
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

PARALLEL SIMULATION OF PETRI NETS ON DESKTOP PC HARDWARE

Robert Geist
Jacob Hicks

Mark Smotherman
James Westall

Department of Computer Science
Clemson University

Clemson, SC 29634-0974, U.S.A.
ABSTRACT

A comparatively simple approach to highly parallel simu-
lation of Petri nets on commodity, desktop PC hardware is
suggested. A mapping, described in the programming lan-
guage Cg, of Petri net semantics to the SIMD architecture
of NVidia 5-series and 6-series GPUs is provided, and a
prototype simulator is tested on both conflict-intensive and
conflict-free Petri net models. In all cases, the prototype
parallel simulator is seen to deliver substantial performance
gains over its serial counterparts. Limitations of the ap-
proach and open design issues are also described.

1 INTRODUCTION

Among well-known tools for modeling computer and com-
munication systems, Petri nets continue to play a prominent
role of significant importance. Recall that a Petri net is a
directed bipartite graph whose two vertex sets are called
places and transitions. Places are traditionally represented
by circles and transitions by rectangles. Places may con-
tain one or more tokens, represented by small discs. The
semantics attached to such nets are rules for simulation:

• If every input place to a transition contains one or
more tokens, the transition is enabled.

• Enabled transitions may fire, that is, remove one
token from each input place and add one token to
each output place.

• If firing an enabled transition would disable a con-
currently enabled transition (conflict), the firing
transition is chosen at random.

A common extension to the basic Petri nets, inhibitor arcs,
adds Turing completeness: If an arc from a place to a
transition is an inhibitor arc, the transition is enabled only
if the place is empty.
374
Due to the ease with which modelers can represent
common system features such as concurrency and resource
contention, Petri nets and their extensions have been used by
many authors in modeling both the reliability and the perfor-
mance of computer and communication systems. The most
common extension is probably the Generalized Stochas-
tic Petri Net (GSPN) (Marsan, Conte, and Balbo 1984) in
which transitions may fire instantaneously (when enabled)
or have exponentially distributed delay between enabling
and firing. Such nets can be transformed into discrete-state,
continuous-time Markov processes so that analytic solution
techniques may be employed to extract both steady-state
and transient information.

Nevertheless, in spite of significant advances
by numerous researchers in obtaining analytic solu-
tions of timed Petri nets (Marsan and Chiola 1987;
Choi et al. 1993a; Choi, Kulkarni, and Trivedi 1993b;
German and Lindemann 1993), simulation remains the
only viable alternative for many classes of nets, partic-
ularly those having large numbers of transitions with
non-exponential firing times. Thus interest in accelerated
simulation through parallel processing remains strong.
Several authors have investigated parallel and distributed
Petri net simulations. Nicol and Roy (1991) considered
distributed execution in the framework of communicating
discrete event simulations. They offered both a com-
munication protocol and an event priority scheme that
allowed significant speedups over sequential simulation.
Thomas and Zahorjan (1991) also achieved significant
performance improvements over sequential simulation by
modifying the semantics of Chandy and Misra’s classical
model for parallel simulation (Chandy and Misra 1981) to
allow for Petri net semantics. In particular, they proposed
a selective receive mechanism whereby a logical process
may ignore some of its input channels in computing its own
message acceptance horizon. Ferscha (1994) provided an
excellent distillation of the issues involved in both parallel
(SIMD) and distributed simulation of Petri nets. This

Geist, Hicks, Smotherman, and Westall
included a description of the innovative technique, due
to Baccelli and Canales (1993), for parallel simulation of
certain classes of nets using matrix recurrence equations.

The purpose of this paper is to suggest a compara-
tively simple alternative to these approaches that is based
on an ongoing “revolution” in PC-class, desktop hardware.
Graphics processing units (GPUs) have become increas-
ingly attractive targets for general purpose (non-graphics)
computation. Designed originally to speed the rendering of
images to PC displays, GPUs are now fully programmable
and, largely due to their highly-parallel, SIMD designs,
significantly outperform even high-end CPUs on common
tasks. For example, on peak performance measures, a 3
GHz Intel Pentium 4 CPU is rated at 12 GFLOPS and 6
GB/sec memory bandwidth; the 400 MHz NVidia 6800 GPU
is rated at 45 GFLOPS and 36 GB/sec memory bandwidth
(Hanrahan 2004). Nvidia now provides both a high-level
programming language for GPUs, Cg, and the software
tools necessary to integrate Cg programs into ordinary C
programs that use a standard graphics API such as OpenGL
or DirectX (Fernando and Kilgard 2003). Our goal here is
to provide a Cg-based mapping of Petri net semantics to the
SIMD architecture of the NVidia GPUs and thereby offer a
low-cost, high-performance technique for Petri net simula-
tion on the desktop PC. As of this writing, a graphics card
with a 6800 Ultra GPU, as tested here, can be purchased
for approximately $380.

