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ABSTRACT 

Since 1967, the Winter Simulation Conference has been a 
forum for the introduction of innovative approaches to ef-
fectively analyze discrete-event simulation experiments.  
The goal of this panel is to bring together key contributors 
to analysis methodology research in order to clarify areas 
that they think are essentially complete, and identify areas 
that need more work. In doing so, we hope to help provide 
direction to younger researchers looking for the "right" 
problems to work on. 

1 SIGRÚN ANDRADÓTTIR 

This write-up provides brief descriptions of three broad 
problems within the analysis methodology area that are 
highly deserving of additional research.   These three prob-
lems are all receiving a considerable amount of attention 
by the research community at the current time, and I be-
lieve this will and should continue in the next several 
years.  The problems fall within the input/output analysis, 
variance reduction, and optimization sub-fields of simula-
tion, respectively. 

The first problem involves the development of enhanced 
methods for ensuring that the results obtained from a simu-
lation experiment are accurate in that they in fact satisfy 
the properties they are stated to have.  For example, does 
the confidence interval for the value of a performance 
measure of interest in fact cover the unknown value of that 
quantity with the stated probability?  This can be difficult 
to ensure due to various sources of errors and approxima-
tions arising in the modeling, implementation, and analysis 
processes.  Consequently, there is great need for enhanced 
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techniques that assess the actual coverage of confidence 
intervals and produce confidence intervals that in fact do 
have the stated coverage.  Also of importance are tech-
niques that help a practitioner determine when it is appro-
priate to terminate a simulation experiment and expect the 
results produced to have the desired properties.  Finally, 
techniques that reduce the errors and approximations made 
in the modeling, implementation, and analysis processes, 
such as improved methods for modeling and generating 
dependent random variables and stochastic processes, 
would be valuable contributions. 

Another broad area of interest involves the development 
of new and improved techniques for increasing the effi-
ciency of simulation experiments.  Although computers are 
constantly becoming more powerful, it is well known that 
the precision of simulation estimates only increases slowly 
with the computational effort provided.  Consequently, it is 
important for our community to continue developing smart 
techniques that yield more precise estimators without in-
creasing the associated computational budget (e.g., through 
a better allocation of sampling effort, or through smoothing 
the performance measure over the sample space, and con-
sequently reducing its variance).  This is particularly im-
portant in the context of rare event simulation. 

The final topic I wish to comment on in this write-up is 
the area of simulation optimization.  This research area has 
received a considerable amount of attention in recent years, 
but given the current state of the art and the fact that the 
ultimate goal of many (if not most) simulation studies in-
volves some amount of system design or optimization, it is 
crucial for our community to continue working towards the 
development of improved techniques for optimizing sys-
tems through the use of simulation.  This includes both en-
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hanced techniques for solving optimization problems that 
possess very little structure (beyond a certain amount of 
smoothness in the performance measures of interest over 
the parameter space) that are consequently suitable for in-
clusion in general purpose simulation languages, and also 
techniques that exploit special structure present in the 
problem at hand to complete the optimization process more 
efficiently (in fact, the identification of classes of simula-
tion optimization problems that are of sufficient impor-
tance to warrant special attention and at the same time pos-
sess structure that can be exploited by an optimization 
algorithm is by itself a worthy research contribution). 

2 DAVID GOLDSMAN 

The last thirty years have brought forth significant ad-
vances in the ways that we conduct formal mathematical 
analyses of simulation processes.  In this position state-
ment, I will discuss some of the traditional analysis meth-
odology research areas that we have “put to bed,” along 
with some others that have emerged or have become in-
vigorated.  I will break things down into discussions in-
volving (i) the statistical aspects of modeling and genera-
tion of simulation processes, and then (ii) the analysis and 
optimization of simulation processes. 

2.1 Generating Randomness 

A simulation must be driven by random variates that ade-
quately mimic the real-world (or virtual) system under 
consideration.  In particular, these random variates ought to 
be generated quickly and must follow the probability dis-
tributions that they are supposed to represent.  Tradition-
ally, we have subdivided this category of research into two 
pieces: generation of uniform(0,1) random numbers, and 
generation of random variates from all other distributions. 
This makes sense, since the uniforms are the building 
blocks that are used to generate everything else.  However, 
I will also add a third, emerging subdivision – random 
process generation. 

