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ABSTRACT 

In this paper, we present an evolution strategy for the op-
timization of simulation models. Our approach incorpo-
rates statistical selection procedures that efficiently select 
the best individual, where best is defined by the maximum 
or minimum expected simulation response. We use statisti-
cal procedures for the survivor selection during the evolu-
tionary process and for selecting the best individual from a 
set of candidate best individuals, a so-called elite popula-
tion, at the end of the evolutionary process. Furthermore, 
we propose a heuristic selection procedure that reduces a 
random-size subset, containing the best individual, to at 
most a predefined size. By means of a stochastic sphere 
function and a simulation model of a production line, we 
show that this procedure performs better in terms of num-
ber of model evaluations and solution quality than other 
state-of-the-art statistical selection procedures. 

1 INTRODUCTION 

Simulation models are often used to improve the design of 
a system or to improve a running system. Improvements 
often can be achieved by tuning some of the system pa-
rameters such that the problem becomes a multi dimen-
sional optimization problem. In fact, the combination of 
discrete event simulation and optimization is one of the 
most important and challenging problems in the simulation 
area and a large number of approaches exists. For recent 
overviews see (Fu 2002, Law and McComas 2002). 

From an abstract mathematical point of view the simu-
lator represents a function φ(x1,…,xn) for some input pa-
rameter vector x = (x1,…,xn). The optimization goal is to 
find maxx∈W E[φ(x)] where the response E[φ(x)], also de-
noted as f(x), is the expectation of φ(x) and W is a feasible 
range for the parameters. Throughout this paper we con-
sider maximization, but using a negative goal function, 
minimization problems can be formulated in exactly the 
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same way. Since φ is only implicitly represented as a simu-
lation model or in other words as a black box, only those 
optimization methods can be applied which do not exploit 
the structure of function f. Due to the stochastic nature of 
the simulation model φ(x) can only be observed with some 
statistical fluctuation but confidence intervals can be com-
puted to obtain some confidence in the result estimators 
(Law and Kelton 2000). From this viewpoint, simulation 
optimization is similar to multi-dimensional optimization 
of stochastic functions. On the other hand, the variance of 
simulation results can be reduced by running longer simu-
lations. However, in contrast to other applications, the 
evaluation of simulation models is costly such that effi-
ciency is a major aspect in the combination of simulation 
and optimization. The straightforward combination of an 
optimization algorithm with a simulation tool where the 
optimization algorithm calls the simulation tool to perform 
simulation runs of a fixed length and collects afterwards 
the results will usually not result in an efficient realization. 
The problem is that the acceptable variability of simulation 
results depends on the state of the optimization approach 
such that optimization algorithm and simulation model 
have to be tightly coupled (Fu 2002). Since both, optimiza-
tion algorithm and simulation model are programs running 
on a computer, such a tight coupling is in principle possi-
ble, but requires some new concepts. 

Different optimization techniques have been applied for 
the optimization of simulation models including the re-
sponse surface method, random search, Kriging models, and 
stochastic optimization (Fu 2002; Kemper, Müller, and 
Thümmler 2005). In this paper we develop an approach us-
ing evolutionary algorithms and specifically evolution 
strategies for optimization (Schwefel 1995). Evolution based 
approaches like evolution strategies or genetic algorithms 
are robust optimization procedures for the optimization of 
complex functions. Recently these algorithms have been ap-
plied to stochastic functions/models (Arnold and Beyer 
2003, Hedlund and Mollaghasemi 2002, Nissen and Propach 
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1998, Sriver and Chrissis 2004). However, most times evo-
lutionary algorithms have been studied on benchmark func-
tions providing artificial landscapes with some added noise 
(Nissen and Propach 1998). This scenario is often far away 
from real simulation responses where the function is smooth 
over large parts of the parameter space, the noise depends on 
the parameter values and the evaluation of the function is 
costly. To the best of our knowledge, the above-mentioned 
integration of optimization algorithm and simulation model 
has been realized only very rudimentarily for evolutionary 
algorithms with a few notable exceptions, e.g., (Hedlund and 
Mollaghasemi 2002). 

Evolution strategies are population based algorithms, 
from a given population the best individuals are selected as 
parents and from these individuals an offspring is gener-
ated which builds the next generation together or without 
the parents. The choice of the parents, which is done de-
terministically by choosing the individuals with the best 
responses, depends in a stochastic environment on the 
quality of the result estimators. Consequently, the evolu-
tion strategy has to select the best individuals from a popu-
lation with a high probability and with a low effort. This is, 
of course, a stochastic ranking and selection problem, 
which is commonly known in discrete event simulation and 
a large number of approaches exists in this area. Early two-
stage procedures are Rinott’s (1978) procedure or the pro-
cedure from Koenig and Law (1985), heuristic extensions 
to Rinott’s procedure are given in (Chen and Kelton 2000, 
Chen 2002, Chen and Kelton 2003) and novel approaches 
combining screening and selection are proposed by Boesel, 
Nelson, and Kim (2003). A recent overview paper of 
Swisher, Jacobson, and Yücesan (2003) compares different 
methods. In combination with evolution strategies, the 
methods are used to select the parents in each step of the 
algorithm and to select the final optimum. The goal is to 
find a good result with a low effort, which is different from 
the goal to avoid a wrong decision in every single step as it 
is usually assumed for ranking and selection. 