It is worth noting that numerous, non-graphics appli-
cations have already been implemented on GPUs, and thus
a body of technique, upon which we have drawn, is begin-
ning to emerge. These applications include the fast Fourier
transform (FFT) (Moreland and Angel 2003), sparse linear
equation solvers (Bolz et al. 2003), and multi-grid solvers
for boundary value problems (Goodnight et al. 2003).

The remainder of the paper is organized as follows. In
the next section we discuss Cg, the Nvidia 6800 architecture,
and vertex and fragment programming. In Sect. 3 we
provide a simulator design and discuss the choices made in
allocating tasks between the GPU and the CPU. In Sect. 4
we compare the performance of our simulator against two
sequential simulators, xpetri (Geist et al. 1994), and SPNP
(Hirel, Tuffin, and Trivedi 2000), on two Petri net models,
each of which can be of arbitrary size. In Sect. 5 we offer a
discussion of the current limitations of our approach, and, in
Sect. 6, we suggest conclusions and some open questions.

2 CG AND THE NVIDIA ARCHITECTURE

2.1 The Architecture

A GPU is designed to implement the traditional graphics
pipeline. Surfaces to be rendered are specified as collections
of triangles, and these triangles are represented by triples of
vertices in R

3. The graphics pipeline will first transform the
375
vertices, an operation which includes application of affine
transformations to alter their positions and application of a
lighting model to compute their colors. The pipeline will
then assemble triples of vertices into triangles and rasterize
the transformed triangles into fragments, which are “pre-
pixels”. Rasterization includes a determination of which
pixels will be covered by each triangle and a linear interpo-
lation of per-vertex information across those pixels to yield
per-fragment information. The fragments are then processed
one-by-one, often using textures to provide additional sur-
face detail and additional lighting effects. Textures are 1,
2, or 3-dimensional images (often 2D digital photographs),
and texture elements typically contain three or four color
values, e.g., RGBA. The final results are pixels, which are
written into the frame buffer and displayed.

Fragments are isolated from one another and are pro-
cessed independently. A texture memory, or cache, which is
on-board the graphics card, can be accessed in a read-only
manner during fragment processing to obtain texture values.
Once the processing is complete for a given fragment, the
resulting pixel is written into the frame buffer. A feedback
loop is possible since the contents of the frame buffer can be
written out as a texture. This loop is relatively fast because
the information copied does not leave the graphics card.

An overview diagram of the graphics pipeline in a GPU
is shown in Figure 1.

Figure 1: Graphics Pipeline with New Processing Units

The recent, revolutionary advance in GPU architecture is
the inclusion of user-programmable processing units, shown
in dotted lines in Figure 1. These processing units, one for
vertex transformation and one for fragment transformation,
allow the user to intercept pipeline values, alter them at
will, and insert them back into the pipeline. These units
(sometimes called shaders) have become increasingly rich
in capability and now support high-level languages such as
Cg.

Compared to a CPU, a GPU typically has a relatively
large number of ALUs and a relatively small instruction
memory. The multiple ALUs provide for an enormous
amount of data parallelism. Each ALU typically supports
four-wide, single-precision floating-point vector operations.
When considered for general-purpose computation, the frag-

Geist, Hicks, Smotherman, and Westall
ment processing units (FPUs) are often more attractive than
the vertex processing units because there are typically more
of them (On the Nvidia 6800 there are 6 vertex processing
units and 16 fragment processing units.) and because ar-
bitrary texture elements can be directly read and indirectly
written by the fragment processing units.

A generalized diagram of a fragment processing unit
is shown in Figure 2 (Buck and Hanrahan 2003). In the

Figure 2: Fragment Processing Unit

standard FPU execution cycle, the input registers to each
unit are loaded with up to 16 single-precision floating-
point values that represent a fragment, and the temporary
registers are initialized to zero. The fragment program is
then executed on the data in the input registers, with read-
only access to textures (i.e., lookups) and read/write access
to the set of temporary registers. The results of processing
the fragment, typically a 32-bit color, are written into the
output registers.

This approach to individually processing fragments pro-
vides a large number of independent computations that can-
not affect each other. Because of this independence, a GPU
is thus a highly-capable SIMD processing design that can
hide memory latency and fully utilize multiple ALUs.