2.1.1 Uniform Generation 

In past years, one could easily be satisfied with a simple, 
reliable uniform generator such as Xi+1 = 16807 Xi mod(231-
1), which is fast, has reasonable independence and uniform 
properties, and has a period of about two billion numbers 
before cycling occurs.  But times have changed, and we of-
ten need many, many more random numbers for our simu-
lation models.  The good news is that there are now a 
number of quick, statistically nice, extremely long-cycling 
random number generators on the block, often with periods 
on the order of 2100; see, e.g., L'Ecuyer (1999).  So, practi-
cally speaking, the problem of providing an adequate sup-
ply of uniforms is solved.  Perhaps in the spirit of calculat-
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ing decimals of π, it will be interesting to see how much 
farther researchers can go in this area. 

2.1.2 Random Variate Generation 

Simple generation methods for the standard distributions 
have been available for a long time.  Any good simulation 
textbook such as Law and Kelton (2000) (and even many 
statistics texts) will provide a list of easy-to-use algo-
rithms, ranging from simple inverse-transform-based tech-
niques to more-sophisticated combinations of techniques. 
There is still probably some call for the continued devel-
opment of even-more-efficient random variate generation 
methods for standard univariate distributions, but, for the 
most part, it seems that much of the important work has 
been done. 
 So what can one do if a non-standard distribution is 
encountered?  The easiest option is to punt and work with 
the empirical distribution.  On the other hand, Wagner and 
Wilson (1996) present an easy-to-use graphical method, 
based on rigorous theory, that allows users to interactively 
model “complicated” distributions. This type of methodol-
ogy reflects an encouraging trend. 
 The problem of generating univariate random variates 
serves as a stepping stone for some timely extensions to the 
multivariate / time series case. 

2.1.3 Random Process Generation 

Nowadays, it is more important than ever to be able to 
generate random vectors and/or time series quickly and ef-
ficiently.  This type of work is finding its way into the 
textbooks, but perhaps a starting point is Schmeiser and 
Song (1989), which details a number of clever techniques 
for producing various common stochastic processes com-
monly encountered, for example, the M/M/1 queue waiting 
time process. 
 It is apparent that applications areas are driving the 
types of stochastic processes under study.  Melamed 
(1991) proposed the TES methodology for the modeling of 
telecommunications traffic, which is often ``bursty'' in na-
ture.  Along the way, he found that he could generate sto-
chastic processes having fairly general (but approximate) 
correlation structure with given marginals.  Another semi-
nal reference along the same lines is Cario and Nelson 
(1997), who propose the NORTA (NORmal To Anything) 
technique for generating stochastic processes with desired 
correlation and marginal properties. With the rise of quan-
titative analysis on Wall Street, an important application 
area lies in financial analysis.  Here, we might be interested 
in generating geometric Brownian motion or its extensions 
for use in certain options pricing models. See Glasserman 
(2004) for a compendium of relevant techniques. 
 The point is that this is an ongoing active research 
area, which will undoubtedly be fruitful for years to come. 
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2.2 Analysis of Randomness 

Assuming that we are satisfied by the quality of the simula-
tion model and of the random variate generation techniques 
driving the model, the task now boils down to analyzing 
subsequent simulation output, and then, possibly, attempt-
ing to optimize the model. Here, I will break the discussion 
into two parts: analysis of univariate output and optimiza-
tion methods. 