In this paper, we propose an enhanced evolution strat-
egy for the optimization of stochastic models that uses sta-
tistical selection procedures (i) for the survivor selection 
during the evolutionary process and (ii) for selecting the 
best individual from a set of candidate best individuals at 
the end of the evolutionary process. We compare the per-
formance of evolution strategies when applying different 
selection procedures in these two phases. In particular, we 
investigate the impact of different levels of model noise on 
the quality of the optimal solutions found by the evolution 
strategy and the number of model evaluations required. 
Furthermore, we present results for various sizes of the set 
with best individuals, the elite population, which is kept 
during the optimization process. Additionally, we propose 
a heuristic procedure that reduces the random size of the 
subset found by the screen-to-the-best procedure of Boesel, 
Nelson, and Kim (2003) to at most a fixed predefined size. 
84
Unfortunately, this procedure cannot guarantee a certain 
probability of correct selection but experimental results 
show that it performs better in terms of number of model 
evaluations and solution quality than other state-of-the-art 
statistical selection procedures. This holds especially when 
system configurations are in the indifference-zone (i.e., the 
difference between the best and second-best configuration 
is below some threshold d*). 

The paper is organized as follows. In the following 
section we give a brief overview of evolution strategies, as 
used for our problem. Afterwards we introduce our evolu-
tionary optimization strategy for discrete event simulation 
by first introducing ranking and selection procedures and 
then integrating these procedures within the optimization 
algorithm. Section 4 evaluates the quality of different se-
lection strategies by means of two examples. Finally, con-
cluding remarks are given. 

2 EVOLUTION STRATEGIES 

Evolution strategies (ES) (Schwefel 1995) are a class of 
optimization algorithms adopting strategies from natural 
evolution to perform optimization. The algorithms are 
population based. A population contains a fixed number of 
individuals where an individual is described by a parameter 
vector x and possibly a vector of strategy variables m. In 
ES from a parent population of size μ a set of λ offspring is 
generated. New offspring are generated by randomly modi-
fying individuals from the parent population. This opera-
tion is denoted as mutation and is done by adding a nor-
mally distributed random variable with mean zero to each 
factor. In some variants also recombination is used such 
that the factors of two parent individuals are combined to 
form a new individual, e.g., by selecting the first half of the 
factors from the first parent and the second half from the 
second parent. 

An ES is generation based and generations are num-
bered consecutively. Let P(t) be the parent population of the 
t-th generation. One can distinguish between (μ+λ)-ES 
(plus-ES) and (μ,λ)-ES (comma-ES). In the former case the 
new parents are selected from the old parents and the off-
spring. In the latter case, new parents are selected only from 
the offspring. It is problem dependent which of both strate-
gies is superior. Thus, in every generation t, a set Q(t) of λ 
new candidate solutions is created from P(t) by means of 
variation operators consisting of recombination and mutation 
of candidate solutions. The candidate solutions to form the 
population P(t+1) of generation t+1 are selected on the basis 
of their individual objective function values, called fitness in 
ES jargon. The selection is deterministic, by selecting the 
best individuals. Depending on the selection type, selection 
can be either from P(t) ∪ Q(t) or only from Q(t). 

Let xij ∈ R, i = 1,…,λ and j = 1,…,n, be the j-th factor 
of the i-th individual of Q(t) and let mij ∈ R be the corre-
sponding mutation strength which corresponds to the stan-
3
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dard deviation of the normal distribution used for mutation. 
The mutation of individuals of Q(t) is performed by first 
adjusting the mutation strength according to 
 

 mij := mij· i iju 2n u 2 ne + , for i=1,…,λ and j=1,…,n, (1) 
 
where the ui and uij are drawn from a standard normal dis-
tribution N(0,1) and then mutating the factor values of each 
individual with its adjusted mutation strength 
 
 xij := xij + mij·uij, for i=1,…,λ and j=1,…,n, (2) 
 
where the uij are again drawn from a standard normal dis-
tribution N(0,1). Eqs. (1) and (2) describe an adaptive mu-
tation strategy where the mutation strength is also modified 
during the evaluation process. This is usually superior to 
fixed mutation strength for all individuals. 

If the factors have to observe restrictions (e.g. xij > 0), 
then either a new offspring is only accepted if it observes 
the restrictions or it is modified to observe the restrictions. 
The algorithm is driven towards the optimum by selecting 
good solutions as parents and it explores the search space 
by randomly modifying the factors of good individuals. 
Since ES is an iterative algorithm, a stopping criterion has 
to be defined which has to be based on the available infor-
mation and therefore cannot use the distance to the true op-
timum as a criterion. Usually a fixed number of genera-
tions or missing progress during several generations are 
used as stopping criteria. 

