
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

INTRODUCING A UML MODEL FOR FASTER-THAN-REAL-TIME SIMULATION∗

Dimosthenis Anagnostopoulos
George-Dimitrios Kapos

Harokopio University of Athens
70 El. Venizelou Str, 17671

Athens, GREECE

Vassilis Dalakas
Mara Nikolaidou

University of Athens
Panepistimiopolis, 15771

Athens, GREECE
ABSTRACT

Faster-than-real-time simulation (FRTS) is used when at-
tempting to reach conclusions for the near future. FRTS
experimentation proves to be the most demanding phase for
conducting FRTS, since it requires concurrent monitoring
and management of both the real system and the simulation
experiments. Having previously introduced a conceptual
methodology and specification for conducting FRTS ex-
periments, we now propose an implementation framework,
based on the Real Time Unified Modeling Language (RT-
UML). The derived RT-UML model includes specific timing
attributes and is independent of the application examined
via FRTS. Thus, implementation of FRTS program modules
can be analyzed and realized, following the guidelines of
this model, ensuring the reliability of the results within pre-
determined time frames. A pilot application regarding FRTS
implementation based on the proposed RT-UML model and
related experience is also discussed in the paper.

1 INTRODUCTION

Real time simulation is widely used for the performance eval-
uation of systems behavior in real time. When attempting to
reach conclusions for the near future, FRTS is used where the
advancement of simulation time occurs faster than real world
time. Making models run faster is the modeler’s responsi-
bility and rather demanding, since RT systems often have
hard requirements for interacting with the human operator
or other agents. Relevant methodological issues and some
solutions have been discussed in Lee and Fishwick (1999)
on the basis of selecting amongst models that employ a
different level of abstraction. Current FRTS research direc-
tions involve the distribution of experiments over a network
of workstations, intelligent control (Caia et al. 1996) and
fault diagnosis (Norvilas et al. 2000), interactive-dynamic

∗This research was supported in part by Pythagoras program (MIS
89198) co-funded by the Greek Government (25%) and the European
Union (75%).
307
simulation (i.e., manipulation of the simulator by the user
in RT) (Tyreus 1997). The increased interest in the field is
reflected by the DDDAS program of the NSF (NSF 2005).

A conceptual methodology for conducting FRTS ex-
periments, meeting the RT constraints, has been envisaged
in Anagnostopoulos et al. (1999). The authors have devel-
oped in the past FRTS tools for different domains, such
as networks (Anagnostopoulos and Nikolaidou 2001) and
transportation systems. Recently, a first level description
of an integrated specification for FRTS systems with RT-
UML (Anagnostopoulos et al. 2004), leading to standard-
ized implementations of such systems that meet strict time
requirements was introduced. The profile, also used in
Bertolino et al. (2002), enables the detailed specification
of critical time and synchronization requirements for FRTS
components and the overall performance evaluation. A
detailed description of this framework is presented here.
Moreover, an FRT simulator was implemented following
these guidelines.

In Section 2 of the paper an FRTS overview is provided.
Section 3 presents a short description of RT-UML profile
used for our model. The UML model’s high level description
is given in Section 4 and a thorough specification is explained
in Section 5. Section 6 presents an application example
and some performance results from its execution within the
proposed framework.

2 FRTS METHODOLOGY OVERVIEW

In Anagnostopoulos et al. (1999), a methodology that es-
tablishes a framework for conducting experiments dealing
with the increased complexity and the hard RT require-
ments was introduced. The following simulation phases
were identified: modeling, experimentation and remodel-
ing. RT execution concerns only the two latter phases.
During experimentation, both the system and the model
evolve concurrently and are put under monitoring. Data de-
picting their consequent states are obtained and stored after
predetermined, RT intervals of equal length, called auditing



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
interval (AudInt). In case the model state deviates from the
corresponding system state, remodeling is invoked. This
may occur due to either modification of the system structure
and operation parameters, or the stochastic nature of sim-
ulation. To deal such deviations, remodeling modifies the
model in order to represent the current system state. This is
accomplished without terminating the RT experiment, that
is, without performing recompilation. When model modi-
fications are completed, experimentation resumes from the
current RT points, while all previous simulation results (i.e.,
predictions) are discarded. We use preconstructed models
which are prevaluated. This is the only way to perform
remodeling in real time. As already stated, model invalidity
may be caused due to stochastic nature of simulation.

