
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

MODELING WAITING SYSTEMS FROM DOMAIN EXPERT SPECIFICATIONS

Maâmar El-Amine Hamri, Claudia Frydman, Lucile Torres

LSIS UMR CNRS 6168
Université de Paul Cézanne

Aix-Marseille III
Av. Escadrille Normandie Niemen

13397 MARSEILLE CEDEX 20 FRANCE

ABSTRACT

This paper proposes an application that consists in
allocating services by managing waiting queues. The
chosen example is the Jaspar bank described by Banks
et al. The specification is based on the task type,
named dynamic assignment, of the methodology
CommonKADS. Then, the task type is transformed
into an DEVS atomic model based on rules defined to
facilitate this passage for the experts which are not
familiarized with formal specifications. The
operational model is verified and validated by
simulation.

1 INTRODUCTION

The activity of knowledge modeling leads to build a
model, usually named expertise model. This model is es-
sentially based on the task/method paradigm, where task
identifies a problem to be solved, and method is the way to
solve the problem. Various knowledge engineering ap-
proaches provide rules and/or tools to assist knowledge en-
gineers in developing knowledge based systems. They use
to give methodological recommendations allowing the ex-
pertise model to be built by decomposing tasks into sub-
tasks until obtaining atomic tasks (top down design). How-
ever, more recent approaches advocate to build too the
expertise model by reusing expertise components, particu-
larly in form of generic tasks like those provided in the
CommonKADS methodology libraries (Breuker and Van
de Velde, 1994; Schreiber et al., 1999). This allows exper-
tise models to be partially reused in new applications. The
main guide for reuse in CommonKADS methodology con-
sists in identifying a suitable task template by recognizing
the task type in the provided hierarchy.

In this paper, we use a CommonKADS dynamic as-
signment template that plans resources (services) allocation
by managing waiting queues. The behavior of service pro-
viding system is fundamentally event-driven and describ-
ing such a behavior needs the use of event notion and time
constraints (Brazile and Swigger, 1988 ; Hovestadt et al.,
456
2003; Motta et al, 2002). Describing the inferences behav-
ior in a task method does not consist in defining a sequen-
tial ordering of inferences, but must indicate what infer-
ences have to be run when external events happen (Garrido
de Ceita et al., 2003). Transforming this semi-formal
CommonKADS description into a DEVS (Zeigler et al.,
1976) model makes available for the knowledge engineers,
an executable generic task model, adequate for dynamic
assignment providing objective.

We present our approach of event-driven behavior speci-
fication on the example of services providing. We define
the dynamic assignment template and we transform it into
an DEVS atomic model. The validation by simulation of
the behavior model is finally discussed in the last section
of this paper.

2 THE EXPERTISE MODEL OF THE JASPAR
BANK EXAMPLE

2.1 The CommonKADS template for queuing system

Figure 1. A generic queuing system

We propose a dynamic assignment template which
specifies the full assignment/de-assignment process of us-
ers to/from servers. The inference structure that we deduce
to the dynamic assignment template is shown in Figure 2.

users arrival users departure

server 1
server 2

server n

Queue

Hamri, Frydman and Torres

users

resources

ass ign

use rs -resou rces

hand led-use r

de -ass ign

use r-resou rce

tim e cons tra in ts expec t

se lec t

cand ida te -user

resou rce

cons tra in ts on
se lec tion

users

resources

ass ignass ign

use rs -resou rces

hand led-use r

de -ass ignde -ass ign

use r-resou rce

tim e cons tra in ts expec t

se lec tse lec t

cand ida te -user

resou rce

cons tra in ts on
se lec tion

Figure 2. Inference structure for dynamic assignment
method

Four inferences are involved for handling the user:
Select: this function selects a candidate user.
Assign: in the assign function, a resource is selected that
satisfies constraints connected to, according to the cur-
rent situation.
Expect: the expect function identifies the next user-
resource to be de-assigned among the users currently in
handling according to the time constraints.
De-assign: at the end of handling the user, the function
releases the seized resource and produces the output
handled user.

