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ABSTRACT 

We introduce a moving mesh algorithm for simulation op-
timization across a continuous domain. During each itera-
tion, the mesh movement is determined by allocating simu-
lation runs to partitions of the domain that are critical in 
the process of identifying good solutions. The partition 
boundaries are then adjusted to equally distribute the allo-
cation runs between each partition. To test the moving 
mesh algorithm, we implemented it using the OCBA 
method to allocate simulation runs to each partition. But, 
the simplicity of the procedure should provide flexibility 
for it to be used with other simulation optimization tech-
niques. Results are presented for several numerical ex-
periments and suggest that the technique has potential 
given further development.  

1 INTRODUCTION 

Simulation optimization is a method to find a design consist-
ing of combination of input decision variable values of a 
simulation system that optimizes a particular output per-
formance measure of the system. When presented with a 
stochastic, continuous domain with an infinite number of 
values for each input decision variable and a finite simula-
tion budget, we must efficiently allocate our simulation runs 
in order to investigate the combinations of input decision 
variable values (Law and Kelton 2000). Most simulation op-
timization methods use points in the domain to represent de-
signs (Swisher et al. 2000). These methods typically require 
indifference zones to not only represent solutions within a 
certain distance of the best solution but to also ensure that 
simulation runs are not wasted by comparing two designs 
that are essentially the same. Shi and Olafsson present a ran-
domized method for global optimization called Nested Parti-
tion (NP) that seeks to efficiently concentrate the computa-
tional effort in parts of the domain that may be most likely to 
contain the global optimum (Shi and Olafsson, 2000). NP 
aggregates the information from designs to allocate addi-
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tional runs and then partitions the domain to search the most 
promising region.   

This paper investigates a different approach of using 
partitions of the domain that is motivated by mesh moving 
techniques for finite difference and finite element schemes. 
Similar to nested partition, these numerical techniques can 
use what is typically called local mesh refinement to divide 
the mesh in certain regions of the domain to reduce the error 
or to adapt to nonuniformity (Arney and Flaherty 1986). An 
alternate approach for adapting the mesh is to keep a fixed 
number of partitions on the domain but to move the mesh to 
have a fine grid where needed and a course grid elsewhere 
(Adjerid and Flaherty 1986). The method we introduce mir-
rors this alternate approach. Instead of partitioning the do-
main by refining the mesh like nested partitioning, we will 
move the mesh to concentrate the search in the most promis-
ing region. As we move the mesh, we reduce the size of the 
partitions in the most promising regions and increase the size 
of the partitions elsewhere. 

By changing our problem from finding the most prom-
ising point in our domain to searching for the most promis-
ing region, we have transformed our continuous stochastic 
optimization problem to a discrete stochastic optimization 
problem. We now seek to identify the best partition b out of 
k competing partitions. While discrete stochastic optimiza-
tion is still an active field of research, recent advances pro-
vide techniques that greatly reduce the number of simulation 
runs required to obtain a good or the best solution. Given the 
simplicity of the moving mesh algorithm, we expect that it 
can be coupled with many of the discrete stochastic optimi-
zation techniques. However, we focused our efforts on using 
a highly efficient technique developed by Chen et al. (2000) 
called the Optimal Computing Budget Allocation (OCBA) 
method. Their numerical comparisons have shown that 
OCBA can achieve a speedup factor of approximately 4 for 
a small number of competing designs and can be as much as 
20 times faster than traditional approaches for a much larger 
number of designs. 
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2 THE OCBA ALGORITHM 

Since the implementation of our moving mesh technique in 
this paper utilizes OCBA to award runs to partitions during 
each iteration, we present a summary of the technique. 
OCBA allocates simulation runs by considering the follow-
ing optimization problem: 
 
 }{max

,,1

CSP
kNN K

  

 TNNNts k =+++ L21.. . (1) 
 
Under a Bayesian model, OCBA approximates the prob-
ability of correctly selecting the best design, P{CS}, using 
the Bonferroni inequality and offers an asymptotic solution 
to this approximation. In particular, OCBA allocates simu-
lation runs according to: 
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Chen et al. (2000) denote by 