2.2 Cg

Cg (C for graphics) is a high-level language that may be
used to write both vertex and fragment programs. It was
developed by Nvidia for their graphics cards, but it is now
supported on other cards (e.g., those from ATI Technologies)
as well. It is freely available, along with extensive documen-
tation, from the Nvidia website, <www.nvidia.com>. It
installs easily, and Cg programs are easily integrated with
ordinary C programs that invoke either the OpenGL or
Direct3D graphics API. Multiple vertex and fragment pro-
grams may be compiled and downloaded to the graphics
card, but only one of each may be active at any instant.

The syntax of Cg is C-like, but there are important
restrictions. Pointers are not available, nor are some of
the standard control flow mechanisms. Until very recently,
376
conditional execution of code was always implemented with
predicated instructions (no true branching), and loops were
always unrolled by the compiler. Further, there was an
execution limit of 1024 instructions. For the most recent
compiler (1.3) on the Ultra architecture, some of these limits
have been removed (e.g., the instruction limit is 65,536, and
true branching is available at the machine level), but common
control mechanisms such as switch, break, continue, goto
and early return are not yet available at the Cg level.

In spite of these limitations, Cg provides many useful
extensions to C, including vector types, e.g. float4, matrix
types, e.g. float4x4, and overloaded operators that permit
vector addition, and vector-scalar multiplication. Examples,
in the context of a Petri net simulator design, will be
presented in the next section.

3 A CG PETRI NET SIMULATOR DESIGN

We focus first on the simulation of classical, non-timed
Petri nets without inhibitor arcs, arc multiplicities, colored
tokens, or any of the myriad of extensions that have been
proposed. The approach we have taken does not preclude
adding these extensions, but they will obscure the design,
and so we defer them.

3.1 Design Overview

As noted earlier, there is a feedback loop available between
the frame buffer and on-board texture memory. As a result,
textures may be regarded as data arrays available for general
purpose computation. The data is stored (encoded) as color
values in the texture elements.

Since the CPU and GPU operate asynchronously, an
application must first bind the fragment program and the
necessary textures to the GPU memory through calls to
a graphics API, in our case OpenGL. A call from the
OpenGL level to draw any region of the screen then initiates a
rendering pass. The fragments targeted in this rendering pass
will all execute, in parallel, the bound fragment program and
update the frame buffer with their outputs. The application
can then copy the frame buffer contents back to a texture
and repeat these actions.

In such computations, it is often the case that separate
steps must be implemented as separate fragment programs,
each of which uses texture reads and arithmetic operations.
As outlined above, these fragment programs can write only
a single output pixel at a time, in isolation from all the other
processing being performed. Thus, a complete update to the
data may require a series of fragment programs that must
be individually bound in sequence, with each requiring a
separate rendering pass from the OpenGL level to invoke
the bound fragment program.

http://www.nvidia.com

Geist, Hicks, Smotherman, and Westall
for(loop=0;loop<MAXLOOPS;loop++){
write_transitions();
write_reservations();
resolve_conflicts();
write_places();
}

Figure 3: C/OpenGL Side Control Loop

3.2 Design Detail

We use six textures and three fragment programs. Three
of the textures are static and are simply loaded into texture
memory during program initialization. These textures con-
tain (with some redundancy) place-transition arc information
as follows:

• tex_tip[transitions][max_degree_input] holds,
for each transition (row), a list of indices that
identify its input places.

• tex_pit[places][max_degree_input] holds, for
each place (row), a list of indices that identify
its input transitions.

• tex_pot[places][max_degree_output] holds, for
each place (row), a list of indices that identify
its output transitions.

Note that each of these is a 2D texture.
The remaining three textures are dynamic. We use one,

tex_p[PLACES], to hold the token counts of the places, an-
other, tex_t[TRANSITIONS], to hold the enabled/disabled
states of the transitions, and the third, tex_r[PLACES] to
count token reservations, i.e., per place, the total number
of enabled output transitions that would fire if sufficient
tokens were available. All three textures are 1D, so we may
update any one by simply drawing a line of pixels from the
C/OpenGL side of the program.

Our central control loop, on the C/OpenGL side of the
program, then takes the form shown in Figure 3. Each
of the calls to write_transitions(), write_reservations(), and
write_places() binds a Cg fragment program and then draws
a line of pixels to invoke fragment processing. Each then
uses the OpenGL call, glCopyTexSubImage1D() to copy the
updated frame buffer contents back to texture memory.