FRTS provides a natural way for accomplishing model
validation through comparing the corresponding system data
and model results. In case results (predictions for the near
future) are valid over a number of consecutive time intervals,
they may be used to reach conclusions and take appropriate
actions for the system future state.

Experimentation in FRTS thus comprises monitoring,
i.e., obtaining and storing system and model data during
the auditing interval, and auditing, i.e., examining if the
system has been modified during the last auditing interval
or the model no longer provides a valid representation of
the system due to stochastic nature of simulation.

To determine whether the system has been modified,
specific system features are put under monitoring. The
variables used to obtain the corresponding values are re-
ferred as monitoring variables (MVs). Auditing examines
MVs corresponding to the same RT points (i.e., the current
system state and simulation predictions for this point) and
concludes for the validity of the model, as depicted in Figure
1. Auditing is performed at tn−1, tn, tn+1 and, thus, com-
pares states Sx and Rn at time point tn. If model validity is
consecutively ensured at a number of consecutive auditing

t
0

t n-1
t
n

Sn

R
nR n-1

S n-1

R
n+1

S n+1

tx

Sx

t
n+1

Sy

t
y

R
n+2

S n+2

t n+2

model monitoring 
and execution

system
monitoring

system
monitoring

auditing

remodeling

Figure 1: Experimentation in FRTS
308
intervals [tn−2, tn−1], [tn−1, tn], . . . , simulation predictions
are also considered to be valid. Assuming that auditing
is invoked at tn−1 and that we wish to reach predictions
for ty within auditing interval [tn−1, tn] (Figure 1), pre-
diction interval (PredInt) is equal to ty − tn−1. Evidently,
PredInt > AudInt . We usually choose a value p so that
PredInt = p · AudInt , p ∈ N∗.

Both model and system monitoring are executed while
the model is running, that is, while predictions are reached
within the given time frame (i.e., AudInt). Within this
interval, auditing and remodeling (if necessary) must as
well be completed. As auditing examines model validity
at the end of the auditing interval, it is not possible to
perceive system modifications occurring in the meantime.
To deal with this, state auditing is an additional activity ex-
ecuted in predetermined state auditing intervals (StAudInt),
that a) examines the current system state to detect system
modifications, and b) consumes no time, as is executed
without pausing the model. If the system has been modi-
fied, model execution terminates, results are discarded and
remodeling is invoked, as in the case of auditing. Evidently,
AudInt = n·StAudInt , n ∈ N∗. As monitoring consumes
time equal to model execution time (TE), the condition for
achieving FRTS within the given time frame is:

TE + TA + TR ≤ AudInt (1)

where TA, TR are the time periods consumed for audit-
ing and remodeling, respectively (Figure 1). A more de-
tailed discussion on timing issues in FRTS can be found in
Anagnostopoulos and Nikolaidou (2003).

Model validation activities are accomplished though
comparing the corresponding values of MVs for the real
system and the model. Each monitoring variable MVi is
characterized by the following: name, system value (r),
model value (s), deviation range (dr) and a state moni-
toring indication (smi), which specifies whether this vari-
able is used in state auditing. A simple comparison for
single-valued variables examines if the model value (MVi.s)
is within an interval constructed around the system value
(MVi.r). Deviation range (dr) determines the half-length
of the interval. In this way, for monitoring variable i, the
model is considered to be valid when

MVi.s ∈ [MVi.r · (1 − dr), MVi.r · (1 + dr)] (2)

3 RT-UML MODELING FRAMEWORK

Unified Modeling Language (UML) is the result of an effort
to unify concepts among distinct methodologies, made by the
authors of three leading methodologies –Rumbaugh, Booch,
and Jacobson (Rumbaugh et al. 1999, OMG 2001a). Cur-
rently, UML has been adopted as a standard by the Object



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
Management Group (OMG) and is considered a fundamental
skill for software engineers.