TASK dynamic assignment
ROLES:

INPUT:
users:;
resources:;

OUTPUT:
handled-user:;

START-END-TIME: [date1, date2]
SPECIFICATION:;

END TASK dynamic assignment
TASK-METHOD: dynamic-assignment-event-driven-behavior

REALIZES: dynamic assignment
DECOMPOSITION

INFERENCES: select, assign, de-assign, expect
TRANSFER-FUNCTION: receive;
ROLES:

INTERMEDIATE:
user:;
resource:;
user-resource:;
users-resources:;

REACTIVE-BEHAVIOR:;
(receive(user), users:=users ADD user);
(,select(users candidate-user)
([ressource!=0], assign(candidate-user+users+users-resources);
(,users-resources:= users-resources ADD <candidate-user,resource>);
(/release, experct(users-resources user-resource);
(release, de-assign(user-resource);
(,users-resources:= users-resources DELETE user-resource);
([users!=0], select(users candidate-user);
(, assign(candidate-user+users+users-resources);
(/release, experct(users-resources user-resource);

END TASK-METHOD dynamic-assignment-event-driven-behavior

Figure 3. Dynamic assignment template
457

The Figure 3 illustrates the task specification and
method of the dynamic assignment template. Input roles
are users and resources. The role user-handled represents
the output role of the dynamic assignment task type. The
method is active during a time interval which starts by
date1 and finishes by date2. The receive transfer function
is invoked at each time a new user comes in or submits a
request.

Table 1. Features of the dynamic assignment template

Goal: handle or serve a set of users
Typical: handling passengers at airports, assignment run
example ways to planes, etc.
Terminology
users: a set of users may be handled
resources: a set of resources to which a user can be assigned to
release: internal event indicates that a resource is released
Input: users arrivals
Output: departures of users served or handled

An important difference between the dynamic assign-

ment task type and the other task types defined by Com-
monKADS methodology is that the dynamic assignment
task type shows a reactive behavior through state changes:
resource idle or busy, user waiting or served. The dynamic
assignment task type can be used to analyze and/or to de-
sign system. In fact an execution of this task type allows us
to obtain results about frequencies of resources utilizations,
waiting times in queues, quality of facilities, etc. Those re-
sults can be used as input data to redesign systems for
minimizing the development cost.

2.2 The example details

Let us suppose the example of Jaspar bank specified in
(Banks et al., 2000). The different steps to build the exper-
tise model of the example using CommonKADS are as fol-
lows:

1. First, we construct the domain knowledge associ-
ated to this problem, and

2. Secondly, we execute the dynamic assignment
template after transforming it into an operational
description; to compute the average waiting time
for the driver customers which is estimated by the
expert manager to 4.3 minutes for only the drive-
in customers between 11:00 A.M. and 1:00 P.M
(rush period).

The teller serves the driver customers that allows trans-
actions. When there is no car (driver) waiting, the teller
had other duties, mainly serving walk-in customers. The
transactions between the teller and the walk-in customer
are mostly commercial in nature taking a considerably
longer time than the time required to serve a driver cus-
tomer. The walk-in customers are only present during a
rush period.

From this description, concepts defined for the Jaspar
bank example are modeled. The teller concept and the

Hamri, Frydman and Torres

queue concept that is composite of the car concept. Car and
walk-in are sub concepts of the customer concept. The cars
arrive with a Poisson distribution function (λ=0.75). The
arrivals distribution function is not expressed for walk-in
customers, we suppose that they are present at any moment
during a rush period, so we do not model the walk-in cus-
tomer queue.

These concepts lead us to construct a knowledge base
and the relation between the car queue and walk-in cus-
tomers with the teller are expressed with the rule type:
serving constraints.

queue

name : string
discipline : FIFO
capacity : integer

walk-incar

arrival time: pd function

customer

service time: pd function

1..capacity

teller

name : string
openning -time: time
closing -time: time

queue

name : string
discipline : FIFO
capacity : integer

queue

name : string
discipline : FIFO
capacity : integer

walk-inwalk-incar

arrival time: pd function

car

arrival time: pd function

customer

service time: pd function

customer

service time: pd function

teller

name : string
openning -time: time
closing -time: time

teller

name : string
openning -time: time
closing -time: time

queue

name : string
discipline : FIFO
capacity : integer

walk-incar

arrival time: pd function

customer

service time: pd function

1..capacity

teller

name : string
openning -time: time
closing -time: time

queue

name : string
discipline : FIFO
capacity : integer

queue

name : string
discipline : FIFO
capacity : integer

walk-inwalk-incar

arrival time: pd function

car

arrival time: pd function

customer

service time: pd function

customer

service time: pd function

teller

name : string
openning -time: time
closing -time: time

teller

name : string
openning -time: time
closing -time: time

Figure 4. A graphical representation for the Jaspar bank
concepts

As we can see in the example, the service time is ex-
pressed by a probability function and not with a time inter-
val defined by min-max value. Thanks to the input data
modeling phase which provides us to obtain probability
distributions of data for the service time (Normal(1.1,
0.04), Exponential(3) for drive-in and walk-in customer
service time respectively).