2.2.1 Output Analysis Techniques 

Suppose for simplicity that we concentrate on the problem 
of estimating the variance of the sample mean – which 
leads to statements about the precision of the sample mean 
as well as confidence intervals for the mean.  Tremendous 
progress continues to be made in this mature area – even 
with respect to old tried-and-true methods such as batch 
means. 
 Over the last few years, researchers have looked at an 
amalgamation of methods involving batch means, overlap-
ping batch means, standardized time series, spectral, and 
regenerative estimators (among others) for variance of the 
sample mean.  A number of general trends seem to be 
emerging, all of which are made possible by the computer's 
ability to do more work in less time: 
 

• Overlapping (in fact, resampling) estimators are 
good.  Beginning with the classic paper Meketon 
and Schmeiser (1984), researchers have found that 
the variance of non-overlapping batched variance 
estimators is almost always reduced by overlapping, 
while bias properties are preserved. Problems with 
computation inefficiencies are being removed, so 
this opens the door for the development of new low-
variance estimators (Damerdji, Henderson, and 
Glynn 1997). 

• Dynamic procedures.  Fishman and Yarberry (1997) 
and Steiger et al. (2005) propose procedures that 
dynamically call for more and more data until par-
ticular stopping criteria are met – for example, has a 
certain confidence interval achieved the desired 
precision?  All indications show that procedures 
such as these perform well in practice, which bodes 
well for the adoption of such techniques in com-
mercial software packages. 

• Ties with ranking-and-selection and optimization 
methods, to be discussed next. 

2.2.2 Ranking-and-Selection and Optimization 

Assuming that we are capable of conducting a reasonable 
analysis involving a univariate measure such as a steady-
state mean, the next task might be to find the simulation al-
ternative that possesses the ``best'' such measure.  This ques-
792
tion can sometimes be addressed via a ranking-and-selection 
formulation, or in some other optimization framework. 
 Ranking and selection was first formulated as a meth-
odology in the early 1950's.  It seeks to answer the question 
of which of a (limited) number of options is the best? Un-
fortunately, along the way the field fell into disfavor 
among classical statisticians, and is only now enjoying a 
resurgence, thanks in part to some of the work done in the 
simulation field. In the context of simulation, we are inter-
ested in addressing problems involving correlated data – an 
application which was ignored by the statistics community 
– and this have paved the way for the development of in-
novative procedures.  One that immediately comes to mind 
is Kim and Nelson (2001), which gives a fully sequential 
procedure for “indifference-zone” selection in steady-state 
simulation systems.  This procedure is much more efficient 
than the 1970's-style procedures heretofore adopted for use 
in simulation. 
 Another area for advance concerns simulation optimi-
zation, surveys of which are widely available.  Instead of 
selecting among a few options, simulation optimization 
typically searches a large parameter space.  There is a large 
body of literature on the topic, but a particularly interesting 
paper that merges ranking-and-selection techniques with 
optimization is that of Boesel, Nelson, and Kim (2003). 
 The bottom line is that this entire line of research ap-
pears to be wide open for future development. 

3 BRUCE SCHMEISER AND LEE SCHRUBEN 

3.1 The Past 

To answer whether we are done, we first must consider 
what we have been doing. Discrete-event simulation analy-
sis methodology inherited much of its context from queue-
ing theory.  In establishing academic credibility, simulation 
researchers needed to demonstrate that they had something 
to offer in addressing the “interesting” questions posed by 
researchers in queueing theory, such as estimating mean 
values and confidence intervals for steady-state perform-
ance measures, determining the optimal numbers and types 
of resources in stationary queues, and estimating the 
steady-state probabilities of delays or rare events (such as 
buffer overflows).  Simulation analysis methodology had 
to demonstrate that, at least from a practical point of view, 
simulation models, when subjected to rigorous analysis, 
can produce system-performance estimators that are as 
good as those obtained from queueing theory.  
 Reviewing the challenges in Conway’s (1963) classic 
paper, we see that many of the issues in analyzing steady-
state queues have been resolved more-or-less satisfactorily.  
We have workable methods for initializing and terminating 
runs, methods for constructing reasonably accurate confi-
dence intervals for steady-state performance measures, and 
methods for optimizing stationary simulation responses.  
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3.2 The Present 