The fragment program invoked by the call,
write_transitions(), is shown in Figure 4. Several items
are worth noting. Parameters have qualifiers in, out, and
uniform. The in parameters are standard, call-by-value. The
out parameters are call-by-result or copy-out. These have no
counterpart in C, where passing an address is required. The
uniform parameters are those whose values are set by the
C/OpenGL side of the program. They are used here to pass
two textures, the places texture, tex_p, and the static tex_tip
texture described earlier. Note that all fragments receive
377
the same values for the uniform parameters on each itera-
tion. The trailing qualifiers, :TEXCOORD0 and :COLOR,
indicate pipeline values. In this case, the pipeline provides
an input texture coordinate, which serves as an identifying
index for the target transition, and the pipeline receives a
color which encodes whether or not the transition is now
enabled. The algorithm encoded here is straightforward.
We use the pipeline-supplied transition index to look up
its list of input places. For each of those we look up the
current token count. If the product of the token counts is
greater than zero, we enable the transition by writing a 1 in
the pipeline output color. The Cg function sign returns 1
if the argument is positive, 0 if the argument is 0.0. There
are two reasons we maintain a product rather than testing
token counts inside the loop. First, conditionals in Cg are
relatively slow operations and should be used sparingly.
Second, even if we find an empty place early in the loop,
we cannot exit from the loop, since neither break nor goto
nor return is yet available.

Indexing into textures is somewhat unusual. Indices are
floating point values that represent pixel locations. Integral
values represent pixel boundaries, and thus we use offsets
of 0.5 to sample pixel centers.

Pixels values (output color) are also floats. Visible
framebuffers are typically organized with 32-bits per pixel
value. These are usually arranged as 4, 8-bit integers that
control red, green, blue, and alpha values. (Alpha is for
blending.) Nevertheless, most OpenGL implementations
allow read/write access to off-screen buffers on the graphics
card, and these off-screen buffers (called pbuffers) can be
organized as 32-bit floats. Using this organization allows
us to avoid awkward encodings that would be required for
Petri nets with more than 256 places, 256 transitions or 256
tokens in a single place.

The fragment programs invoked by the calls to
write_places() and write_reservations() are similar
to this one in both size and syntax, and so they
have been omitted here. (The complete simula-
tor source code may be obtained from the website
<www.cs.clemson.edu/∼rmg/cgpetri.html>.)
In the fragment program invoked by write_reservations(),
each fragment (one per place) independently counts the
number enabled among the output transitions for that place
and stores this value in the texture tex_r. Since the place’s
token count is stored in tex_p, tex_r[i]>tex_p[i] indicates
that place i is over-subscribed, and conflict resolution
must (later) be invoked. In the fragment program invoked
by write_places(), each place fragment increments its
token count by the difference, (#enabled input transitions
- #enabled output transitions), which captures the effect of
firing all (enabled) transitions simultaneously.

In our initial design, conflict resolution was also per-
formed on the card using standard voting techniques. In one
pass, each transition fragment can write a random value,

http://www.cs.clemson.edu/~rmg/cgpetri.html

Geist, Hicks, Smotherman, and Westall
void enable(in float2 transition_index:TEXCOORD0, out float color:COLOR,
uniform samplerRECT tex_tip, uniform samplerRECT tex_p)

{
float2 incidence_index, place_index;
float tip_col, incidence_value, place_value, enabled_product;

enabled_product=1.0;
for(tip_col = 0.5; tip_col < MAX_T_IN_DEGREE; tip_col += 1.0){

incidence_index = float2(tip_col, transition_index.x);
incidence_value = texRECT(tex_tip, incidence_index);
place_index = float2(incidence_value+0.5, 0.5);
place_value = texRECT(tex_p, place_index);
enabled_product *= place_value;
}

color=sign(enabled_product);
}

Figure 4: Fragment Program Invoked by write_transitions()
and, in a second pass, each can determine a winner. Un-
fortunately, this proved to be a performance bottleneck. As
observed earlier, conditionals on the card are expensive,
and our conflict resolution algorithm requires numerous
instances. It is an aggressive algorithm which selects at
random from among all legal enabling choices that provide
a maximal number of firings.

We moved conflict resolution back to the C/OpenGL
side, and performance improved markedly, even though
additional overhead was incurred. Place, transition, and
reservation pixels must be read back (to main memory) from
the frame buffer, and transition textures must be reloaded
(from main memory) after conflict resolution. It is entirely
conceivable that an alternative design for conflict resolution
would allow this step to remain on the card and thereby
offer performance improvements.