The rule type serving constraints is described as follows:

Rule-Type serving constraints

Description: “rule permits to link or to serve a cus-

tomer according to the current situation”;

Argument-1: customer;

Argument-2: teller;

Connection-Symbol: Serves;

End rule type serving constraints;

From this rule type, we can derive the different assump-
tions of the bank example:

 car waiting Serves queue // driver customers

 No car waiting Serves walk-in customer

Figure 5. How the select inference is related to domain
knowledge via the knowledge roles

inference

serving
constraints

inference domain
mapping

users

customers

select user

customer

constraints

concept conceptrule type

dynamic output roledynamic input role

static role

inference domain
mapping

inference domain
mapping

inference

serving
constraints

inference domain
mapping

users

customers

select user

customer

constraints

concept conceptrule type

dynamic output roledynamic input role

static role

inference domain
mapping

inference domain
mapping
458
3 TRANSLATING THE EXPERTISE MODEL
INTO DEVS MODEL

The specification of the CommonKADS templates is de-
fined with a semi formal language; it does not make possi-
ble simulations (Torres and Frydman, 2001). In fact, the
specification of templates is based on analytical methods.
Using the extended inference definition to specify tasks al-
lows to obtain models which can be simulated.

To operationalize the expertise models of Common-
KADS, we adopt the DEVS formalism such as an opera-
tionalization language. Briefly, we recall this formalism:

DEVS = <S, X, Y, λ, δint, δext, ∂>

where:
- S is the set of states (not necessarily finished),
- X is the set of input events,
- Y is the set of output events,
- λ: S Y is the output function,
- δint: S S is the internal transition function,
- δext: Q x X S is the external transition function,
- ∂: S R+ is the live time function. ∂ (s) is the lifetime

during which the model will remain in the state s, if no ex-
ternal event occurs. The total state set of the system speci-
fied in DEVS is Q = {(s, e)/ s∈S, 0≤e≤∂(s)}. The classic
function of transition is composed of two functions:

- the internal function δint(s), representing autonomous
evolutions. δint(s) is activated when the elapsed time e
in the given state will be equal to its length of life ∂(s),
- the external function δext(s, e, x), owed to the external
events. If x ∈X arrives, and the system is in state s for
an elapsed time e, it transits immediately to δext(s, e, x).
Simultaneously, the elapsed time e is reset to zero.
To transform the expertise model of CommonKADS

into an DEVS model, we propose the following rules:
- X: represents the set of external events, which can be

noted using the transfer functions of Common-
KADS.

- Y: a set of output roles of the task.
- S: (∏input roles Ri x ∏intermediate roles Rj x σ) / Ri and

Rj are roles of the task, σ is a real positive variable.
The σ variable depends on the time constraint de-
fined to the inference triggered, and must be up-
dated when external events occur by subtracting the
elapsed time e in the current state.

- δext(S, e, x): the sequence of inferences specified in
the task that are triggered with the external event x
and compute the new values of roles.

- λ(S): the last inference of the task that computes the
output role.

- δint(S): the sequence of inferences that are triggered
with an internal event and computes the new values
of roles. Internal events represent output events of
some inferences.

- ∂(S) =σ. If resources belong to input roles of the task
to model, σ is n-tuples σ1,…,σi,…,σn where i is the
resource identifier and
∂(S)=Minimum(σ1,…,σi,...,σn).