ES falls into the class of metaheuristic optimization 
procedures. The advantage of the approach is its flexibility 
and robustness according to wrong decisions during the op-
timization process and therefore also its robustness accord-
ing to noisy functions. However, the disadvantage is often 
a huge effort, since a large number of function evaluations 
are usually necessary to reach the optimum. The former 
aspect makes the approach very suitable for optimization 
of stochastic simulation models, whereas the latter aspect 
shows that an efficient realization of the approach is of ma-
jor importance for the practical use of the technique in 
combination with simulation. This implies that simulation 
runs have to be long enough to distinguish good from 
worse individuals in a population, but they need not pro-
vide an exact ranking of all individuals since a small per-
centage of wrong decisions is tolerated by ES. 

3 OPTIMIZING STOCHASTIC MODELS WITH 
EVOLUTION STRATEGIES 

3.1 Statistical Ranking and Selection Procedures 

In this section our goal is to select an individual from a 
population with k individuals that has the largest expected 
response value. Let Xij represent the j-th simulation re-
84
sponse (i.e., the j-th fitness value) of individual i, for 
i = 1,…,k individuals. For fixed i, we will always assume 
that the simulation responses of individual i, i.e., Xi1, Xi2, 
Xi3, …, are independently and normally distributed random 
variables with (unknown) means μi = E[Xij] and unknown 
and possibly unequal variances 2

iσ  = Var[Xij]. This as-
sumption is usually realistic since the Xij may be obtained 
from independent replications of a simulation or appropri-
ately defined batch means from a single simulation. 

In the following we assume the μi to be ordered such 
that μ1 ≤ μ2 ≤ … ≤ μk, so that individual k is the best indi-
vidual among all individuals. We call the event “CS” of 
selecting individual k a correct selection. Note that it is not 
possible to develop a selection procedure which is inde-
pendent of the true mean values μi and that can guarantee a 
certain probability of correct selection (Law and Kelton 
2000). However, in practice one might not care if we 
wrongly choose individual k-1 if μk and μk-1 are close to-
gether, i.e., if μk – μk-1 ≤ d*, where d* > 0 is the smallest 
difference the experimenter feels is worth detecting. The 
parameter d* is called the indifference-zone parameter. 

A widely applied selection procedure in the statistical 
literature is Rinott’s (1978) two-stage procedure. Given the 
indifference-zone parameter d* this procedure can guaran-
tee to select the best individual with a predefined probabil-
ity of at least P*, with 1/k < P* < 1, provided μk – μk-1 ≥ 
d*. Let n0 be the number of initial replicated simulations of 
each individual. Then the first-stage sample means i 0X (n )  
and sample variances 2

i 0S (n )  are computed, i.e., 
 

 
0n

i 0 ij
j 10

1X (n ) X
n =

= ∑  and (3) 

 

 ( )
0n 22

i 0 ij i 0
j 10

1S (n ) X X (n )
n 1 =

= −
− ∑ , for i=1,…,k. (4) 

 
Based on the number of initial replications and the 

sample variances 2
i 0S (n )  obtained from the first stage, the 

number of additional simulation replications for each indi-
vidual in the second stage is Ni – n0, with 
 

 ( ){ }2 2h
i 0 i 0d*N max n , S (n )⎡ ⎤= ⋅⎢ ⎥⎢ ⎥

, (5) 

 
where h = h(k, P*, n0) is a constant depending on k, P*, 
and n0 which solves Rinott’s (1978) integral (see also ta-
bles in Bechhofer, Santner, and Goldsman 1995). From the 
first-stage and second-stage samples the overall sample 
mean i

i

N1
i ijj 1NX X== ∑  is computed and the individual with 

the largest overall sample mean is selected as the best. 
Note, that Rinott’s procedure is a conservative proce-

dure that obtains the predefined probability of correct se-
lection P* by assuming the least favorable configuration 
4
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(LFC), i.e., an arrangement of the μi such that μk – d* = 
μk-1 = … = μ1, which rarely occurs. Furthermore, the pro-
cedure has no mechanism to consider the sample mean of 
the responses after the first stage, and therefore cannot 
eliminate clearly inferior individuals prior to conducting 
additional sampling which introduces unnecessary effort. 

To overcome the deficits of Rinott’s procedure Chen 
and Kelton (2000) proposed an enhanced two-stage selec-
tion procedure (ETSS) that uses the sample means i 0X (n )  
after the first stage to adjust the second-stage sample sizes. 
In fact, they replaced the constant h in Eq. (5) with 
 

 { }i
max 0 i 0

h d *h
max d*,X (n ) X (n )

⋅=
−

, (6) 

 
where max 0 i 1,...,k i 0X (n ) max {X (n )}==  is the mean of the 
best individual after the first stage. Note, that the adjusted 
values hi are random variables (since i 0X (n )  are random 
variables) this procedure is only heuristic and cannot guar-
antee anymore the predefined probability of correct selec-
tion P*. In fact, the probability of correct selection de-
creases with decreasing first stage sample sizes n0. More 
conservative adjustments of h are recently proposed (Chen 
2002, Chen and Kelton 2003). 