UML does not provide the required degree of precision
(regarding timing issues) for the specification of FRTS. Thus,
we use RT-UML (OMG 2001b), which enhances UML di-
agrams. The profile, also used in Bertolino et al. (2002),
enables the detailed specification of critical time and syn-
chronization requirements for FRTS components and the
overall performance evaluation. RT-UML does not propose
new model analysis techniques, but it rather enables the
annotation of UML models with properties that are related
to modeling of time and time-related aspects. Therefore
timing and synchronization aspects of FRTS components
are defined and explained in terms of standard modeling
elements. RT-UML has a modular structure that allows
users to use only the elements that they need. It is divided
into two main parts (General Resource Modeling Frame-
work and Analysis Models) and is further partitioned in six
subprofiles, dedicated to specific aspects and model analysis
techniques. Since the emphasis of this work is on time and
concurrency aspects of FRTS systems, we only use elements
from the General Time Modeling and General Concurrency
Modeling subprofiles.

Each subprofile provides several stereotypes with tags
that may be applied to UML models. A stereotype can
be viewed as the way to extend the semantics of existing
UML concepts (activity, method, class, etc.). For example,
a stereotype can be applied on an activity, in order to extend
its semantics to include the duration of its execution. This
is achieved via a new tag added to the activity, specifying
the execution duration. Stereotypes define such tags and
their domains.

The proposed FRTS model consists of RT-UML en-
hanced diagrams, which are annotated according to the
conventions used in the RT-UML profile specification and
its examples (OMG 2001b). Stereotypes applied to classes
in class diagrams are displayed in the class box, above
the name of the class (a in Figure 2). However, when tag
values need to be specified for a certain stereotype, a note is
also attached (b in Figure 2). In sequence diagrams, event
stereotypes are displayed over the events, while method
invocation and execution stereotypes are displayed in notes
(c in Figure 2). In activity diagrams, notes are also used to
indicate the application of a stereotype on an activity, state
or transition (d in Figure 2).

The RT-UML stereotypes used in this paper focus on
timing, concurrency and synchronization issues, providing
considerable precision in the specified model. In class
diagrams of this paper we use the CRconcurrent and RTtimer
stereotypes. CRconcurrent is used for classes of objects
that may be executed concurrently. A CRmain tag holds
a reference to the method that should be invoked once the
object moves to “executing” state. RTtimer models a timer
mechanism. Tag RTduration specifies the duration of the
309
Figure 2: RT-UML Notation

timer mechanism, while RTperiodic indicates whether the
timer is periodic or not.

In sequence diagrams we use the RTevent, CRimmedi-
ate, CRsynch, CRasynch, RTnewTimer, RTstart and RTac-
tion. RTevent models events of message dispatches, speci-
fying the time instance they occur (through the RTat tag).
CRimmediate is also used for message dispatches to indi-
cate that no time is consumed until the message reaches its
destination. The CRthreading tag of this stereotype defines
the thread that will execute a method (as a result of the mes-
sage): the thread of the receiver (value “local”) or the thread
of the sender (value “remote”). CRsynch and CRasynch are
used to indicate whether a method is invoked synchronously
or not. Stereotype RTnewTimer models methods that create
new timers and RTstart is used for events that start timing
mechanisms. Finally, RTaction is used for methods, speci-
fying the instance they start (tag RTstart) and their duration
(tag RTduration).

In activity diagrams we use the RTaction and RTdelay
stereotypes. RTaction was described earlier, while RTdelay
is used for pure delay states, specifying their start, end
and duration. Table 1 summarizes the RT-UML stereotypes
used in the proposed FRTS model, their tags, the concepts
applying to, and the diagram types they are used in.