Hamri, Frydman and Torres

Based on these rules, the expertise model specified
above (figures 2, 3 and 4) is transformed into an DEVS
atomic model, as follows:

M =<X, Y, S, λ, δint, δext, ∂>

X ={customeri / customeri ∈ users i =1..n}
Y ={customeri / customeri =handled-user ∈ handled-users i

=1..n }
S =(usersxresourcesxuserxresourcexusers-resourcesxuser-

resourcexσ)/ σ =σ1,…, σi,…, σn are real variables}
External transition function δext(S, e, receive(user)):

users =users ADD user;
select(users candidate-user);
if (resources!=0) then assign(candidate-user + re-
sources + users-resources resource);
users-resources =users-resources ADD <user, resource>;
expect(users-resources user-resource);

Output function λ(S):
λ(S)=de-assign(user-resource handled-user);

Internal transition function δint(S):
users-resources = users-resources DELETE user-

resource;
if (users!=0) then select(users candidate-user);
assign(user + resources + users-resources resource);
users-resources = users-resources ADD <user, re-

source>;
expect(users-resources user-resource);

The time advance function ∂(S):
∂(S) =Minimum(σ)

4 SIMULATION OF THE JASPAR BANK
EXAMPLE

To simulate the DEVS model corresponding to a formal
description for the dynamic assignment template, the ex-
pert must define the initial number of users (customers)
waiting or present in the system. By default it is supposed
zero. The initial state of the different resources at the be-
ginning of the simulation can be deduced from the domain
knowledge.

Whenever a user arrives, the assign inference verifies if
there is an available resource, if it is the case the customer
is affected to the available resource, otherwise it is put in
queue. An internal event will be expected at a date com-
puted by the DEVS simulator (t+∂(S)) to simulate the cli-
ent departure occupied the resource. This event leads to
serve a new customer waiting if the resource is yet avail-
able.

To verify the outputs model of the Jaspar bank example,
let us suppose that we have three arrivals at dates 1, 1.5
and 3 t.u and their service times are 1, 4 and 4 t.u. When
simulation runs, we obtain the following behavior.

To validate the model, we use a validation test (Banks et
al., 2000) which consists of comparing the real system
output, the average waiting time (delay) in car queue esti-
mated by the expert to 4.3 minutes, to the model output Y.
Formally, a statistical test of the null hypothesis is con-
ducted:

H0: Average delay in car queue E(Y) = 4.3 minutes
H1: Average delay in car queue E(Y) ≠ 4.3 minutes
459

Figure 6. Trace of simulation of the example

We compute the sample mean Y (average waiting time)

and the sample standard deviation S over the n replications:

Table 2. Results of six replications of the simulation model

where Yi i=1..6 are as shown in table 2. For a level of sig-
nificance α = 0.05 and a sample size n = 6, for validating
the bank model, we get the critical value of t from the Chi-
Square table. Here tα/2,n-1= t0.025,5=2.571 for a two-sided
test.

We compute now the test statistic t0:

where μ0 is the specified value of the null hypothesis H0 (μ0
= 4.3 minutes).

The model is valid to predict the outputs of the system if
H0 is accepted, that means the value computed from the
test static t0 is smaller than the value got from the Chi-
square table tα/2,n-1.We have |t0| < t0.025,5 (0.13 < 2.571), we
accept the H0 null hypothesis and we conclude that the
model is correct to predict the average customers bank de-
lay. Thus, we conclude that the DEVS atomic model is

Replication n Arrivals number per hour Average waiting time
(minutes) Y

1
2
3
4
5
6

44.5
44

44.5
42
38
46

6.01
4.31
3.56
2.94
3.94
4.70

1 3.0
/

0
0 −=−=

nS
Yt μ

minutes 4.24 /1
1

== ∑ =
iYnY n

i 1.05
1

)(
2/1

1
2

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
= ∑ =

n

YYi
S

n

i

Hamri, Frydman and Torres

valid to model a complex (waiting) system and to predict
the system outputs.

5 CONCLUSION

From the CommonKADS specification of the Jaspar bank
example, we obtained a computerized model based on
rules of transformation proposed into DEVS models, to al-
low simulations. The operational model of the dynamic as-
signment template is made with DEVS formalism and the
statistical test is used to validate the model. Before this
test, data of the system must be approximated to define dis-
tribution functions to obtain more realistic simulations. In
reality, these functions are not easy to define and errors
may occur when data are collected or parameters of distri-
bution functions are estimated, so the results of the system
are less realistic and less accurate (Robinson, 1999). We
note also that the knowledge on time is expressed by ex-
perts with a min and a max values and not with a precise
value.