4 RESULTS

We implemented this design in a simulator, cgpetri, that
we tested on two parameterized Petri net models, dining
philosophers, and lattice-Boltzmann flow described below.
Our test platform was a dual-processor PC equipped with
2.0GHz AMD Opteron processors, 2GB main memory, and
an Nvidia 6800 Ultra graphics card with 256MB memory.
Graphics cards with 512MB memory are now available,
and thus memory constraints on problem size are com-
parable to those imposed by standard PC main memory.
Our API was OpenGL 1.5, and our operating system was
Linux 2.6.9. For each net model, we compared cgpetri
with two sequential simulators, xpetri (Geist et al. 1994),
and the well-known, Stochastic Petri Nets Package (SPNP)
(Hirel, Tuffin, and Trivedi 2000). Originally designed as
an analytic modeling tool, SPNP now has full simulation
capabilities.
378
4.1 Dining Philosophers

The dining philosophers, due to E. Dijkstra, is a classic
problem in the synchronization of concurrent processes.
Each of N philosophers, seated at a circular table, attempts
to alternate between“thinking” and “eating”. There is one
fork placed between each pair of philosophers, but conflict
arises because it requires two forks to eat. A (segment
of a) Petri net model of the problem is shown in Figure
5. Simulation of this net obviously requires a significant

Figure 5: Segment of the dining philosophers Net

amount of conflict resolution, and so we might expect, a
priori, that the serial simulators would rival the parallel one
in overall performance. In Figure 6 we show the results of
executing this model on each of the simulators for 100,000
firing epochs. Each data point represents the mean of
30 trials. We computed 95% confidence intervals about
each mean value shown, but the largest interval found was
0.258549, and so they have been omitted from the figure.

Geist, Hicks, Smotherman, and Westall
Figure 6: Dining Philosophers Execution Time
Somewhat contrary to expectations, the parallel sim-
ulator wins handily, once the net is sufficiently large to
overcome an initial overhead cost associated with the par-
allel implementation. The execution time of cgpetri is
O(max{|places| × MT D, |transitions| × MPD}) where
MT D and MPD denote the maximum degree of the transi-
tion nodes and maximum input degree of the place nodes in
the graph. Thus, execution time that is approximately linear
as a function of the number of philosophers is not surpris-
ing. The staging effect in the graph may be attributed to the
internal load balancing across the 16 available ALUs. Most
serial Petri net simulators are O(|places|× |transitions|),
and thus the slightly super-linear performance for SPNP
and xpetri on the nets studied is not surprising.

4.2 Lattice-Boltzmann Flow

Lattice-Boltzmann methods offer a computational alterna-
tive to finite-element methods for solving multi-dimensional
systems of coupled PDE’s. They are particularly well-suited
for modeling generalized fluid transport problems in two or
three dimensional Euclidean space. In a lattice-Boltzmann
model, a regular lattice is embedded in the problem space.
The model is parameterized by a set of directions in which
generalized fluid densities travel and a collision matrix
which defines how incoming densities are dispersed at each
lattice point for each time step. The accuracy of a Lattice-
379
Boltzmann model improves as the density of lattice points
increases. Therefore, especially in the three-dimensional
case, both CPU and memory requirements can become so
large as to mandate a parallel solution. A recent application
to photon transport in diffuse media in which the solution
was distributed across 64 nodes of a Beowulf-type cluster
is described in (Geist et al. 2004).

In the parallel solution, the global lattice is decom-
posed into subcubes of identical size, and each subcube is
assigned to a dedicated computing node. Even though the
subcube partitioning minimizes communication overhead,
a significant amount of communication overhead remains.
Before each iteration of the lattice-Boltzmann update, each
node must export a subset of the directional densities for
each lattice point that is adjacent to a lattice point in another
node and import from that node the directional densities of
the lattice point associated with the adjacency. Therefore,
the total number of sends and total number of receives per
update cycle are each equal to at most the number of di-
rections in which the densities flow. When a subcube lies
on a face or at the corner of the global lattice, it will not
send and receive in all directions. An incorrectly designed
schedule of send and receive operations can cause deadlock,
and a sub-optimal schedule, such as doing all sends before
doing any receives, can cause poor performance.

A Petri net model is a useful way to investigate
the liveness and performance of a proposed schedule.

