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ABSTRACT 

We study two different operational scenarios for a regional 
air ambulance service-company which has bases in north-
ern California. Two of these bases serve the land areas en-
compassed roughly in a circular area of radius 100 miles 
centered in Gilroy and Salinas, respectively; with a large 
part of their coverage areas reachable from either base. The 
base in Salinas currently operates one helicopter only from 
Thursday to Monday, whereas the base in Gilroy operates 
one helicopter 24/7. The company is considering extending 
the operation of one helicopter to 24/7 for its Salinas base. 
In this paper we analyze the operational impacts of that ex-
tension, and develop a framework that can be applied to-
wards the study of the ambulance assignment problem 
faced by small operators. 

1 INTRODUCTION 

Currently, there is a growing public debate over the use, 
cost, and proliferation of helicopter ambulance service. 
Helicopter ambulances operating in the United States have 
doubled to 700 in the last ten years, with the price of an 
airlift ranging from $5,000 to $10,000 (The New York 
Times, Feb. 28th and May 3rd, 2005). Furthermore, the fi-
nancial crisis faced by many hospitals is making many ru-
ral and suburban communities too distant from high level 
trauma centers, leaving air ambulances as their only option 
for emergency transportation (SV/SJ Business Journal, Oc-
tober 22nd, 2004 and Santa Cruz Sentinel, Sep. 23rd, 2004). 
 Emergency response systems have greatly benefited 
by management science studies; see, for example, the sur-
vey paper Green and Kolesar (2004), and references 
therein. Regarding ground ambulance transport, the stan-
dard setting is that of a unique emergency transport pro-
vider, and the problem is to find optimal base locations and 
the minimum number of ambulances per base to meet cer-
tain performance targets; see, for example, Iskander 
(1989), and Henderson and Mason (2004). The air ambu-
lance assignment problem has traditionally been studied in 
the context of a regional public emergency medical service 
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(EMS); Parker and Johnson (1970) is an early reference on 
the subject and more recently, Wears and Winton (1993), 
and Stundzia and Lumsden (1994).  
 Helicopter ambulance service is generally provided by 
individual operators that operate helicopters located in sev-
eral bases and are under contract with EMS. When an ac-
cident that requires air transport occurs, EMS retrieves the 
first available helicopter from a priority list. For example, 
current EMS procedures (County of Monterey EMS, 2004) 
dictate that accidents located in Monterey county are 
served by a helicopter based either in Salinas (MEDCAL), 
Gilroy (MEDCAL), Palo Alto (Stanford Hospital), Mo-
desto (Medi Flight), Paso Robles (California Highway Pa-
trol), Fresno (Sky Life), or Santa Maria (MEDCAL), in 
that order. The MEDCAL helicopter based in Gilroy is the 
EMS first choice for accidents occurring in southern Santa 
Clara and southern Santa Cruz counties, and the second 
choice for missions located in Monterey and most of  San 
Benito counties. On the other hand, the Salinas based 
MEDCAL helicopter is the EMS first choice for accidents 
occurring in Monterey and a large portion of San Benito 
counties, and  second choice in southern Santa Clara and 
southern Santa Cruz counties (County of Monterey EMS, 
2004, and County of Santa Cruz EMS, 2004).  
 This paper addresses the helicopter assignment prob-
lem faced by MEDCAL (the sponsoring company wishes 
to remain anonymous; MEDCAL is a fictitious name), who 
wishes to assess the operational impact of extending the 
Salinas based single helicopter operation from Thursday 
through Monday  to 24/7. More specifically, MEDCAL is 
interested in gaining knowledge about expected changes in 
helicopter utilization, number of missions completed, and 
helicopter response times, by expanding its Salinas opera-
tion. 
 In order to solve the problem we gathered flight-log 
sheets from MEDCAL’s Gilroy and Salinas based helicop-
ters for the years 2002, 2003, and 11 months of 2004. Al-
though these log sheets include detailed information about 
complete missions, data for incomplete missions is mostly 
missing. Furthermore, EMS’s calls that are rejected by a 
MEDCAL base due to helicopter unavailability are gener-
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ally not recorded. Another relevant source of data is EMS 
itself; they provided monthly aggregate demand for air 
transport only in Monterey and Santa Cruz counties and 
yearly totals in Santa Clara county. A first order approxi-
mation to our problem would discard missed and rejected 
missions. However, the log-sheets indicate that EMS calls 
that result in incomplete missions fall in the range 17% to 
43%, and using EMS’s data as a measure of overall de-
mand it can be found that about 3% to 7% of EMS’s calls 
are rejected by MEDCAL. This suggests that incomplete 
and rejected missions need to be accounted for in our 
model. Thus, we face the problem of figuring out certain 
parameters from aggregate data; see Leemis (2001) for 
more details on this issue. Regarding the estimation of a 
non-homogeneous Poisson process (NHPP) intensity func-
tion, which is needed to model mission demand, non-
parametric approaches include Law and Kelton (2000, p. 
390-393), Arkin and Leemis (2000), Henderson (2003), 
and Leemis (2004). The  papers Kuhl et al. (1997), (2001), 
and (2004), deal with the estimation of an intensity func-
tion subject to periodic effects and trends. The intensity 
function estimation problem also can be tackled using ker-
nel techniques; see Lewis and Shedler (1976), Diggle and 
Marron (1988), Brooks and Marron (1991), Hall et al. 
(1991), and Jones et al. (1996), for more details. Zhu and 
McKnew (1997) use a piece-wise linear approximation of 
the Poisson intensity function to model arrivals in an 
emergency ambulance service. Lastly, Wu et al. (2005) 
provide a queueing perspective of our problem. 