For practical purposes, simulation experiments have re-
placed queueing analysis in the market place of solving 
real-world problems.  Although most methods fail in ex-
treme situations, by and large there are well-established 
simulation methods for addressing most classical queueing 
problems.  Simulation analysis techniques have found their 
way into the hands of many (but not enough) simulation 
professionals, textbooks, and commercial software pack-
ages.   
 Most major university programs have one or more 
faculty members who participate in simulation-analysis re-
search.  Most credible university degree programs have 
one or more courses in simulation that go beyond model 
building to teach the effective design and analysis of simu-
lation experiments. Most simulation textbooks (as distinct 
from software manuals) have reasonable coverage of 
analysis issues and methodologies.  Simulation-analysis 
researchers have established intellectual credibility with 
their academic colleagues in applied probability and statis-
tics.  
 In most business and engineering disciplines, ad-hoc 
simulation modeling and heuristic analysis approaches 
have had considerable impact.  Simulation is also a pri-
mary tool in national and industrial research laboratories. 
In a report from the Lawrence Berkeley Labs, simulation 
was given a status “on a par with theory and physical ex-
perimentation” (Yarris 1996).  Examining the programs for 
the national conferences in Biological, Mechanical, Elec-
trical, Civil, Industrial, and Chemical Engineering, one 
sees a clear dominance of simulation as the fundamental 
methodology for problem-specific research and practice.   
 Although simulation methodology is an established 
academic research area, there is still work to do. Despite 
simulation-research successes, at the INFORMS National 
Meeting, there are still more papers on queueing than on 
simulation.    But if the goal was to replace queueing the-
ory as the primary tool for mean-performance analysis of 
steady-state service and production systems, then yes, we 
are done.  

3.3 The Future 

The academic foothold for simulation has been established, 
but we are yet to reach our full potential. The questions ad-
dressed in simulation analysis methodology research can 
be extended beyond those formulated by queueing theorists 
to some really hard questions. For example: Given a com-
plex simulated system, determine whether it is stable. 

Perhaps a question that is more appropriate than: “are 
we done?” is “have we started?”  Now that simulation 
methodology research is a viable path to university tenure, 
we would like to see academia embrace more ad-hoc simu-
lation methodologies, temporarily foregoing mathematical 
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rigor (when it has to be established) at the expense of effi-
cient engineering solutions to pressing and important prac-
tical problems. This does not mean that the research ques-
tions asked and problems posed should not be well-defined 
with explicit specification of measures of what constitutes 
answers and solutions. It is embarrassingly hard to find ex-
plicit statements of fundamental simulation research ques-
tions: “the initialization bias problem”, “the run duration 
problem”, or “the input modeling problem”.  With well-
defined, meaningful, problem statements in hand, we 
would then like to see more integration of simulation mod-
eling and analysis methodology research with the decision, 
social, and behavioral sciences.  

There is now very little research on appropriate analy-
sis methodology for many (if not most) modern systems-
analysis problems. The literature has little to offer concern-
ing systems that are never in steady state. Not only are the 
underlying driving processes for these systems changing in 
time, the rules and laws governing system behavior may 
also be changing.  In the parlance of simulation, the sys-
tems we should be studying have dependent input proc-
esses, are open with state-dependent feed forward and 
feedback, and have non-stationary performance measures 
that are often, at least in the long-run, unstable.  None of 
the commercial discrete-event simulation modeling pack-
ages and few of the output-analysis methodologies address 
these issues. Indeed, many problems that researchers need 
to address have not yet been satisfactorily defined. In pos-
ing new research questions, interactions between simula-
tion-analysis methodology researchers and simulation pro-
fessionals will become even more important than in the 
past.  

In practice, simulations are used in forecasting: trying 
to asses what might happen if certain decisions are made. 
Confidence intervals for steady-state performance meas-
ures are of little practical value. Indeed, simulation output 
analysis within the dynamic decision context of most real-
world systems, with changing and unknown risks and re-
wards, is almost non-existent. There is much that simula-
tion has to offer for which reliable analysis methodologies 
are yet to be developed.  Here are four. 