A further concern with Rinott’s procedure is that the 
first-stage sample sizes n0 must be the same for each indi-
vidual i = 1,…,k. In an evolutionary algorithm where after 
each generation a selection is performed some individuals 
will survive for the next generation, and thus, it is desirable 
to reuse the simulation responses already computed in past 
generations as initial samples for subsequent survivor se-
lections. Recently Boesel, Nelson, and Kim (2003) ex-
tended Rinott’s procedure to allow unequal first-stage 
sample sizes. They replaced the first-stage sample sizes n0 
in Eq. (5) with the (individual) first-stage sample sizes n0i 
for each individual i = 1,…,k. Furthermore, replacing 
h = h(k, P*, n0) in Eq. (5) by h(2, (P*)1/(k-1), mini=1,…,k{n0i}) 
they show that P{CS | μk–μk-1 ≥ d*} ≥ P* still holds. 

To eliminate clearly inferior individuals prior to the 
selection procedure a subset pre-selection procedure can be 
applied (Bechhofer, Santner, and Goldsman 1995). In the 
subset selection formulation the goal is to choose a subset 
H ⊆ {1,2,…,k} such that P{k ∈ H | μk–μk-1 ≥ d*} ≥ P*. 
Unfortunately, the size of subset H obtained by these pro-
cedures is a random variable and thus, not under control of 
the experimenter. Figure 1 shows a subset selection proce-
dure that allows different initial sample sizes n0i for indi-
viduals i = 1,…,k. This procedure requires no additional 
sampling. In the best case the set H contains one individual 
when the procedure terminates, however, it may also be-
possible that no individuals are screened out. The proce-
dure in Figure 1 was proposed by Boesel, Nelson, and Kim 
(2003) and is denoted as extended screen-to-the-best pro- 
845
INPUT: Probability of correct selection P*, indifference-zone pa-
rameter d*, set H with k individuals in contention, number 
of already computed samples n0i, i=1,…k. 

OUTPUT: Set H with retained individuals. 
(1) FOR i = 1,…,k DO 
(2) Compute sample mean and sample variance 

 
0in

i ij
j 10i

1X X
n =

= ∑ , ( )
0in 22

i ij i
j 10i

1S X X
n 1 =

= −
− ∑  

(3) Let ti be the 1/(k 1)(P*) − -quantile of the t-distribution with
n0i – 1 degrees of freedom. 

(4) OD 
(5) FOR i = 1,…,k and j = 1,…,k DO 
(6) Compute weight 

 
2 22 2
j ji i

ij
0i 0 j

t St SW
n n

= +  

(7) IF i j ijX X max{0, W d*}< − −  DO Remove ind. i from H. 

(8) OD 
 
Figure 1: Extended Screen-to-the-Best Procedure of Boe-
sel, Nelson, and Kim (2003) 

 
INPUT: Approximate probability of correct selection Papp, indiffer-

ence-zone parameter d*, set H with k individuals in conten-
tion, maximal subset size m. 

OUTPUT: Set H with at most m retained individuals. 
(1) Compute adjusted probability 1/(k m)

appP* P −= . 

(2) Let n0 = mini=1,…,k{n0i} where n0i is the number of samples already 
computed for individual i. 

(3) WHILE |H| > m DO 
(4) FOR ALL Individuals i ∈ H DO 
(5) Compute samples Xi,1, …, Xi,n0, if not yet computed 
(6) OD 
(7) Call screen-to-the-best procedure presented in Figure 1 with 

set H, P*, d*/2, and n0i samples. 
(8) n0 := n0+1 
(9) OD 

 
Figure 2: Iterative Subset Selection Procedure 

 
cedure by the authors. Furthermore, the authors proposed a 
combined screening and selection (CSS) procedure that 
makes use of the extended screen-to-the-best procedure 
and Rinott’s procedure with unequal first-stage sample 
sizes n0i. 

As a final selection procedure we consider a heuristic 
extension to the screen-to-the-best procedure that reduces 
the random size subset H to a subset of predefined maxi-
mum size m. Figure 2 presents a pseudo-code algorithm of 
this iterative subset selection (ISS) procedure. From given 
numbers of initial samples n0i ≥ 2 for individuals i = 1,…,k, 
the procedure continues sampling until the size of the sub-
set reaches the predefined size m. Since this procedure re-
peatedly calls the screen-to-the-best procedure without re-
sampling previously computed samples P{k ∈ H | μk–μk-1 
≥ d*} ≥ P* cannot be assured for the final subset H in this 
heuristic approach. In fact, the conditional probability of 
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selecting a subset that contains the best individual, given it 
passed a previous subset selection, depends on the outcome 
of the previous subset selection. Thus, to be conservative 
we choose d*/2 as indifference-zone parameter when call-
ing the screen-to-the-best procedure. This adaptation will 
be justified when considering the experiments in Section 4. 
Furthermore, since the size of the subset will be reduced at 
least k – m times we propose to use 1/(k m)

appP* P −= , where 
Papp is an approximate probability of correct selection to be 
predefined by the experimenter. 