4 FRTS: A HIGH-LEVEL DESCRIPTION

An object-oriented specification of FRTS is provided in this
section. In Figure 3, a UML use case diagram is depicted,
including all entities involved in FRTS. Both the system and
the model, are separate from the main module of FRTS and
handled independently. System environment (SE) represents
the actual system and a surrounding mechanism facilitating
system monitoring. It is considered as a separate entity that
interacts with the FRTS system. Model environment (ME)
includes the model and its execution environment (MEE),
while the FRTS System process is the software module
responsible for controlling FRTS. Finally, the user is the
actor that enables the whole process, providing the case
study.



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
Table 1: RT-UML Notation
Stereotype Tags Applied Diagram

to type used in
RTaction RTstart, Activity, Activity and

RTend, Method Sequence
RTduration

RTdelay RTstart State Activity
RTend,
RTduration

RTevent RTat Event Sequence
RTnewTimer RTtimerPar Method Sequence
RTstart - Event Sequence
RTtimer RTduration, Class Class

RTperiodic
CRasynch - Method Sequence
CRconcurrent CRmain Class Class
CRimmediate CRthreading Event Sequence
CRsynch - Method Sequence

Figure 3: FRTS Detailed Use Case Diagram

The user provides the experiment specifications and
manages the FRTS System process by starting or stopping
the experiment.

System and model environment entities provide raw
system data and raw model data, respectively. The FRTS
System process performs auditing to identify potential de-
viations between the model and the system. In case such
a deviation is indicated exceeding a respective remodeling
threshold, remodeling is invoked (Remodeling), which re-
sults in the construction of a new model that replaces the
one currently used (Model management).

We focus on the FRTS System, as the FRTS coordinating
entity. The activity diagram depicted in Figure 4 provides
a description of FRTS System process. The user is obliged
to provide experiment specifications to the process with the
310
Figure 4: FRTS System Activity Diagram

SetExperimentSpecifications command. Then, start initiates
the experiment, transiting to the Operational state.

System monitoring is considered to be performed au-
tonomously by the real system with the aid of expert sensors
that store monitoring information. The contribution of Start
System Monitoring activity is restricted in stimulating the
aforementioned sensors to start collecting and recording
data by sending the appropriate event to SE.

Based on the experiment specifications, an initial model
is being created (Initialize Model activity) using classes from
predetermined libraries. Model environment is considered
separate from the FRTS environment (e.g. it could be
a DEVS-based execution environment). Therefore, Start
Model activity simply tells ME to start simulation and
is used for synchronization purposes. Model monitoring
is considered to be performed by the ME which stores
monitoring data. Thus, model and system monitoring are
performed concurrently and autonomously, collecting data
from both. Model monitoring is executed for a time period



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
equal to auditing interval, such as [tn−1, tn] in Figure 1,
during which the FRTS System process mainly remains in
state Waiting (Figure 4). Model execution is then paused
and Audit is invoked. Audit determines if the model still
provides a valid representation of the system. If invalid,
Remodel is invoked. Otherwise, MEE is informed to resume
execution and monitoring of the model.

In a smaller time interval (state interval) than the audit-
ing interval, the FRTS System process leaves Waiting state,
to perform the State Audit activity. State Audit handles
critical, such as structural, modifications of the real system,
where remodeling must be performed instantly to restore
consistency between the model and the system. Model
monitoring is disabled during Audit and Remodel. On the
other hand, system monitoring is never terminated, so that
system changes can always be perceived. The only modifi-
cation it experiences is that it is restarted for synchronization
purposes after Remodel.

5 FRTS SYSTEM SPECIFICATION

UML semantics were adequate to represent FRTS system
operation in a high-level of detail, since there was no need to
represent timing constraints between FRTS specific activities
and system/model environment.

In this section a specification for FRTS systems imple-
mentation is provided. First, FRTS system main classes and
interfaces are presented in a class diagram. Then, FRTS
main operations are presented using activity and sequence
diagrams. RT-UML semantics are included in the diagrams
in both cases mainly to indicate concurrent execution of ac-
tivities, the need for synchronization and timing constraints.

5.1 FRTS Components

Figure 5 depicts the FRTS system design, based on a set
of classes and interfaces. The classes are shortly described
below (detailed descriptions are given in following subsec-
tions):

• Context is a utility class, used for storing the ex-
periment specifications, references to the system
monitor and the model environment, and monitor-
ing variable values used for state auditing.