 
1. Input modeling. Analysis methodologies need to 

be developed to better study the environments in 
which a future system might operate. The external 
driving processes for simulation models are typi-
cally modeled as independent identically (IID) 
distributed random variables. There are several 
easy-to-use and readily available distribution-
fitting software packages on the market or in-
cluded with commercial simulation languages.  
These packages take what is presumed to be an 
IID sampled data set and select, from a set of 
common scalar probability distributions, those 
that give the better values for several goodness-of-
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fit statistics (with little consideration of the ques-
tionable realm of hypothesis testing for which 
these test statistics were developed).  Unless used 
carefully, these packages can remove most of the 
useful information in the data.  Real data typically 
have cycles and trends that might otherwise be 
exploited in forecasting if they were not filtered 
by the distribution-fitting software.  We need to 
develop more-robust methodology for assessing 
how input stochastic processes may be inter and 
serially dependent among themselves, on time, 
and on the system’s state and its environment, as 
well as how these processes might effectively be 
modeled.  
 We have inherited the homogeneous Poisson 
process as the workhorse for input modeling from 
queueing theory. We need to expand our reper-
tory. The kind of input modeling tool we would 
like to see included in commercial simulation 
software is something along the line of multivari-
ate, dynamic Bézier models, like those developed 
for scalar variates by Wagner and Wilson (1996).  
These curves should be dynamic in that they can 
change over time and/or with changes in the sys-
tem state.  Furthermore, to be useful they should 
be structured to easily facilitate sensitivity analy-
sis. 

2. Sensitivity Analysis:  We would like to see it es-
tablished that sensitivity analysis is always done 
before data collection.  We are of the opinion that 
many, if not most, data sets are dated, distorted, 
dependent, damaged, deleted, or, yes, deceptive 
(Barton et al. 2002). Doing sensitivity analysis be-
fore collecting data tells us what might be impor-
tant to know about a system’s future environment.  
Most of the real-world data that can be collected 
is on processes that either do not influence deci-
sions very much, or are so critical as to be the 
subject of other projects that will change them by 
the time the recommendations of the simulation 
study are implemented.  Any data collected 
should be used to forecast what might happen in 
the future, not to fit probability models to the past. 
We don’t believe explicit questions for sensitivity 
analysis have yet been formulated from either a 
research or practical point of view.  For example: 
asking what might happen if “demand doubles” 
could mean that customers would arrive twice as 
fast, or that customers with the same arrival pat-
tern would order twice as much.  System perform-
ance is different depending on what the question 
means.  

3. Output analysis: We also would like to see output-
analysis research similarly develop beyond the 
study of stationary scalar processes (“easy” prob-
794
lems for which we have pretty good methodolo-
gies) to modeling non-stationary multivariate re-
sponse surfaces over finite horizons, perhaps 
using innovative 3-D computer graphics.  The aim 
might be to forecast the potential impacts of dif-
ferent decisions under different scenarios.  Rather 
than merely estimating the future average per-
formance of a system given a particular design 
and control strategy, however, why not the inverse 
problems?  That is, why not ask for the likelihood 
of a scenario where the environment changes so 
that a particular decision that is good under cur-
rent conditions becomes a disaster. The “robust-
ness” research by Kleijnen and his colleagues (for 
example, Gaury and Kleijnen 1998) and the recent 
Penn State PhD thesis by Govind (2004) are along 
these lines. 

4. Modeling and Analysis. Integrating experimenta-
tion and output analysis with modeling has impor-
tant advantages. For example: time-dilation ex-
perimental techniques are easily implemented in 
event-scheduling models (Hyden and Schruben, 
2000). Another example: the conclusion that the 
indirect estimation of Q from L via Little’s law is 
a good idea could be wrong when you account for 
the fact that Q can be directly estimated orders of 
magnitude more efficiently than L using an event 
scheduling model than with a classical job-driven 
process-interaction model. 

 
 Are we done? Yes, we are finished with what simula-
tion-analysis methodology researchers have primarily been 
trying to do for the past few decades: impress our academic 
colleagues in statistics, probability, and queueing theory. 
Have we started? No, we have not yet formulated explicit 
research questions and engineered practical integrated 
analysis and modeling methodologies that attack important 
problems in a real-world social and economic context.  
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