3.2 Combining Evolution Strategies with Statistical 
Selection Procedures 

In this section we present an evolution strategy (ES) that 
incorporates statistical procedures for the selection of best 
individuals. Throughout this section we consider the plus-
strategy for the ES but it should be noted that the algorithm 
could be applied for comma-strategies in a similar way. 
Two different phases where statistical selection occurs in 
the optimization process are distinguished. With S1 we de-
note the selection strategy used for the survivor selection 
during the evolutionary process, which repeatedly selects μ 
individuals from the μ+λ parents and offspring, and with 
S2 we denote the selection strategy applied for the final se-
lection at the end of the evolutionary process, which selects 
the best individual from a population of τ candidate best 
individuals, denoted the elite population. 

Figure 3 presents a pseudo-code algorithm for the en-
hanced (μ+λ)-ES. First of all the parameters of the ES are 
initialized and a feasible search-space is predefined. Fur-
thermore, the parent population P and the elite population 
B is initialized (see steps (1) to (4) in Figure 3). After ini-
tialization, the evolutionary process continues until a cer-
tain termination condition holds. The most common termi-
nation condition is to stop when a predefined number of 
generations have been passed. Other termination criteria 
can be to stop if progress gets sufficiently small, i.e., the 
evolution strategy terminates if the individual of the elite 
population with the largest sample mean does not change 
for at least (say) 10 consecutive generations. 

In each generation of the evolutionary process, λ indi-
viduals are selected uniformly random from the parent 
population. Then variational operators are applied to these 
individuals to create the offspring (see steps (6) to (8) in 
Figure 3). Note that the mutation operator can produce an 
individual which is outside the search-space. In this case 
we repeat the mutation until an offspring is generated that 
lies in the search-space. After mutation, individuals are 
evaluated according to selection strategy S1. Note that the 
selection strategies only define the number of evaluations 
required for each individual. The selection itself is then 
performed by choosing the individuals with the largest 
mean values for the parent population of the next genera-
84
tion (see steps (9) and (10) in Figure 3). To update the elite 
population B we use the screen-to-the-best procedure of 
Figure 1. Recall, that this procedure requires no additional 
sampling. Thus, the quality of the elite population inher-
ently depends on the quality of the selection procedure S1. 
Furthermore, we use no indifference-zone, i.e., d* = 0, for 
this selection since our purpose is to screen out clearly in-
ferior individuals such that the limited size of B is only al-
located to the candidate best individuals. Finally, when the 
ES stops the best individual is determined according to se-
lection strategy S2. 

 
(1) Predefine survivor selection strategy S1, final selection strategy 

S2, and size of elite population τ 
(2) t = 0 
(3) Initialize parent population P(0) with μ individuals created uni-

formly random in the region of interest 
(4) Initialize elite population B with min{μ, τ} individuals from P (0) 
(5) WHILE Termination condition not satisfied DO 
(6) Create offspring population Q(t) with λ individuals each se-

lected uniformly random from parent population P(t) 
(7) Adjust mutation strength of individuals in population Q(t) ac-

cording to Eq. (1) 
(8) Mutate individuals in population Q(t) according to Eq. (2) 
(9) Evaluate individuals of Q(t) ∪ P (t) according to selection 

strategy S1 
(10) Select μ individuals from Q(t) ∪ P (t) with largest mean re-

sponse value for population P (t+1) 
(11) Compute from B ∪ Q(t) ∪ P (t) a subset H of random size ac-

cording to the screen-to-the-best procedure presented in Fig-
ure 1 with d* = 0. 

(12) Reinitialize B with min{τ, |H|} individuals from H with larg-
est mean values. 

(13) t := t+1 
(14) OD 
(15) Evaluate individuals of B according to selection strategy S2. 
(16) RETURN Individual with largest mean response value among all 

individuals in B 

 
Figure 3: Pseudo-Code of the Enhanced Evolution Strategy 
for Plus-Selections 

4 QUANTITATIVE RESULTS FOR THE 
ENHANCED EVOLUTION STRATEGY 

4.1 Impact of Statistical Selection Procedures 

In this section, we show with several experiments the im-
pact of applying statistical selection procedures on the per-
formance of an evolution strategy. As an experimental 
model we consider an appropriately scaled n-dimensional 
sphere function 
 