After the historical data is analyzed, we build a dis-
crete event simulation model that uses the fitted input pa-
rameters to generate missions and their associated time 
variables. Simulation output analysis is performed after-
wards. 
 Our paper is organized as follows: In Section 2 we de-
scribe our model, explain the input analysis problem, and 
present the measures of interest. Section 3 deals with 
model implementation and, more importantly, presents and 
discusses our results. The paper conclusions are collected 
in Section 4. 

Once again, to goal of this paper is to present a simu-
lation modeling framework for the ambulance allocation 
problem faced by an individual operator. 

2 MODEL 

2.1 Model Description 

 For the purpose of our analysis missions, rather than 
patients (there may be multiple patients per mission), are 
divided into three types. First, “complete missions” are un-
planned flights triggered by EMS that occur at a random 
location where the helicopter picks the patient and trans-
ports her to a regional hospital; if no helicopter is available 
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on base upon receiving the EMS call, the call is lost (i.e., 
there is no waiting buffer in the queue).  A motorcycle ac-
cident is a frequent instance of this type of mission. Sec-
ond, we consider “inter-facility missions”, in which a pa-
tient is picked from a local hospital and transported to a 
more sophisticated hospital. Because there often is a con-
tractual relationship between the local hospital and the 
helicopter-ambulance company, EMS is not involved in 
these missions. Patients can generally wait up to one hour 
for helicopter pick up; in practice, this means that buffer 
size is infinite and the transport occurs once a helicopter 
becomes accessible. An example of this kind of mission is 
a trauma patient transported by land ambulance to a local 
hospital, who is later transported by helicopter to a high 
complexity trauma center. Last, we have the “incomplete 
missions”. These are unplanned randomly located flights 
dispatched by EMS for which the helicopter returns to base 
without picking any patient because air transport is can-
celled. If no helicopter is available, the call is lost (there is 
no waiting buffer in the queue). Mechanical failure, ad-
verse weather conditions, or EMS cancellation can lead to 
incomplete missions. 
 The steps followed and recorded in the flight-log sheet 
for complete missions are the following. First a helicopter 
is dispatched by the base operator upon receipt of an EMS 
order. After a random amount of time, called the Reaction 
time, the helicopter departs from base. Next, the helicopter 
arrives to the scene of the accident and soon after there oc-
curs nurse-patient contact. The time elapsed between de-
parture from base and nurse-patient contact is called the 
Waiting time. The last steps are departure from the scene, 
arrival into hospital, and return to base; we call the cumu-
lative time spent in the latter steps the Service time. The 
steps and time intervals concerned by complete missions 
are illustrated in Figure 1. 

Due to the nature of inter-facility missions, the only 
relevant time measurement (recorded in the log-sheet) is 
the total amount of time spent between helicopter take-off 
and return to base. 
 The steps recorded in the flight log sheet for incom-
plete missions only includes dispatch times. Therefore, 
there are two steps: dispatch time (time known), and heli-
copter becomes available (time unknown). The latter is 
modeled under some reasonable assumptions; see Section 
2.3. 

2.2 Measures of Interest 

The window of time that starts at the time of emer-
gency and finishes when the helicopter reaches the hospital 
is crucial. If this time window, known as the “golden 
hour”, is less than one hour then chances of survival in-
crease significantly if trained professionals start to treat the 
patient (Tallon et al., 2002). Of this time, only the part 
2



Gunes and Szechtman 

 

Figure 1: Complete Mission Process Steps 
 

Dispatch  Nurse Patient Contact depends on the helicop-
ter allocation policy; we call that time the Response time, 
see Figure 1. By configuring Salinas as a 24/7 operation 
we expect response times to decrease. 

