on the one hand, the number of points
in N is smaller than the lower bound, some random points
are added. If, on the other hand, N is too large (according
to an upper bound) some random points of N are removed
until N is small enough. N is then added to the sample set.

3.6 Selecting New Metamodel Parameters

We want to improve our model’s quality by adjusting the
variable weighting, polynomial/rational flags and degrees of
freedom parameters. The parameters corresponding to the
worst metamodels (according to the scores) are removed
and new parameters are added. In order to select new
parameters in an intelligent way, we choose new parameters
close to those of the best metamodels. In practise we just
average the three best metamodel’s parameters and then
add a small perturbation to avoid duplicate parameters. The
worst metamodel parameters used in the current iteration
are replaced by these new metamodel parameters and will
be used in the next iteration.
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3.7 The Stopping Criterion

A stopping criterion is needed to decide when to stop iter-
ating. We want the iteration to stop, once we are convinced
the best metamodel has a certain accuracy or when it is
clear the desired accuracy cannot be reached.

At this point, only the first output parameter has been
modelled. In order to ensure all outputs achieve a certain
accuracy, we now model all outputs, but only using the meta-
model parameters of the best model. These metamodels are
then cross-checked with those of the previous iteration, and
their maximum absolute deviation is used as an accuracy
measure. When three consecutive iterations produce meta-
models which resemble each other up to a desired accuracy
(e.g., 2 significant digits), the metamodelling scheme stops
and the current metamodels are returned.

If after a large number of iterations no progress is made
towards the desired accuracy, the algorithm also exits. In
that case it failed to converge, so the best model found until
then is returned and an error message is shown to the user.

3.8 The Iteration

Figure 1 depicts how all the steps discussed in this section
relate. First, an initial sample set and a set of metamodel
parameters are selected. Then metamodels are built for the
first output. These metamodels are evaluated on a grid and
compared in pairs. Based on pairwise differences, scores
are assigned to the different models. The best metamodel
parameters are then used to model all other outputs. These
metamodels are compared to those of the previous iteration.
If the stopping criterion is satisfied, the algorithm exits.
Otherwise, the worst metamodel parameters are replaced
by new parameters, and new samples are added to the sample
set at locations where different metamodels differ the most.
Then the loop of model building, assigning scores, ...starts
all over again.

4 TESTS

This section describes some tests we conducted using our
toolbox. First, one academic 2-dimensional example is
described (the system is given explicitly by a function
definition). Afterwards, both an academic example and two
real-life examples with 3 inputs are discussed, and several
aspects of the algorithm are illustrated.

4.1 Academic 2D Example

First, an analytical function taken from Lehmensiek (2001)
is discussed. Its definition is

Hx,y):Q—>R:(x,y) > Cexp3t2/T(y) (14)
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( Initial sample selection )
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( Initial meta-model parameter selection )

viodel building

( Grid evaluation and quotation of meta-models )

!

( Check stopping criterion )

i

( Mew sample selection )

!

( Mew model parameter selection )
]

Figure 1: Modelling Flowchart

with Q = [-3,3] x [-3,3]. H varies heavily in the y
dimension due to the gamma function and quite smoothly
in the x dimension. A plot of this function is given in
Figure 2. We chose the parameter C such that the maximal
absolute value of H on the domain is exactly one.
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Figure 2: The Academic 2D Example

For this simple example, we wanted to achieve an
absolute accuracy of 1073 in 50 x 50 grid points. Figure 3
depicts error percentages. The x-axis contains the number
of samples, while the height of each grey-shaded region
depicts the percentage of grid points having an accuracy
within that region. For example, we see the darkest region
disappears after 53 samples where taken. This indicates
that using only 53 samples in the design space, we were
able to build a metamodel with an error smaller than 0.1
in all grid points. After 63 samples, the error was reduced
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below 0.01. When 90 samples where selected, the algorithm
decided the desired 10~ accuracy was achieved over the
whole design space. Figure 3 shows that this conclusion
was indeed correct.

100

Il > 1e-01
90 I 1e-01-1e-02
[ 1e-02 - 1e-03
[ 1e-03 - 1e-04
[] 1e-04 - 1e-05
[ ] <1e-05

80

70

60

50

Percentage

40

30

20

10

40 45 50 55 60 65

Number of samples

70 75 80 85

Figure 3: Modelling Error for the Academic 2D Example

4.2 Academic 3D Example

In this section, we discuss an example which is an extension
of the one presented in 4.1. We consider the function

H:fl—)R:(x,y,z)HCM

'y —3) I'(5x)

with Q = [0, 1]3, the unit cube. C was selected such that H
had a maximum near 1 on the domain (in fact all function
values then fall within [-1.1,1.1]). That way we can safely
use the absolute error as a measure for accuracy. Figure 4
shows a plot of the function for input parameter z fixed at
value 1.