 ( ) T1

4nf 1= −x x x , (7) 
6
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which is designed such that f(x) ∈ [0,1] for x ∈ [-1,2]n and 
the maximum of f is at f(0) = 1 and the minimum of f is at 
f(2,…,2) = 0. To consider the stochastic nature of a simula-
tion model we add normally distributed noise to the undis-
turbed model function f, where the noise strength is deter-
mined by a variance surface function g(x), i.e., 
 
 ( )simf f ( ) g( ) N(0,1)= + ⋅x x x , (8) 
 
where N(0,1) has standard normal distribution. In our ex-
periments we consider the variance surface 
 
 ( ) ( )n1

i2n i 1g 1 sin( x )
=

= σ ⋅ + γπ∑x , (9) 

 
which induces varying variances in fsim over the search-
space. In particular, Eq. (9) is designed such that the stan-
dard deviation of fsim(x) varies between 0.5σ and 1.5σ for 
x ∈ Rn. The parameter γ is to adjust the frequency of this 
variation, i.e., increasing γ increases the fluctuation rate of 
the standard deviations between 0.5σ and 1.5σ. Note that 
γ = 0 induces constant noise with standard deviation σ in 
fsim. Furthermore, noise at the maximum of fsim is g(0) = σ 
independent of the choice of γ. In the experiments we de-
note σ the model noise strength and γ the model noise fluc-
tuation, respectively. Note, that for a model noise strength 
of σ, the mean absolute deviation of fsim(x) from f(x) is 
σabs = σ· 2 π . Since the true optimal response is f(0) = 1 
we can interpret the noise induced in fsim(0) due to g(0) to 
be of 100·σabs percent. The two-dimensional response sur-
face of f(x) and variance surface g(x) over the search-space 
[-1,2]2 are shown in Figures 4 and 5, respectively. 

We compare the performance of evolution strategies 
when applying different selection procedures for survivor 
selection and final selection, respectively (see strategies S1 
and S2 in Figure 3). In particular, we compare the com-
bined screening and selection procedure, abbreviated with 
CSS, the enhanced two-stage selection procedure, abbrevi-
ated with ETSS, and the iterative subset selection proce-
dure, abbreviated with ISS, as discussed in Section 3.1. 
Additionally, we consider the following two simple heuris-
tic selection strategies: 
MEAN: Perform exactly n0 replicated simulations of each 

individual and choose the one with the largest 
mean value. 

CONF: Perform exactly n0 replicated simulations of each 
individual and continue replicating until the width 
of the 100·P* percent t-confidence interval be-
comes smaller than d*. Then choose the individ-
ual with the largest mean value. 
84
-1
-0.5

 0
 0.5

 1
 1.5

 2

Factor 1

-1
-0.5

 0
 0.5

 1
 1.5

 2

Factor 2

 0

 0.2

 0.4

 0.6

 0.8

 1

f(x)

 
Figure 4: Response Surface f(x) in Two Dimensions 
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Figure 5: Variance Surface g(x) for σ = 0.2 and γ = 1.0 

 
In all experiments we apply a (5+5)-ES on the two-

dimensional sphere function (7) and choose the individuals 
for the first generation uniformly random in search-space 
[-1,2]2. For all selection procedures an initial first-stage 
sample size n0 = 10 and a probability of correct selection 
P* = 0.9 is used. Furthermore, we assume the indifference-
zone parameter d* = 0.1 for the survivor selections and 
d*/2 for the final selections in order to be more accurate at 
the end. To introduce unequal variances across the search-
space we choose γ = 1 if not mentioned otherwise. For per-
formance evaluation of the evolution strategy two per-
formance indices are considered: 
(i) The distance δ between the response of the best solu-

tion found by the evolution strategy and the true op-
timal response, i.e., δ = 1 – f(xopt) where xopt is the re-
sult of the evolution strategy, and 

(ii) the overall number of model evaluations required by 
the evolution strategy until it returns the result xopt. 

In order to obtain the performance indices with high 
confidence we made 10,000 independent replications of the 
complete optimization process for each point in Figures 6 
to 11. 

In a first experiment the progress of the ES with in-
creasing number of generations is investigated when apply-
ing different survivor selection strategies (see Figure 6). In 
this experiment the model noise strength is σ = 0.2 and the 
size of the elite population is |B| = 1, i.e., no final selection 
is used. From Figure 6 we see that for all selection strate-
gies, except the MEAN(10) selection, the distance value 
approaches 0.01 with increasing number of generations. 
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Figure 6: Performance Indices for Increasing Number of 
Generations and Different Survivor Selection Strategies 
 
Note, that this value is about 10 times smaller than the in-
difference-zone parameter d*. The reason for this is that 
the sphere function is very flat, such that the ES produces 
even after the first generation a result with a distance be-
low 0.1 from the optimal response (see also innermost con-
tour circle around the optimum in Figure 4, which corre-
sponds to a response of 0.9). Considering the number of 
evaluations required to obtain the results, the selection 
strategies differ significantly. In fact, the ISS requires 
about 2/3 of the iterations required by the CSS. 