The number of complete missions per base per year 
and the yearly average helicopter utilization are two other 
measures of interest from the operator’s perspective, be-
cause of their impact on revenues. For any given year, the 
average helicopter utilization is the ratio of the busy times 
over busy plus idle times, and is found separately for the 
Gilroy and Salinas based helicopters. Assigning a helicop-
ter 24/7 to the Salinas base will tend to decrease utiliza-
tions in Gilroy and Salinas, although this might be com-
pensated by taking additional inter-facility missions from 
local hospitals (which we don’t include into our model). 

2.3 Input Analysis 

For the three types of missions, the relevant parameters 
may depend on the helicopter base and on the emergency 
location (for which the maximum resolution is the county 
name). More specifically, we have: 

 
• For complete missions: 

− Reaction time – depends on helicopter base. 
− Waiting time – depends on helicopter base 

and emergency county name. 
− Service time - depends on helicopter base and 

emergency county name. 
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• For inter-facility missions, we capture the total 
transportation time starting with dispatch time and 
ending in return to base, this time is base depend-
ent. 

• For incomplete missions, because only dispatch 
times are available, we assume that the time until 
the helicopter becomes available is uniformly dis-
tributed. 

 
 For each of the five variables we separately verified 
independence by using auto-correlation with missing data. 
The correlation among waiting and service times was 
checked using Pearson’s correlation test, and we found that 
for some base-county pairs the waiting times and service 
times are correlated. In particular, we found that waiting 
times and service times are conditionally independent 
given that their waiting times are less (or more) than 20 
minutes. All other variables are necessarily independent. 
 Finally, we used Kernel methods (Wand and Jones, 
1995) to fit the data associated with each variable to a den-
sity. For example, given n  independent and identically 
distributed Salinas based reaction times 1 2, , , nR R RK , the 
kernel density estimator is 

 ( )
1

1,
n

i

i

r R
f r h K

nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ , 

where the kernel ( )K ⋅ satisfies ( ) 1K r dr =∫ , and 0h > is 
called the bandwidth. The bandwidth is selected to mini-
mize the mean integrated squared error of ( ),f r h . In par-
ticular, we used a Gaussian kernel, and, the optimal band-
width selection method proposed by Hall et al. (1991). 
 We believe that our approach, by capturing the ran-
domness of the different stages involved in a mission, is 
more realistic than other air-ambulance studies for which 
these parameters are deterministic.  

2.4 NHPP intensity function estimation 

2.4.1 Goodness-of-Fit Tests  

We now describe the procedure followed to analyze the 
mission arrivals. For each of the four counties that feed the 
Gilroy and Salinas bases, and for each type of mission, we 
perform a goodness-of-fit test of a non-homogeneous Pois-
son process with piecewise constant intensity function. We 
applied both classical 2χ test and denominator-free 2χ as 
described in Velleman and Hoaglin (1981): Given K inde-
pendent Poisson random variables with means 1, , Km mK , 
and observed arrivals 1, , Kn nK , the statistic  
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D

  means equality in distribution. We used 2002 
and 2003 data to find the rates, and the 2004 data (which 
consists of only 11 months) to cross-validate our parame-
ters. Table 1 presents a summary of our results, and Figure 
2 shows the intensity function for Santa Clara county (the 
intensity functions for the other three counties only differ 
slightly; see Gunes, 2005, for a complete scenario).  
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Figure 2: Intensity Function for Southern Santa Clara 

 
Table 1: 2χ Goodness-of-Fit for Complete-Flights Esti-
mated rates 
County GOF 2002/2003 GOF 2004 (11 months) 
SCL { } 83.02

50 =≤ SantaClaraTP χ
 

{ } 8.02
48 =≤ SantaClaraTP χ  

SCR { } 593.02
50 =≤ SantaCruzTP χ  { }2

48 0.435SantaCruzP Tχ ≤ =

 
MON { } 499.02

50 =≤ montereyTP χ  { } 305.02
48 =≤ montereyTP χ  

SBE { } 42.02
50 =≤ SanBenitoTP χ  { } 692.02

48 =≤ SanBenitoTP χ  
 
We conclude that by using 2002 and 2003 data, the rates 
we find are statistically adequate. 

2.4.2 A Kernel Approach to NHPP Intensity 
Estimation 

In the past subsection we found that a piece-wise constant 
arrival intensity function adequately fits the data at the 
weekly level. However, after taking a closer look at the 
data it is clear that the rates are not constant on a daily and 
intra-day basis. One important reason for this is that most 
of the arrivals are trauma incidents of which traffic acci-
dents are a large proportion, and these tend to occur on cer-
tain days of the week and on certain hours of the day. For 
this reason, for each of the four counties, and for all kinds 
of missions,  we fit the intra-week intensity function using 
kernel density estimation procedures (Wand and Jones, 
1995) with bandwidths that capture multi-modalities like 
9

morning, evening rush-hour, and Saturday night effects. 
Figures 3 through 6 illustrate the intra-week intensity func-
tion found for each county. Note how the intensities peak 
on the evenings and on the weekends.  
 