Geist, Hicks, Smotherman, and Westall
Figure 7: Segment (cube) from the LB Flow Net

In the photon transport model cited above, 18 direc-
tions of flow were used, but for simplicity here we
consider only face crossing flows in the six directions:
(1, 0, 0); (0, 1, 0); (0, 0, 1); (−1, 0, 0); (0, −1, 0); (0, 0, −1).
We identify these directions as d1, ..., d6, and denote
a send to an adjacent subcube in direction dj by sj
and a receive from the subcube located in direction
di by ri . A possible communication schedule for an
interior subcube consists of any permutation of sj , ri for
which j and i each take on the values {1, 2, 3, 4, 5, 6}
exactly one time. The schedule shown in Figure 7 is
{s1, r4, s2, r5, s3, r6, s4, r1, s5, r2, s6, r3}.

This figure shows the operation of a single interior sub-
cube. In the complete Petri net, each subcube is represented
by an analogous circular segment. Coupling between the
segments is via the places labeled buffer. A receive tran-
sition cannot fire until the buffer place receives a token
as a result of the firing of the corresponding send in the
neighboring subcube. Corner, edge, and face subcubes im-
plement a subset of this general schedule. For example,
for the subcube located at the origin of the global lat-
tice, the schedule reduces to: {s1, s2, s3, r1, r2, r3}. For the
subcube at the diagonally opposite corner, the schedule is
{r4, r5, r6, s4, s5, s6}.

It can be shown by induction that if all nodes use this
schedule, deadlock free communication will be achieved,
but the question of schedule optimality remains open. Using
this schedule on a Beowulf cluster, we have observed that
as the number of subcubes increases from 27 to 125, while
the size of a subcube remains constant, the global rate at
380
which exchange/update cycles are completed decreases by
over 50%. Since the amount of work done per node is
not changing, the reasons for this slowdown are not clear,
but they are thought to be related to jitter in the exchange
process. A timed version of this Petri net will be of use in
gaining a better understanding of this phenomenon.

These nets are completely conflict-free, and so we
might expect, a priori, that the parallel simulator would
significantly outperform the serial simulators on all Petri
nets of this type. The results of executing each simulator on
multiple nets are shown in Figure 8. To be consistent with
the previous test cases, we have indexed the nets by the
number of places that appear in all subcubes. Place count
always exceeds transition count for these nets. Thus, for
example, a 3×3×3 arrangement of subcubes has 324 places
and 216 transitions. It is then indexed as 324. Again, 95%
confidence intervals about each of the mean values shown
were computed, but the largest interval for any point was
0.461262, and so they have been omitted from the figure.

The results are almost as expected. The parallel simu-
lator wins easily for large nets, and the crossover occurs at
an earlier point (for total places) than in the dining philoso-
phers case. The only surprise is that the growth rate in
execution time for the parallel simulator has now dropped
to near zero over the measured range.

5 DETAILS AND LIMITATIONS

Although the strong potential for using graphics hardware
in Petri net simulators is clear, many issues remain to
be resolved. Perhaps most important are the performance
implications of allocating various components of the overall
task between CPU and GPU. The cost of conditionals on
the GPU will be an important factor. As an experiment, we
wrote a fragment program wherein each fragment looked
up its horizontal and vertical neighbors’ colors (toroidal
boundary conditions), averaged them, and then wrote the
average as its own color value. For this experiment, we used
the more conventional, 32-bit integer, RGBA pixel values.
We modified the program to conditionally write the average
if the red component value in the neighbor to the north
exceeded the green component value in the neighbor to the
south. Otherwise it wrote half the average. Even though
most of the Cg instructions involved neighbor lookups and
computation of the averages, adding the single conditional
increased execution time by 10% on the Nvidia 6800 Ultra.
This is a significant penalty, but it is a vast improvement
over the previous architecture. On the slightly older, Nvidia
FX 5950 execution time increased by more than 150%.

Another constraint is pixel depth. As the simulator
expands to support additional variations on Petri net se-
mantics, it is not clear whether 32 bits per pixel will suffice
to carry the required information for each place/transition.
Since the update information is cycled to texture memory

Geist, Hicks, Smotherman, and Westall
Figure 8: Lattice-Boltzmann Flow Net Execution Time
through the frame buffer, place/transition encodings may
have to expand to multiple pixels with the attendant cost.
Deeper pixels, up to 128 bits, are available for pbuffers, but
their use also invokes significant cost.

Basic net semantics are another point of concern. Con-
sider the pair of cycles shown in Figure 9 with net marking
(UP1,UP2,DOWN1,DOWN2) = (1,1,0,0). A parallel (in
real time) simulation of this non-timed net mandates next
marking (0,0,1,1), but classical semantics (Agerwala 1979)
permit arbitrarily long loops, i.e., the next marking could
be either (0,1,1,0) or (1,0,0,1), and the subsequent mark-
ing either (0,0,1,1) or the original. The semantics we
have used are right-continuous in the following sense: let
P(N, d) denote the process obtained by assigning deter-
ministic firing of length d to every transition in net N . Then
limd→0P(N, d) = P(N, 0). If alternative semantics are
required, the benefits of this SIMD type of parallelism may
be lost.