 
:iN   the number of simulation runs for design i, 
:ijX  the j-th independent and identically distributed 

sample of the performance measure from design 
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b:   the design having the smallest sample mean 
performance measure, i.e., i

i
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For our discussion, we will adopt this same convention. 
700
3 THE MOVING MESH ALGORITHM 

3.1 Moving Mesh Algorithm Steps 

Limiting our discussion to a one-dimensional domain 
without loss of generality, we have k continuous partitions 
(intervals) on a domain of length L and we denote  

 
iΦ :  the i-th partition where by convention we order 

the partitions such that mjXX miji ,),1(, ∀≤ + ,  
:, jiX  the j-th independent and identically distributed 

sample of the performance measure from the 
region of the domain currently assigned to par-
tition i, 

ji,Ω :  the j-th boundary for partition i. For the one-
dimensional case each iΦ  will have two 
boundaries 1,iΩ  and 2,iΩ with coordinates 

1,ix and 2,ix  constructed such that 
kixx ii <∀= + 1),1(2, . 

 
Although the implementation of the moving mesh al-

gorithm is dependent upon the allocation method that we 
use, the basic algorithm is very simple: 

 
1. Determine k, the number of partitions, and then 

construct the mesh uniformly across the domain 
such that jixxxx jjii ,1,2,1,2, ∀−=− , and the inter-
vals span the entire domain such that 

Lxxk =− 1,12, . 
2. Randomly generate 0n  initial runs on each parti-

tion. For this paper, we used a uniform distribu-
tion to select the location of the run on the parti-
tion. The number of initial runs for each iΦ  will 
be dependent upon the allocation method that we 
use. 

3. Allocate more runs to each iΦ . In order to do this, 
we aggregate the information for all of the runs in 
each iΦ  to calculate the sample statistics required 
by the allocation method that we are using. When 
coupled with OCBA, we estimate 2

iσ  and calcu-
late ib,δ  for each partition as presented in Section 
2. We then allocate additional runs, iNΔ , to each 

iΦ  according to Equations (2) and (3). 
4. Keeping k, the number of partitions, fixed, move 

ji,Ω so that each iΦ  has the same number of runs 
or jiNN ji ,∀= . By convention, we establish the 
boundary by merely equally dividing the distance 
between the last point in one interval and the first 
point in the next interval. 
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5. Repeat steps 3 and 4 until we exhaust the comput-
ing budget. 

6. After exhausting the computing budget, determine 
a point to represent the partition having the small-
est sample mean performance measure. For this 
paper, we used the midpoint of the partition but 
we could use other conventions such as selecting 
the point in the best partition that has the best per-
formance measure. 

 
A one-dimensional example of the first five steps using 
OCBA can be seen in Figures 1 - 3 below. The underlying 
function used is )1,0(4)5.5()( 2 Uxxf +−= where )10,0(∈x  
and the optimal solution is located at 5.5=x . 

 
1. As shown in Figure 1, the domain is divided into 

5 equal intervals.  
2. We set 200 =n for each iΦ  and randomly distrib-

ute (uniform distribution) the initial runs across 
each separate interval ( )2,1, , ii xx . 
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Figure 1: Moving Mesh Example, Steps 1 and 2 

 
3. We calculated the mean and standard deviation of 

the runs in each interval and used OCBA to allo-
cate a total of 50 more runs across the entire do-
main. In this case, 31 =ΔN , 122 =ΔN , 73 =ΔN , 

224 =ΔN , and 65 =ΔN . These runs are shown in 
Figure 2 with the new runs portrayed by triangles.  
701
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Figure 2: Moving Mesh Example, Step 3 

 
4. Keeping the number of intervals fixed, we then 

adjusted ji,Ω . Since we have allocated a total of 
150 runs among the five designs, we move ji,Ω  
so that iNi ∀= 30 . Using this construct, we now 
have the new intervals shown in Figure 3. 
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Figure 3: Moving Mesh Example, Step 4 

 
5. From here, we would repeat Step 3 which calcu-

lates the new mean and standard deviation for 
each interval and then uses OCBA to allocate new 
runs to each interval until we exhaust our comput-
ing budget. 