Our current works consist on using Min-Max DEVS
(Giambiasi and Gosh, 2001) formalism to obtain more re-
alistic results of the real system when the classical ap-
proaches can not be applied.

REFERENCES

Banks, Jerry , John S. Carson, Barry L. Nelson, and David
M. Nicol. 2000. Discrete Event System Simulation,
Prentice Hall, 2000.

Brazile, Robert P., and Kathleen M. Swigger. 1988.
GATES: an airline gate assignment and tracking expert
system. Journal of IEEE Expert, 3 (2): 33-39, 1988.

Breuker, J., and W. Van de Velde. 1994. CommonKADS
Library for Expertise Modelling, IOS Press,
Amsterdam, The Netherlands, 1994.

Garrido de Ceita, Aguinaldo, Lucile Torres, and Claudia
Frydman. 2003. Specifying and Simulation of Reactive
Knowledge Based Systems. In Proceedings of the
Summer Computer Simulation Conference (SCSC2003),
Montreal, Quebec, Canada, July 20-24 2003.

Giambiasi, Norbert, and Sumit Gosh. 2001. Min-Max-
DEVS: A new formalism for the specification of
discrete event models with min-max delays. In
Proceedings of the 13th European Simulation
Symposium (ESS2001), pages 616-621, Marseille,
France, October 18-21 2001.

Hovestadt, M. , O. Kao, A. Keller and A. Streit. 2003.
Scheduling in HPC Resource Management Systems:
Queuing vs. Planning. In Proceedings of the 9th
International Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP 2003), pages 1-20,
Springer, 2003.

Motta, E., D. Rajpthak, Z. Zdrahal and R. Roy. 2002. The
Epistemology of Scheduling Problems. In Proceedings
460
of the 15th European Conference Artificial Intelligence
(ECAI2002), pages 215-219, Lyon, France, July 21-26
2002.

Robinson, Stewart. 1999. Three Sources of Simulation
Inaccuracy (And How to Overcome Them). In
Proceedings of the 1999 Winter Simulation Conference,
pages 1701-1708, P. A. Farrington, 1999.

Schreiber, G., H. Akkermans, A. Anjeweirden, R. De
Hoog, N. Shadbolt, W. Van de Velde, B. Wielinga.
1999. Knoweldge Engineering and Management: The
CommonKADS Methodology, MIT Press, London,
England, 1999.

Torres , Lucile, and Claudia Frydman. 2001. Utilisation
des réseaux de Petri pour la vérification et la validation
de modèles d’expertise KADS. Journal Intelligence
artificielle, Hermès Science Publication, 15 (2): 247-
276, 2001.

Zeigler, Bernard. P., H. Praehofer and Tag Gon Kim. 1976.
Theory of Modeling and Simulation, Academic Press,
2000-1976.

AUTHOR BOGRAPHIES

CLAUDIA FRYDMAN is a professor at the university of
Paul Cézanne Aix Marseille III (France). She carries out
her research interests at the “Laboratoire des Sciences de
l’Information et des Systèmes” (LSIS) laboratory. Her
main activities are in the field of the knowledge modeling
and simulation. She has been a referee for several scientific
journals and a member of the program committee in vari-
ous international conferences. She has conducted and par-
ticipated in several international and European projects.
She is a member of the McLeod Modeling and Simulation
Network (M&Snet). Her web and email addresses are:
www.lsis.org\frydman
claudia.frydman@lsis.org.

LUCILE TORRES is an assistant professor at the univer-
sity of Paul Cézanne Aix Marseille III. She has been for a
long time a consultant for many societies. Her main activi-
ties are in the field of knowledge engineering and simula-
tion. She is a member of the McLeod Modeling and Simula-
tion Network (M&Snet). Her web and email addresses are:
www.lsis.org\torres
lucile.torres@lsis.org.

MAAMAR HAMRI is a PhD student at the university of
Paul Cézanne of Aix-Marseille III. He has joined the LSIS
laboratory since 2001. He has participated in various inter-
national conferences on modeling and simulation. His web
and email addresses are:
www.lsis.org\hamri
amine.hamri@lsis.org.

http://www.lsis.org/frydman
mailto:claudia.frydman@lsis.org
http://www.lsis.org/torres
mailto:lucile.torres@lsis.org
http://www.lsis.org/hamri
mailto:amine.hamri@lsis.org

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