We have not added timed transitions to our simulator
design, but doing so appears to be straightforward. Be-
cause most of our applications are more easily described by
models that permit “token stealing”, we restrict our focus
here to atomic firing and exclude preselection semantics
(Ferscha 1994). The global clock and event queue will be
managed on the C/OpenGL side, and the main loop will
advance by event times. Transitions will be encoded as:
381
value meaning
0.0 not enabled
1.0 enabling now
2.0 timer in progress
3.0 ready to fire now

The call to enable() will receive only transitions of codes
0.0 and 2.0; it will effect changes 0.0→1.0. The call to
count_reservations() will include transitions of types 1.0 and
2.0. Back on the C/OpenGL side, timer expiration events
will be processed with 2.0→3.0, and changes 1.0→2.0 will
be accompanied by distribution samples and insertion of
expiration events. Conflict resolution will include types 3.0
and 2.0, with the former given precedence over the latter
in token stealing. The call to fire() will consider only types
3.0, as before.

Adding inhibitor arcs will require almost no changes.

6 CONCLUSIONS

We have proposed a design for parallel simulation of Petri
nets on commodity components, the GPUs typically found in
desktop PC graphics cards. We have offered a specific design
framed in Cg, the high-level language provided by Nvidia
for programming their 5-series and 6-series cards. Tests
of our prototype simulator on Petri nets that are conflict-
intensive and on those that are conflict-free consistently

Geist, Hicks, Smotherman, and Westall
show significant performance gains, over serial simulators,
for large nets.

Many issues remain to be resolved. The most pressing
is the optimal allocation of software components between
CPU and GPU. It is entirely conceivable that alternative
designs, with different workload allocation, would show
performance gains far beyond those substantial ones that
we have reported here. How to systematically seek an
optimal design and how to recognize one remain important
open questions. It is ironic that Petri nets themselves may
be an important tool in addressing these questions.

Figure 9: Parallel Cycles

Our overriding goal with this effort is not the design
and implementation of a new Petri net simulator. Rather,
it is to suggest to authors of commercial-grade simulators
that inclusion of a facility for parallel execution on desktop
graphics cards would be a worthwhile addition to their
products. We note that although CPU development continues
to follow Moore’s Law (doubling in speed every 18 months),
GPU development has shown a sustained rate of 3 times
that, doubling every 6 months. Should these trends continue,
efforts to take full advantage of GPU capability will become
increasingly important.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science
Foundation under awards EIA-0305318 and ACI-0113139.

REFERENCES

Agerwala, T. 1979, December. Putting petri nets to work.
IEEE Computer:85–94.

Baccelli, F., and M. Canales. 1993. Parallel simulation of
stochastic petri nets using recurrence equations. ACM
Trans. on Modeling and Computer Simulation 3 (1):
20–41.
382
Bolz, J., I. Farmer, E. Grinspun, and P. Schrőder. 2003.
Sparse matrix solvers on the gpu: conjugate gradients
and multigrid. ACM Trans. Graph. 22 (3): 917–924.

Buck, I., and P. Hanrahan. 2003, July. Data paral-
lel computing on graphics hardware. In Graphics
Hardware 2003 Panel: GPUs as Stream Proces-
sors. San Diego, CA. http:// graphics.stanford.edu/
∼ianbuck/GH03_datapargfx.pdf.

Chandy, K. M., and J. Misra. 1981.Asynchronous distributed
simulation via a sequence of parallel computations.
Comm. of the ACM 24 (4): 198–206.

Choi, H., V. Kulkarni, and K. Trivedi. 1993b, June. Transient
analysis of deterministic and stochastic petri nets. In
Proc. 14th Int. Conf. on the Application and Theory of
Petri Nets, 166–185. Chicago, IL.

Choi, H., V. Kulkarni, and K. Trivedi. Rome, Italy, Septem-
ber, 1993a. Markov regenerative stochastic petri nets.
Proc. 16th IFIP Int. Symp. on Computer Performance
Modeling, Measurement, and Evaluation:339–356.

Fernando, R., and M. Kilgard. 2003. The cg tutorial. Boston,
MA: Addison Wesley.