• Control class initiates the FRTS process.
• StateAuditor, Auditor, and Remodeller are respon-

sible for performing the homonymous operations.
• Timer is responsible for producing StateAudit and

Audit events, necessary for triggering StateAuditor
and Auditor.

• Class UserInterface is simply the means for intro-
ducing user requests and data and therefore, is not
further explained.
311
The following interfaces are also used:

• IAuditor interface defines the abstract behavior of
an auditor and is implemented via StateAuditor and
Auditor classes.

• Monitor interface models the abstract concept of
a monitor for variables’ values. Interfaces System-
Monitor and ModelExecutionEnvironment extend
this interface to capture specific behavioral charac-
teristics, required for system and model monitoring,
respectively.

Classes Control, Timer, StateAuditor, Auditor, and Re-
modeler are intended to run on separate threads and therefore
have the CRconcurrent stereotype. Objects of each of these
classes operate independently and occasionally concurrently.
The CRmain tag of CRconcurrent stereotypes indicates the
method that is executed when objects of each class are
activated. Class Timer has also the RTtimer stereotype,
indicating that it is a timing mechanism that generates an
event. Tags RTduration and RTperiodic further define the
behavior of this timing mechanism, specifying its duration
and indicating whether it is periodic or not.

No classes are specified for the system monitor and the
model environment, since they are not part of the FRTS
system. FRTS components require only communication
interfaces with the system monitor and the model environ-
ment, denoted by SystemMonitor and ModelExecutionEn-
vironment.

5.2 Initiation of the FRTS Process

Figure 6 shows the sequence of messages exchanged by
the FRTS system objects during initiation. This sequence
diagram of the FRTS process starts when the user sends
the start() event to the Control (through the UserInterface)
at a random time instance ty . The start() event causes
the immediate execution of the homonymous method of
the Control, as indicated by the CRimmediateExecution
stereotype. Value ’local’ of the tag CRthreading shows that
the start() method of Control is not executed by the thread
of the invoking object (UserInterface), but by a separate,
local thread of the Control. A ’remote’ value on this tag
would indicate execution of the method by the thread of the
invoking object. The CRasynch stereotype indicates that
the invocation of the start() method is asynchronous, i.e.,
the invoking object does not wait for the execution of the
method to be completed. At this stage several initiation
messages are exchanged until the FRTS process reaches its
stable state of periodic audits and state audits. This happens
when the last message (start()) is sent to the Timer that
will repeatedly produce state audit and audit events from
this point on. All method executions are annotated with
the appropriate RTaction stereotypes that indicate when



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
Figure 5: The Main FRTS System Classes
Figure 6: Sequence Diagram for Starting the FRTS Process
312



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
each execution starts (tag RTstart) and its duration (tag
RTduration).

The use of RT-UML in the sequence diagram of Figure
6 clarifies thread synchronization and execution, determines
event occurrence and action duration, and enhances its
semantics. Thus, an in-depth and comprehensive view of
the FRTS system is obtained.

The activity diagram of Figure 7 defines the functionality
of the start() method of class Control. Each activity of

Figure 7: Activity Diagram for Method start of Class Control

the diagram is annotated with the appropriate RTaction
stereotype note. Using this kind of stereotype and its
RTduration tag, activities’ durations are specified. The
lower part (do/ ) of each activity defines the actions executed
or messages sent. Message dispatches are denoted with
the ˆ symbol. The overall duration of start() method is
9 · b + c ms, where b is the time needed for a basic
operation to be performed (arithmetic operation, method
invocation, etc.). Parameter c is the duration of model’s
initialization and depends on the experiment specification.
The overall duration of start() refers to the duration from
the time instance when the user sends a start() event until
everything has been initialized and Timer is started.

5.3 Audit

Audit is the key experimentation activity determining model
validity through comparing the corresponding system and
model monitoring variables. Auditing is activated either
after a state interval or an audit interval. Two distinct cases
are thus considered: standard auditing and state auditing.
Throughout this paper, the term auditing refers to standard
auditing. State auditing is explicitly referenced.