In the following experiments we consider a fixed 
number of 50 generation of the ES until termination. Fig-
ures 7 and 8 show the performance indices for σ increasing 
from 0.01 to 0.3 when applying different survivor selection 
strategies. In Figure 7 no final selection is considered 
whereas in Figure 8 the ISS procedure is used for final se-
lection with an elite population of size 10. Comparing the 
different survivor selection strategies we first observe that 
distance from the optimal solution increases linearly when 
applying the MEAN selection strategy. In fact with MEAN 
selection the accuracy of the solution cannot be controlled 
automatically with respect to increasing noise. With the 
other selection strategies the solution accuracy can be sig-
nificantly increased for all noise levels, but with the cost of 
a (automatically controlled) larger number of model repli-
cations. Furthermore, with the same number of evaluations 
the ISS procedure produces much better results than the 
MEAN value approach, e.g. considering a model noise 
strength of σ = 0.23 in Figure 7, where MEAN(50) and ISS 
84
require similar number of evaluations but ISS returns a so-
lution with distance 0.011 and MEAN(50) with 0.015, re-
spectively. Comparing the number of evaluations required 
by the selection strategies we see that the ISS procedure 
requires the smallest number of evaluations even when 
producing the best solutions with respect to the distance 
measure. Recall, that Figure 8 additionally investigates the 
impact of applying the ISS procedure for final selection. 
Compared to Figure 7, for all selection strategies the dis-
tance measure can be improved about 40% whereas the 
number of evaluations increases only about 14%. This is a 
clear argument for using an elite population during the op-
timization process. 

In the next experiments we further investigate the im-
pact of applying an elite population. Figures 9 and 10 show 
the performance indices when increasing the size of the 
elite population from 1 to 30 for different final selection 
strategies. For survivor selection we used the MEAN(10) 
and ISS procedures, respectively. In this experiment the 
model noise strength is σ = 0.2. For all strategies an in-
crease in elite population size decreases the distance meas-
ure and increases the number of evaluations, except for 
MEAN(10). Observe, that the ETSS procedure does not 
further improve when the elite population size increases 
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Figure 7: Performance Indices for Increasing Model Noise 
Strength, Different Survivor Selection Strategies, and no 
Final Selection 
8



Buchholz and Thümmler 

 

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
is

ta
n

ce
 f

ro
m

 o
p

ti
m

al
 r

es
p

o
n

se

Model noise strength

MEAN(10)
MEAN(50)

CONF
CSS

ETSS
ISS

 

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0  0.05  0.1  0.15  0.2  0.25  0.3

N
u

m
b

er
 o

f 
m

o
d

el
 e

v
al

u
at

io
n

s

Model noise strength

MEAN(10)
MEAN(50)

CONF
CSS

ETSS
ISS

 
 
Figure 8: Performance Indices for Increasing Model Noise 
Strength, Different Survivor Selection Strategies, and ISS 
Final Selection 
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Figure 9: Performance Indices for Increasing Size of Elite 
Population, Different Final Selection Strategies, and 
MEAN(10) Survivor Selection 
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above 8. The reason for this is that the computation of sec-
ond-stage sample sizes is based on accurate sample means 
of the first stage, which are not given for n0 = 10 samples. 
 To tackle this problem, Chen (2002) proposed a con-
servative adjustment to the ETSS procedure. We also 
checked this procedure and obtained better results, but, as 
expected, for a larger number of evaluations. In Figures 9 
and 10, the ISS procedure produces almost always the best 
results with respect to the distance measure; however, it 
also requires a large number of evaluations. Comparing 
MEAN(10) and ISS survivor selection, we observe an im-
provement of about 100% in the distance measure with 
ISS, whereas the number of evaluations increases only by 
about 10%. Thus, a conclusion from Figures 9 and 10 is 
that a simple MEAN selection as usually applied in evolu-
tionary algorithms, should not be the method of choice. 
 In a final experiment in Figure 11, we considered the 
impact of model noise fluctuation on the performance meas-
ures. Again, the model noise strength is σ = 0.2 and the size 
of the elite population is |B| = 1. From the curves we see 
how sensitive the selection procedures are against unequal 
variances across the search-space. Recall, that γ = 0 corre-
sponds to constant variances across the search-space. It can 
be observed that, procedures CONF, CSS, and ETSS are 
very stable with respect to the distance measure. Neverthe-
less, the stability requires an increasing number of evalua-
tions. Considering the MEAN(50) and ISS procedure, we 
observe an increase in the distance measure for γ between 0 
and 1. For the ISS procedure the number of evaluations also 
increases. This is not desirable, but comparing the absolute 
numbers ISS produces always the best results with respect to 
the distance measure as well as the number of evaluations. 
From the figure we conclude that the performance of ISS as 
shown in Figures 6 to 10 is further improved when there is 
small variance fluctuation, i.e., γ < 1. 