Ferscha, A. 1994, December. Concurrent execution of timed
petri nets. In Proc. of the 1994 Winter Simulation Con-
ference, ed. J. Tew, S. Manivannan, D. Sadowski, and
A. Seila, 229–236. Orlando, FL: Soc. Comp. Sim. Int.

Geist, R., D. Crane, S. Daniel, and D. Suggs. 1994, Decem-
ber. Systems modeling with xpetri. In Proc. of the 1994
Winter Simulation Conference, ed. J. Tew, S. Manivan-
nan, D. Sadowski, and A. Seila, 611–618. Orlando, FL:
Soc. Comp. Sim. Int.

Geist, R., K. Rasche, J. Westall, and R. Schalkoff. 2004,
June. Lattice-boltzmann lighting. In Rendering Tech-
niques 2004 (Proc. Eurographics Symposium on Ren-
dering), 355 – 362,423. Norrkőping, Sweden.

German, R., and C. Lindemann. Rome, Italy, September,
1993. Analysis of stochastic petri nets by the method of
supplementary variables. Proc. 16th IFIP Int. Symp. on
Computer Performance Modeling, Measurement, and
Evaluation:320–338.

Goodnight, N., C. Woolley, G. Lewin, D. Luebke, and
G. Humphreys. 2003, July.A multigrid solver for bound-
ary value problems using programmable graphics hard-
ware. In Proc. Graphics Hardware 2003, 102–111. San
Diego, CA.

Hanrahan, P. 2004, August. Stream programming environ-
ments. In ACM Workshop on General Purpose Com-
puting on Graphics Processors, A–4. Los Angeles, CA.

Hirel, C., B. Tuffin, and K. Trivedi. 2000, March. SPNP:
Stochastic petri nets. version 6.0. In Computer Per-
formance Evaluation, Modelling Techniques and Tools
(TOOLS 2000), Lecture Notes in Computer Science, Vol-
ume 1786, 354–357. Schaumburg, IL, USA: Springer
Verlag.

Geist, Hicks, Smotherman, and Westall
Marsan, M., and G. Chiola. 1987. On petri nets with de-
terministic and exponentially distributed firing times.
In Lecture Notes in Computer Science, Volume 266,
132–145. Springer-Verlag.

Marsan, M., G. Conte, and G. Balbo. 1984. A class of
generalized stochastic petri nets for the performance
evaluation of multiprocessor systems. ACM Trans. on
Comp. Sys. 2:93–122.

Moreland, K., and E. Angel. 2003, July. The fft on a gpu. In
Proc. Graphics Hardware 2003, 112–119. San Diego,
CA.

Nicol, D., and S. Roy. 1991, December. Parallel simulation of
timed petri nets. In Proc. of the 1991 Winter Simulation
Conference, ed. B. Nelson, D. Kelton, and G. Clark,
574–583. Phoenix, AZ: IEEE Comp. Soc.

Thomas, G., and J. Zahorjan. 1991, December. Parallel
simulation of performance petri nets: Extending the
domain of parallel simulation. In Proc. of the 1991
Winter Simulation Conf., ed. B. Nelson, D. Kelton, and
G. Clark, 564–573. Phoenix, AZ: IEEE Comp. Soc.

AUTHOR BIOGRAPHIES

ROBERT GEIST is a Professor of Computer Science at
Clemson University. His current research interests include
distributed rendering, rendering participating media, and
GPU-based simulation and optimization. He received a
Ph.D. in mathematics from the University of Notre Dame.
His e-mail address is <rmg@cs.clemson.edu>.

JACOB HICKS is a senior undergraduate at Clem-
son University. Starting in the Fall 2005, he will attend
graduate school in computer science at the University
of North Carolina at Chapel Hill. His research inter-
ests include GPU programming, rendering algorithms,
and physically based rendering. His e-mail address is
<jacobh@cs.clemson.edu>.

MARK SMOTHERMAN received the Ph.D. degree
in computer science from the University of North Carolina
at Chapel Hill. He is presently Associate Professor of Com-
puter Science at Clemson University. His current research
interests include computer architecture and graphics hard-
ware. His e-mail address is <mark@cs.clemson.edu>.

JAMES WESTALL received the Ph.D. degree in
mathematics from the University of North Carolina at
Chapel Hill. He is presently Professor of Computer Science
at Clemson University. His current research interests in-
clude distributed rendering, computer network performance
analysis, and automated tools for CPU/GPU task allocation.
His e-mail address is <westall@cs.clemson.edu>.
383

mailto:rmg@cs.clemson.edu
mailto:jacobh@cs.clemson.edu
mailto:mark@cs.clemson.edu
mailto:westall@cs.clemson.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