During auditing, system modifications, involving its
input data, operation parameters and structure, as well as
313
deviations between the system and the model are examined
to determine model validity. If remodeling is required, a
remodeling indication is produced. All monitoring variables
are used in this process.

Monitoring variable comparison is realized using the
auditing tree, which is a conceptual tree structure. It is
divided into two subtrees and includes two corresponding
types of end nodes, OR and AND, as depicted in Figure 8.
The audit activity constructs the auditing tree retrieving sys-

Figure 8: Auditing Tree Class Diagram

tem and model monitoring variable entries from the System
Monitor and Model Execution Environment, respectively.

Both Audit and State Audit execution are restricted
by strict timing constraints, since in both cases the au-
diting tree must be constructed in a small fraction of the
audit/state audit interval. Furthermore, the auditing tree
construction is bounded by system and model environments
since monitoring variable values must be fetched from both
of them. These restrictions are denoted in detail in corre-
sponding sequence and activity diagrams, where RT-UML
use offers the ability to estimate the time elapsed in separate
activities or the whole auditing process in total. Hence, bot-
tlenecks regarding the execution time of specific Auditing
and Model/System Environment processes (e.g. comparing
values of a monitoring variable) may be identified during
analysis and Auditing implementation performance can be
measured and validated with regard to Model/System Envi-
ronment operation. For example, since the FRTS Modeler
is able to realize the way the overall duration of audit de-
pends on the number of monitoring variables or the fetching
mechanism of System Environment, he/she may regulate
the operation of all FRTS modules.

In Figures 9 and 10, the State Audit RT-UML sequence
and activity diagrams are presented. As shown in Figure
9, state audit activity inspects the current system state to
determine if reformations have occurred. In this case, the
model no longer provides a valid representation and the rele-
vant remodeling indication is produced. As indicated in the
activity diagram in Figure 10, only variables designated as
state monitoring variables are retrieved during state audit.
Each of these variables is compared to its previous known
value and the newer is stored. If the deviation between



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
Figure 9: State Audit Sequence Diagram

Figure 10: Activity Diagram for Method audit of Class StateAuditor
the two values supersedes the specified compParam, it is
considered as invalid and the algorithm directly invokes
remodeling to modify the model with minimum time over-
head, without exhaustively examining the remaining state
monitoring variables. Otherwise, the state auditor examines
the remaining state monitoring variables.

As indicated in Figure 10, the overall duration of the
state audit is 8 · b +net1 +f ms, where f ∈ [4 · b + d, (4 ·
b + d) · e], d is the mean time for the comparison for one
variable and e is the number of state monitoring variables.

6 AN FRTS APPLICATION EXAMPLE

Contacting FRTS experiments successfully, requires the ex-
ecution time of specific activities to be similar to the time
estimations reported in the model. An FRT simulator was
implemented to coordinate an experimental system for model
evaluation purposes. The FRT simulator was built in Java,
following the guidelines of the RT-UML model presented
314
in Sections 4 and 5. The Simulation Environment (SE)
and simulation models were constructed in Java, as well.
The simulator was easily implemented using Rational Rose
platform that minimized programming effort. Although the
FRT simulator implementation was based in the RT-UML
model, the presented case study is not described in terms of
UML diagrams as it deals with the execution of the derived
system.

In the following, FRTS is applied in a two node web
site, where the second node is used only in cases of heavy
load (that is when FRTS predicts that each node load is
over a certain threshold). Suppose that visitor inquiries
are two kind of processing jobs J1 and J2 that fill two
separate queues Q1 and Q2 respectively. Each job has an
inter-arrival time λi and a predetermined service time εi

(ε1 ≥ ε2). Both queues are connected with a server Si as
illustrates Figure 11. Thus, the web site can be modeled
as a Multi-Queue, Multi-Server System.