Finally, we state two reasons why selection strategies 
based on Rinott’s procedure such as CSS require more 
evaluations than heuristic procedures like ISS or ETSS: (i) 
the second-stage sample size is based on the variance esti-
mates of the first n0 replications, which might give impre-
cise estimates resulting in a higher second-stage sample 
size, and (ii) Rinott’s procedure does not incorporate mean 
estimates when computing the second-stage sample size, 
i.e., it assumes the least favorable configuration. 

4.2 Optimization of a Production Line 

To provide a more realistic application example, we 
consider a production line of a manufacturing plant compris-
ing N service queues arranged in a row, that is, parts leaving 
a queue after service are immediately transferred to the next 
queue. In this example, we assume all queues to have finite 
capacity K = 10. Arrivals of parts to the first queue occur ac-
cording to a Poisson process with rate λ = 0.5. 
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Figure 10: Performance Indices for Increasing Size of Elite 
Population, Different Final Selection Strategies, and ISS 
Survivor Selection 
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Figure 11: Performance Indices for Increasing Noise Fluc-
tuation and Different Survivor Selection Strategies 
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Each queue comprises a single server with first-come, first-
served (FCFS) service discipline and exponentially distrib-
uted service time. The service rate (i.e., speed of the 
server) at queue n is denoted with μn. Furthermore, the vec-
tor μ = (μ1,…,μN) of service rates is subject to be opti-
mized by the evolution strategy with respect to a revenue 
function 
 

 1T
0

r X( )R( ) c
c

⋅= −
+ ⋅c

μμ
μ

, (10) 

 
where X(μ) is the throughput of the production line (i.e., 
the time-averaged number of parts leaving the last queue) 
for service rates μ and r, c0, c1 and c are constants repre-
senting a revenue factor, basic costs that occur independent 
of service rates and a vector with cost factors for each 
server, respectively. Since X(μ) is decreasing for decreas-
ing any of the μn, n=1,…,N, the revenue function (10) 
clearly quantifies the trade-off between a high throughput 
(i.e., a high production rate) and costs of providing fast 
service. To compute X(μ) quantitative analysis of the 
model must be conducted. For general models this can only 
be done by discrete-event simulation. Nevertheless, for the 
production line model, also numerical transient analysis of 
the underlying continuous-time Markov chain can be ap-
plied for its quantitative solution (Bause, Buchholz, and 
Kemper 1998). 
In the experiments, we used the production line with N = 3 
queues and considered transient results at time t = 1000 
starting with an empty system at time t = 0. The revenue 
factor and the cost factors are assumed to be r = 10,000, c0 
= 1, c1 = 400 and cT = (1,5,9). Furthermore, the search-
space is bounded to μ ∈ [0,2]3, which results in values of 
R(μ) ranging approximately between –400 and 98.5. Since 
the optimal solution is unknown we cannot use the distance 
measure (i) as performance index. Instead we consider the 
numerical solution Rnum(μopt), where μopt is the result of the 
evolution strategy. Figure 12 plots the performance indices 
obtained from 2,500 independent replications of the com-
plete optimization process. In this experiment we consid-
ered different survivor selection strategies with d* = 10 
and no final selection. It can be observed that ISS produces 
the best results on average while it requires the smallest 
number of evaluations. The best solution found during our 
experiments was Rnum(0.54, 0.45, 0.42) = 98.46. The aver-
age revenue of the solutions found by ISS is 94. Consider-
ing the range from –400 to 98.5 of possible revenue values 
this corresponds to 99% of the best solution. 

5 CONCLUSIONS 

In this paper, we presented an evolution strategy for 
the optimization of simulation models. The proposed evo-
lution strategy determines the parent population of con-
secutive generations using a statistical selection procedure. 
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Figure 12: Performance Indices for Increasing Number of 
Generations and Different Survivor Selection Strategies 

Furthermore, we propose to use statistical selection at the 
end of the evolutionary process for selecting the best indi-
vidual from a set of candidate best individuals collected 
during the evolutionary process, i.e., the elite population. 
As a second contribution we propose a heuristic iterative 
subset selection (ISS) procedure that reduces a random-
size subset, containing the best individual, to a maximum 
predefined size. 

By means of two application examples, we investi-
gated the impact of applying statistical procedures for sur-
vivor selections and the final selection. The results show, 
that the performance of the ES is improved when using sta-
tistical selection procedures instead of applying a simple 
selection based on mean response values. Furthermore, the 
ISS procedure performs best compared to the other selec-
tion strategies for survivor selections as well as the final 
selection. 

In future work, we plan to investigate possible im-
provement of the evolution strategy when using common 
random numbers (CRN) across systems for the simulation 
model and compare the performance with selection proce-
dures especially designed for CRN. A second concern is to 
study the evolution strategy when using a fixed budget al-
location, i.e., the maximal number of model evaluations is 
a predefined value. Finally, we plan to compare the pro-
posed optimization approach with other optimization ap-
proaches, especially those based on response surface meth-
odology (Kemper, Müller, and Thümmler 2005). 
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