3.2 Algorithm Convergence 

OCBA, and other methods, concentrate the simulation ef-
fort on designs that are promising and do not allocate to 
designs that are not promising. Mathematically, we do not 
change the OCBA method described by Chen et al. (2000). 
Instead of designs consisting of points, we merely compete 
designs consisting of a group of runs distributed across a 
partition against each other in order to maximize the prob-
ability of identifying the best partition. We obtain our con-
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vergence by dynamically redefining the designs. The mesh 
will get smaller for the partitions that receive more runs al-
located in an iteration. Intuitively, we expect these bounda-
ries to converge on the optimal design partition (or point). 
In fact, as the mesh size for a partition gets smaller, the 
mean and standard deviation of the runs of the partition 
begin to resemble those from a point since these measures 
are less affected by the distribution of the runs across the 
partition and more heavily influenced by the variance of 
the underlying function. 

However, as Chen et al. (2000) mention, when using 
OCBA, the number of runs allocated to a particular design 
increases as the mean the design decreases or the standard 
deviation of the design increases. It is this property that en-
ables our moving mesh method to maintain a global per-
spective. By iteratively widening the interval boundaries of 
a less desirable partition, we expect that the mean of this 
design will decrease and the standard deviation of the de-
sign will increase until it becomes competitive for addi-
tional simulation runs.  

Figure 4 shows the convergence map for an experi-
ment using the moving mesh method with 10 partitions 
coupled with OCBA for the example function in Section 3 
of this paper.  
.  
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Figure 4: Convergence Example (10 Partitions) 

4 NUMERICAL TESTING FRAMEWORK 

In this section, we describe how we tested our new moving 
mesh approach and compared it with a series of numerical 
experiments it against two allocation procedure: Equal Al-
location-Uniform Mesh (EA-UM) and OCBA-Uniform 
Mesh (OCBA-UM). The next section will provide the re-
sults of these experiments.  

4.1 Equal Allocation – Uniform Mesh (EA-UM) 

This is a brute force method for allocating the number of 
runs, iN , to each design. Given a simulation budget T and k 
designs, we space the k designs uniformly across the do-
702
main and allocate the runs equally such that kTNi /= for 
each i. The efficiency of this method is dependent upon 
two inversely proportional parameters: the number of runs 
allocated to each design and the size of the mesh (number 
of designs). A small mesh enables the method to poten-
tially have a design close to the optimal solution but a lim-
ited computing budget for each design may prevent the 
method from differentiating the best possible design from 
others. A large mesh provides enough runs to differentiate 
the designs under consideration but the best possible solu-
tion may be relatively removed from the optimal solution. 
Through experimentation, we found that this method per-
formed best using about 20 designs during our tests. 

4.2 OCBA Allocation – Uniform Mesh (OCBA-UM) 

Given a simulation budget T and k designs, we space the k 
designs uniformly across the domain for this method. 
However, instead of equally allocating the runs between 
the designs we use OCBA. Like EA-UM method, the effi-
ciency of this method is dependent upon two inversely 
proportional parameters: the number of runs initially allo-
cated to each design, 0n , and the size of the mesh (number 
of designs). Based upon the discussion by Chen et al. 
(2000) and a little experimentation, we used 50 =n  for all 
of our testing. A small mesh enables the method to poten-
tially have a design close to the optimal solution but leaves 
a limited computing budget for OCBA after providing each 
design with its initial allocation. However, like EA-UM, a 
large mesh provides enough runs to differentiate the de-
signs under consideration but the best possible solution 
may be relatively removed from the optimal solution. 
Through experimentation, we found that this method en-
abled us to use a finer mesh than EA-UM and performed 
best using about 40 - 50 designs during our tests. This 
method also requires us to specify an additional parameter, 
Δ , for the total number of runs allocated during each itera-
tion. We used 10=Δ for all of our testing. 