Figure 5 shows an error plot similar to the one of last
section. Note that the final size of the sample set is much
larger than the one for the 2D example. Again, we set
the desired accuracy to 107#. As the plot indicates, 1073
was reached after 250 samples and 10™* was achieved after
360 samples. The algorithm terminated shortly after that
accuracy was reached.

It is interesting to see which weights the algorithm
has used for the different models. Figure 6 shows how the
parameter weighting evolves as more and more sample points
are selected. In the beginning (small sample set) variable
1 (x) gets the highest weighting, while variable 2 (y) gets
a lower weight. At about 150 samples the metamodelling
scheme decided y was the variable that varied most, and
consequently gave it a bigger weight. z provides the lowest
variation, therefore it gets the lowest weight possible. Note
that during the process all weights were bounded between
2 and 10.
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f(x,y,z=const)

y x

Figure 4: A Plot of the Academic 3D Example, with the
Third Variable Fixed at 1
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Figure 5: Modelling Error for the Academic 3D Example

The modelling process took some time to decide which
inputs to include in the denominator of the rational models.
The final models include both x and z in numerator and
denominator, while y only occurs in the numerator.
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— Variable 1

—— Variable 2
U —=— Variable 3
¥ ¥
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Weighting for each variable

200 250 300 350 400

Number of samples
Figure 6: Weights Assigned to Each Variable in the
Academic 3D Example

50 100 150

4.3 Real-Life Example: The Step Discontinuity

We use a full-wave electromagnetic MATLAB toolbox
(Lehmensiek 2001) for simulating the scattering parameters
of a step discontinuity in a rectangular waveguide. The
three input parameters represent frequency (7 to 13GHz),
gap height (2 to 8mm) and step length (0.5 to Smm). The two
outputs parameters are Si; and S12, which are the complex
valued scattering parameters of the structure. We sampled
the code on a 503 grid (125,000 points) for verification
purposes (this took us about 1 hour of computation on a
P4 2.4GHz desktop computer). Figure 7 shows plots of the
magnitude of the complex Si; for frequencies fixed at 7
GHz, 10 GHz and 13 GHz.

Step length

Gap height

Figure 7: A Plot of |Sy1| for the Step Discontinuity
as a Function of Gap Height and Step Length for the
Frequencies 7, 10 and 13 GHz
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In line with the accuracy level of the full-wave simulator,
it was decided to set the target accuracy to 1073 (or in
logarithmic scale, -60dB).

100

Il > 1e-01
I 1e-01-1e-02
[ 1e-02 - 1e-03
] 1e-03 - 1e-04
[] 1e-04 - 1e-05
[ ] <1e-05

90
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50

Percentage

40
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20

10

020 40 60 80 100

Number of samples

Figure 8: Metamodel Error Plot for the Step
Discontinuity

120

4.4 Real-Life Example: The Inductive Posts

A full-wave electromagnetic MATLAB toolbox (Lehmen-
siek 2001) was used to simulate the scattering parameters
of two centred inductive post discontinuities in a rectangu-
lar waveguide. The three input parameters we varied were
frequency (7 to 13GHz), post diameter (1 to Smm) and
distance between posts (4 to 18mm). Figure 9 shows a plot
of the magnitude of the first scattering parameter Sj; at
three fixed frequencies. We sampled the function on a 40°
grid for metamodel verification purposes.

Figure 10 shows the error plot for the inductive posts
example. Even after more than 300 iterations, we failed
to achieve the desired accuracy. We conjecture inaccurate
outputs or noise on the outputs of the simulator might be the
cause of this result. After 100 samples an accuracy of 0.01
is achieved. After that, we quickly reach 1073 accuracy in
90% of the domain, but fail to model the whole domain up
to that accuracy.
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1S4l

3

. 1 5
Post diameter Distance between posts

Figure 9: A Plot of |S11| for the Inductive Posts as a
Function of Post Diameter and Distance Between Posts
for the Frequencies 7, 10 and 13 GHz
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Figure 10: Metamodel Error Plot for the Inductive Posts

5 CONCLUSION

After conducting several tests on our toolbox, we conclude
that using rational and polynomial models with 2 or 3
inputs, we were able to model most of our examples to the
desired accuracy without encountering any problems. The
inductive posts example fails to reach the desired accuracy.
In section 4.2 it was illustrated that the adaptive weight
selection works as it should. The error plots clarify how the
metamodelling error is reduced in each iteration, in order
to achieve a global accuracy of 1073 or 107#, depending
on the example.
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6 SOFTWARE

The MATLAB code and datasets used in this paper is grouped
into the Multivariable MetaModelling toolbox (M?3-toolbox,
Hendrickx 2005), which is publicly available on our research
group’s website, <www.coms .ua.ac.be>. Instructions
are provided to reproduce the results generated in this paper.
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