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
Figure 11: Example Topology

Denoting the average queue delay as di , we may define
the following scenario for our case study. In the beginning
each server serves only its associated queue (Coupling does
not exist). However, if d1 ≥ M1 and d2 ≤ M2 we activate
the coupling among the first queue Q1 and the second server
S2, activating a mechanism that enables S2 to serve one job
from queue Q1 each time its queue (Q2) is empty. This
mechanism is deactivated in case d1 ≤ M1 or d2 ≥ M2.
Then again, each server serves only its associated queue
(Coupling does not exist).

In order to conduct the experiment, detailed description
of Monitoring Variables and Remodeling Conditions was
needed during the initialization phase. As model initializa-
tion parameters, the following variables were used:

• 2 job types
• 2 queues
• 2 servers
• Inter-arrival parameter for job 1 = 3
• Inter-arrival parameter for job 2 = 3
• Service time for job 1 = 10 sec
• Service time for job 1 = 1 sec
• Average queue delay in queue 1 = 60 sec
• Average queue delay in queue 1 = 5 sec

thus, we have modelInitParams = (2, 2, 2, 3, 3, 10, 1,
60, 5). Having the model variables and the initialization
parameters the MEE can now build the model and execute
it.

Checking values for both system and model of these
monitoring variables during auditing we apply remodeling
following the described scenario and in case a server is
down. Table 2 presents the results of the experimenta-
tion with the example described in this section and the
FRTS simulator we built. Experimentation was conducted
within Sun’s Netbeans IDE and the Netbeans Profiler plug-
in. Measured times (third column) are presented against
estimated durations (second column) by the RT-UML FRTS
model analysis. The table contains the most important time
periods:

(i) Execution time of a basic operation. It entirely
depends on the computer configuration where the
experimentation is conducted. No theoretical es-
timation can be made. The measured value is
315
substituted in the formulas that estimate other time
periods.

(ii) Audit and state audit intervals.
(iii) Audit and state audit durations. A fundamental

requirement is that state audit duration is less than
state audit interval.

For each time period both estimated and measured, an
average, a minimum and a maximum value are given.

Table 2: Basic FRTS Time Attribute Comparison

Time
interval

Duration in msec
Theoretical Estimation Measured Time
avg min max avg min max

Time for
basic

operation
(b) (b) (b) 0.0377 0.0011 0.8229

Audit
interval

5000 5000 5000 5004 4871 5278

Audit
duration

5.479 0.155 123.441 2.700 0.090 53.400

State audit
interval

1000 1000 1000 999 891 1106

State audit
duration

0.565 0.017 12.344 0.233 0.087 10.700

As far as the estimated time periods are concerned,
audit and state audit intervals are explicitly defined rather
than estimated. Also, since the basic operation duration (b)
is not estimated, but the measured time is used in other
formulas.

State audit duration is estimated by the formula 8 · b +
net1 + f , where f ∈ [4 · b + d, (4 · b + d) · e], d is the
mean time for the comparison for one variable and e is
the number of state monitoring variables. In our example
there is only one state monitoring variable (e = 1) and
the mean time for the comparison of the integer variable
is two basic operations (d = 2 · b). Also, as there is not
any factor that would introduce delays in the reception of
state monitoring variable values from the system, parameter
net1 can be estimated to be equal to one basic operation
duration (net1 = b). Therefore, the formula estimating the
state audit duration becomes 15 · b. The respective cell
is filled using the measured value for the basic operation
duration (b).

Similarly, for the estimation of the audit duration, the
formula 14 ·b+g+net2+net3+k is used. Parameter g is
the time for the audit tree to be built, net2 and net3 depend
on the number (h = 9) and the type of the monitoring
variables, and k ∈ [b + h · (4 · b + d), b + h · (5 · b + d)].
Parameter g can be estimated to be 6 · b times the number
of monitoring variables (6 · b · h = 54 · b). Like net1 in
state audit duration, net2 and net3 are considered to be
equal to h · b = 9 · b each. Considering that h = 9 and
d = 2 · b, k ∈ [55 · b, 64 · b]. Therefore, audit duration



Anagnostopoulos, Dalakas, Kapos, and Nikolaidou
belongs in [141 · b, 150 · b]. The respective cell is filled
using the measured value for the basic operation duration
(b).