4.3 Moving Mesh – OCBA (MMO) 

As previously discussed, the convergence of this method is 
dependent upon the number of partitions we used. In addi-
tion, it is also dependent upon parameters for the allocation 
method it uses. Since we used OCBA, we had to decide 
values for 0n  and Δ . Through experimentation, we found 
that the method performed best during our tests using 8 – 
10 partitions, 100 =n , and k10=Δ , where k is the number 
of partitions. Allocating too few runs per iteration does not 
provide enough new points to cause significant movement 
in the mesh boundaries. Allocating too many obviously 
wastes runs that could be concentrated in the most promis-
ing partitions. 
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4.4 Test Procedures 

Given the differing parameters for each of these methods, 
we constructed our experiments to provide a fair compari-
son. The EA-UM and OCBA-UM have fixed mesh sizes 
while the MMO method obviously has a dynamic mesh. In 
order to fairly compare these methods, each of our experi-
ments incorporates a randomly selected optimal solution 
and our comparison metric is the distance from our best so-
lution to the randomly generated optimal solution. In addi-
tion, the methods have varying fixed costs associated with 
them. To mitigate this difference, we calculate the error for 
each method during each iteration of the method until the 
total simulation budget is exhausted. For each experiment, 
we limited the simulation budgets to 2,000 runs since it 
was a sufficient number to differentiate between the differ-
ent methods. We repeat this whole procedure 10,000 times 
and then calculate the average error obtained for each 
method during these 10,000 independent applications of 
each method. This average error obtained from each differ-
ent procedure serves as our measurement of its effective-
ness. 

5 NUMERICAL TESTING RESULTS 

To initially test our method, we conducted the following 
experiments on a one-dimensional domain. Each of the 
numerical experiments was constructed to see if the mov-
ing mesh method had convergence problems relative to the 
two other methods we tested. The first experiment is a 
baseline experiment where the underlying function is a 
quadratic. The next experiment has an underlying function 
with two optimal solutions and that is relatively flat when 
compared to its variance. The third experiment has two 
quadratic functions constructed on each half of the domain 
with one of the critical points having a lower functional 
value than the other. 

5.1 Experiment 1: Convex Function 

This experiment is our baseline and uses the following un-
derlying function: 

 
 )10,0(~where)1,0(4)()( 2 UUxxf ξξ +−=  
 
and where )10,0(∈x .  
 The optimal solution is ξ  so the error for each itera-
tion is measured as ξ−bx . Note that for the portions of 
domain in the interval )1,1( +− ξξ , the variance of the 

)1,0(4U term clearly dominates a change in the underlying 
function 2)()( ξ−= xxf . Figure 5 contains the simulation 
results for the three methods. We can see that MMO ob-
tains rapid convergence in the first few iterations and then 
703
slowly improves after that. Compared to the other two 
methods, MMO performs the best for when the simulation 
budget is less than 400 runs, performs about the same as 
OCBA-UM when the budget is between 400 and 1,000 
runs, and performs worse than OCBA-UM after 1,000 
runs. 
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Figure 5: Results for Experiment 1 (Convex Function) 

5.2 Experiment 2: Two Optimal Solutions  

This experiment is constructed to see if the two optimal so-
lutions cause the MMO method to diverge and uses the fol-
lowing underlying function: 

 

 )10,0(~where)1,0(4)
10
3cos()( UUxxf ξξ +−=  

 
and where )10,0(∈x .  
 There are two optimal solutions on the interval (0,10) 
at 10/3ξπ −=ax  and 10/33 ξπ −=bx so the error for each 
iteration is measured as the minimum of  1xxb −  and 

2xxb − . For the underlying function )10/3cos()( ξ−= xxf , 
we obtain values in the interval [-1,1] so the variance of the 

)1,0(4U  term again dominates a change in the underlying 
function. The results of this experiment are very similar to 
those from the first experiment and are shown in Figure 6. 
MMO makes most of its convergence in the first 7 itera-
tions of the method (700 total runs allocated). At this point 
it begins to converge slowly at best and OCBA-UM begins 
to provide better results. 
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Figure 6: Results for Experiment 2 (Two Optimal Solu-
tions) 

5.3 Experiment 3: Competing Near Optimal Alternate 
Solution 

This experiment is an extension of Experiment 2. Instead 
of determining if MMO can find one of two optimal solu-
tions, we test to see if it can differentiate between an opti-
mal solution and another near optimal solution. We define 
the underlying difference between the optimal solution and 
the near optimal solution as the constant λ . 
For )4,1(~ Uξ and )10,0(∈x , this experiment uses the fol-
lowing underlying function: 

 
 5when )1,0(4)()( 2 ≤+−= xUxxf ξ  
 
and 

 
5when )1,0(4)10()( 2 ≤+++−= xUxxf λξ . 