 
Figure 3: Monterey Intra-Week Intensity 

 

 
Figure 4: San Benito Intra-Week Intensity 

 

3 IMPLEMENTATION,  VALIDATION, AND 
RESULTS 

3.1 Implementation 

Our model uses discrete event simulation techniques (Law 
and Kelton, 2000), and is implemented in Java using the 
Simkit software package (Buss, 2001). The kernel estima-
tion was done in Matlab, and the simulation samples are 
drawn employing standard techniques; see Chapter 8 of 
Law and Kelton (2000). 
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Figure 5: Southern Santa Clara Intra-Week Intensity 

 

 
Figure 6: Southern Santa Cruz Intra-Week Intensity 

     

3.2 Model Validation 

In order to validate the helicopter assignment policy, we 
did a trace-driven simulation for the Gilroy and Salinas 
bases, and compared the number of complete missions 
with the recorded data, for 11 months of 2004 (which is 
used because it contains the most complete data set in 
terms of complete, incomplete, and inter-facility missions). 
Our results are shown in Table 2. There are about 21 lost 
flights in our simulation; we conjecture them due to errors 
in data entry. 
 In the second phase of the validation, we re-utilized 
the arrival-epochs, but randomized response times, waiting 
times, and service times, using their estimated densities. 
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Table 3 summarizes our results; we concluded that our  
implementation adequately represents the real system and 
that the kernel density estimators found for reaction, wait-
ing, and service times are reasonably good. 

 
Table 2: Assignment Model Validation  

Base Actual Simulated % coverage 
Gilroy 609 575.1 94.4 % 
Salinas 202 214.9 105.9 % 
  

 Table 3: Estimated Parameter Validation  
Base Actual Data Estimated Data  % coverage 

Gilroy 575.1       571.7  99.4 % 
Salinas  214.9       215.5 100.2 % 
  

3.3 Results 

In the final stage we randomized mission arrival times and 
mission dependent variables, with the goal of comparing 
expected yearly changes in the measures of interest for 
both the current  (Salinas base part-time) and the proposed 
(Salinas base 24/7) configurations.  

We ran 200 sample path iterations, lasting 52 weeks 
each. Given a random variable X , and a measure of inter-
est EXμ = , we compute the standard sample mean esti-

mator X of μ , the sample standard deviation s , and an 
approximate 95% confidence interval for μ   

 

( )1.96 / 200, 1.96 / 200X s X s− + . 

 
Our results are summarized in Tables 4 and 5. Under the 
Salinas 24/7 configuration, the number of complete mis-
sions increases by about 4.5%, utilizations decrease in both 
bases, and response times (denoted as RT in the tables) de-
crease by about 2 minutes for Monterey county. Accord-
ingly, only a planned increase of inter-facility missions, 
especially out of Salinas, seems to justify setting Salinas as 
a full-time base.   
 

Table 4: Simulation with Current Configuration 
 X  s 95% Conf. Int. 

G # Served 521.55 18.7321 (519, 525) 
S # Served 210.47 11.6494 (209, 212) 
SCL RT 24.7804 0.1395 (24.76, 24.80) 
SCR RT 27.4889 0.1721 (27.46, 27.52) 
MON RT 29.294 0.1766 (29.27, 29.32) 
SBE RT 25.4762 0.1557 (25.45, 25.50) 
G Util. 0.1357 0.005 (0.1349, 0.1365) 
S Util. 0.1353 0.0076 (0.1341, 0.1365) 
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Table 5: Simulation with Proposed Configuration 

 X  s 95% Conf. Int. 

G # Served 484.63 18.593 (482, 488) 
S # Served 279.495 14.411 (277, 282) 
SCL RT 24.872 0.1277 (24.9, 24.9) 
SCR RT 27.5226 0.1414 (27.5, 27.6) 
MON RT 27.6486 0.1731 (27.62, 27.68) 
SBE RT 25.1288 0.1729 (25.10, 25.16) 
G Util. 0.125 0.0051 (0.124, 0.126) 
S Util. 0.0758 0.0038 (0.0751, 0.0764) 

 

4 CONCLUSION 

We developed a model useful to analyze the operations of 
an air-ambulance service provider. Moreover, our results 
lent statistical support for MEDCAL’s decision to have its 
Salinas base operate full-time.   
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