Comparing the theoretical estimations with the mea-
sured times in Table 2, the following conclusions are reached:
a) audit and state audit intervals are quite accurate, b) es-
timated audit and state audit durations are comparable to
the measured ones. Also, estimations for maximum audit
and state audit durations are higher than the measured ones,
indicating that the estimated maximum values may be used
as the lower limit for audit and state audit duration.

7 CONCLUSIONS

The main objective of the work presented in this paper
was to introduce a specification for FRTS experimentation,
which was not domain-oriented and establishes common
guidelines for developing FRT simulators. We adopted RT-
UML to provide a thorough and complete model for FRT
simulators emphasizing timing and concurrency issues. RT-
UML enabled the description of time constraints imposed in
FRTS, while modeling process was straight-forward, and no
extensions were needed to describe FRTS. Detailed RT-UML
diagrams specify how each FRTS component operates in
terms of events, activities, and actions and infers estimations
about time consistency and overall behavior of specific FRTS
simulators. The behavior of FRTS simulators, apart from
their implementation, strongly depends on the application
domain and the experiment specifications used. Thus, time
consistency of FRTS simulators may be completely justified
only in the context of an application domain and specific
experiment specifications. To this direction the proposed
model quantified this interdependence and facilitates the
evaluation of FRTS simulators in certain contexts.

REFERENCES

Anagnostopoulos, D., V. Dalakas, G. D. Kapos, and M. Niko-
laidou. 2004. An RT-UML model for building faster-
than-real-time simulators. In Proceedings of Eurosim04.
Paris.

Anagnostopoulos, D., and M. Nikolaidou. 2001. An object-
oriented modeling approach for dynamic computer net-
work simulation. International Journal of Modeling and
Simulation 21 (4): 249–257.

Anagnostopoulos, D., and M. Nikolaidou. 2003. Timing
issues and experiment scheduling in faster-than-real-
time simulation. SCS Transactions on Computer Sim-
ulation 79 (11): 613–625.

Anagnostopoulos, D., M. Nikolaidou, and P. Georgiadis.
1999. A conceptual methodology for conducting faster-
than-real-time experiments. Trans. Soc. Comput. Simul.
Int. 16 (2): 70–77.
316
Bertolino, A., E. Marchetti, and R. Mirandola. 2002. Real-
time UML-based performance engineering to aid man-
ager’s decisions in multi-project planning. In Workshop
on Software and Performance, 251–261.

Caia, Z.-X., Y.-N. Wangb, and J.-F. Caia. 1996. A real-
time expert control system. Artificial Intelligence and
Engineering 10 (4): 317–322.

Lee, K., and P. A. Fishwick. 1999. OOPM/RT: A multi-
modeling methodology for real-time simulation. ACM
Trans. Model. Comput. Simul. 9 (2): 141–170.

Norvilas, A., A. Negiz, J. DeCicco, and A. Hinar. 2000. In-
telligent process monitoring by interfacing knowledge-
based systems and multivariate statistical monitoring.
Journal of Process Control 10 (4): 341–350.

NSF 2005. Dynamic Data Driven Applications Systems.
Available online via http://www.cise.nsf.gov/dddas [ac-
cessed June 1, 2005].

OMG 2001a. OMG Unified Modeling Language
Specification, version 1.5. Available online via
http://www.omg.org/docs/formal/03-03-01.pdf [ac-
cessed June 1, 2005].

OMG 2001b. UML Profile for Schedulability, Performance,
and Time Specification, version 1.0. Available online
via http://www.omg.org/docs/formal/03-09-01.pdf [ac-
cessed June 1, 2005].

Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The Uni-
fied Modeling Language reference manual. Essex, UK:
Addison-Wesley Longman Ltd.

Tyreus, B. D. 1997. Interactive, dynamic simulation using
extrapolation methods. Computers & Chemical Engi-
neering 21 (Supplement 1): S173–S179.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