 
The optimal solution is ξ  so the error for each iteration is 
measured as ξ−bx . Just as in Experiment 1, for the por-
tions of domain in the interval )1,1( +− ξξ , the variance of 
the )1,0(4U term clearly dominates a change in the underly-
ing function 2)()( ξ−= xxf .  The results for this experiment 
with 1.0=λ are shown in Figure 7 and are not encourag-
ing. While MMO again converges rapidly, OCBA-UM 
performs better than this method after only 400 runs and 
EA-UM performs better after about 1300 runs.  
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Figure 7: Results for Experiment 3 (Competing Near Op-
timal Alternate Solution) 
 

However, these results are very sensitive to the value 
we use for the constant λ . If we use 05.0=λ  instead of 

1.0=λ  as shown above, MMO is better than OCBA-UM 
until we exceed 800 runs and remains better than EA-UM 
throughout the 2,000 runs. If we use 02.0=λ , MMO is 
clearly superior to OCBA-UM until we allocate about 1800 
runs. When compared to EA-UM for when 02.0=λ , it 
only takes MMO 300 runs to obtain better results than 
those obtained by EA-UM in 2,000 runs. 

In order to see if modifications to MMO might im-
prove its performance, we repeated Experiment 3 with 

1.0=λ . However, for the MMO method we trimmed 
simulation runs from the upper portion of the domain for 
each iteration after we had awarded 200 runs. The results 
for trimming 30 points each iteration (MMO-T30) and 75 
points each iteration (MMO-T75) are compared against our 
original results for this experiment in Figure 8.  This naïve 
trimming approach clearly improves the performance. 
However, it introduces a cycling pattern that is clearly evi-
dent in the MMO-T75 results. This pattern is introduced 
because we region we are trimming from reaches the parti-
tion that covers the near optimal alternate solution. When 
we trim from this partition, we have fewer runs allocated to 
the partition and are more prone to select it as the best par-
tition in error. However, the OCBA method coupled with 
the moving mesh method recognizes that we need to allo-
cate more runs in this area. This improves our solution un-
til we trimmed from this partition again. 
4
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Figure 8: Experiment 3 with MMO Trimmed Methods 

6 EXTENDING THE METHOD TO TWO 
DIMENSIONAL PROBLEMS 

6.1 Moving Mesh Algorithm Modifications 

The moving mesh method does not change dramatically 
when moving from a one dimensional problem to a two 
dimensional problem. The main difference is that, with two 
dimensional problems, there are numerous methods to con-
struct the mesh. However, the purpose of this paper is to 
introduce the moving mesh method. Therefore, we used a 
simple rectangular mesh and a basic accounting scheme to 
move the mesh between each iteration. We still have k con-
tinuous partitions on a domain of length L and width W and 
we denote  

 
iΦ :  the i-th partition  

ji,Ω :  the i,j-th boundary. For the two dimensional 
case, each iΦ  will have four boundaries with 
coordinates ),( )1,()1,( ii yx , ),( )1,()2,( ii yx  , 

),( )2,()1,( ii yx  , and ),( )2,()2,( ii yx . 
 
The new algorithm now becomes: 
 
1. Determine k, the number of partitions, and then 

construct the mesh uniformly across the domain 
such that the partitions span the entire domain 
such that Lxxk =− 1,12,   and Wyyk =− 1,12, . 

2. Randomly generate 0n  initial runs on each parti-
tion iΦ . As in the one dimensional case, we used 
a uniform distribution to select the location of the 
run on the partition. 

3. Allocate more runs to each iΦ . In order to do this, 
we aggregate the information for all of the runs in 
each iΦ  to calculate the sample statistics required 
by the allocation method that we are using. When 
705
coupled with OCBA, we estimate 2
iσ  and calcu-

late ib,δ  for each partition as presented in Section 
2. We then allocate additional runs, iNΔ , to each 

iΦ  according to Equations (2) and (3). 
4. Keeping k, the number of partitions fixed, move 

ji,Ω so that each iΦ  has the same number of runs 
or jiNN ji ,∀= . For this paper, we kept our 
mesh construction method simple. We first 
equally divided the runs in the x direction and es-
tablished boundaries by equally dividing the dis-
tance between the last point in one sub-section 
and the first point in the next sub-section. We then 
took each x direction sub-section and equally di-
vided the runs in the y direction and again estab-
lishing the boundaries equidistant from the last 
and first points of the resulting partitions. 

5. Repeat steps 3 and 4 until we exhaust the comput-
ing budget. 

6. After exhausting the computing budget, determine 
a point to represent the partition having the small-
est sample mean performance measure.  

 
An example of the first five steps using OCBA can be seen 
in Figures 9 and 10 below. The underlying function used 
is )1,0(4)3.4()6.6(),( 22 Uyxyxf +−+−= where )10,0(, ∈yx  
and the optimal solution is located at )3.4,6.6(),( =yx . 

 
1. As shown in Figure 9, the domain is divided into 

16 equal partitions.  
2. We set 100 =n for each iΦ  and randomly distrib-

ute (uniform distribution) the initial runs across 
each partition. 
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Figure 9: 2D Example, Steps 1 and 2 

 
3. We calculated the mean and standard deviation of 

the runs in each interval and used OCBA to allo-
cate a total of 160 more runs across the entire do-
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main. In this case, the 16 partitions re-
ceived 7,3),8,3,4,23,8,3,1,6,842,1,2,1,4,(=Δ iN  new 
runs respectively. These runs are shown in Figure 
10 with the new runs portrayed by triangles.  

4. Keeping the numbers of partitions fixed, we then 
adjusted ji,Ω . Since we have allocated a total of 
320 runs among the 16 designs, we adjust ji,Ω  so 
that iNi ∀= 20 . Using this construct, we now 
have the new partitions shown in Figure 10. 
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Figure 10: 2D Example, Steps 3 and 4 

 
5. We would then repeat Step 3 which calculates the 

new mean and standard deviation for each interval 
and then uses OCBA to allocate new runs to each 
interval. 

6.2 Experiment 4: Two Dimension Convex Function 

This experiment is a two dimensional version of Experi-
ment 1 and uses the following underlying function: 

 
 )10,0(~,where)1,0(4)()(),( 21

2
2

2
1 UUyxyxf ξξξξ +−+−=  

and where )10,0(, ∈yx .  
 
The optimal solution is ),( 21 ξξ  so the error for each itera-

tion is measured as 2
2

2
1 )()( ξξ −+− bb yx . We again con-

duct 10,000 experiments and use EA-UM and OCBA-UM 
for comparison purposes. For EA-UM, we constructed a 
10x10, 15x15, and 20x20 grids providing 100, 225, and 
400 total designs respectively. By extending our simulation 
budget for each experiment to 2,200 runs, we also used 
10x10, 15x15, and 20x20 grids for the OBCA-UM method. 
For MMO, we used a 4x4 construct for 16 total partitions. 

Figure 11 contains the simulation results for EA-UM 
10x10, OCBA-UM 10x10, OCBA-UM 15x15, OCBA 
20x20, and MMO 4x4. The EA-UM results were very 
similar for the three different grids we used and converged 
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very slowly. After applying the initial runs, the OCBA-UM 
methods converge rapidly to the best possible solution but 
are ultimately limited in performance by the width of the 
uniform mesh used. However, uniformly refining the mesh 
to obtain a better solution comes at a large cost in terms of 
initial runs for each design. We can see that MMO obtains 
rapid convergence in the first few iterations and then con-
tinues to slowly improve after that. Compared to OCBA-
UM, MMO obtains the same results in vastly fewer runs. 
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Figure 11: Results for Experiment 4 (2D Function) 

7 CONCLUDING REMARKS 

In this paper we introduced a moving mesh algorithm for 
simulation optimization across a continuous domain. Dur-
ing each iteration, the mesh movement is determined by 
allocating simulation runs to partitions of the domain that 
are critical in the process of identifying good solutions. 
The partition boundaries are then adjusted to equally dis-
tribute the allocation runs between each partition which re-
duces the size of promising partitions and increases the 
size of less desirable partitions. Comparisons with simula-
tion optimization methods using points in the domain on a 
uniform mesh as designs show that our approach is promis-
ing. However, as we refine our approach, we may have to 
develop trimming heuristics to ensure the method contin-
ues to converge and improve the efficiency of our iterative 
mesh construction as we expand to higher dimensions.  
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