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ABSTRACT

We present an importance sampling procedure for the es
mation of multifactor portfolio credit risk for thet-copula
model, i.e, the case where the risk factors have the multiva
atet distribution. We use a version of the multivariatet that
can be expressed as a ratio of a multivariate normal and
scaled chi-square random variable. The procedure cons
of two steps. First, using the large deviations result fo
the Gaussian model in Glasserman, Kang, and Shahab
din (2005a), we devise and apply a change of measure
the chi-square random variable. Then, conditional on th
chi-square random variable, we apply the importance sa
pling procedure developed for the Gaussian copula mod
in Glasserman, Kang, Shahabuddin (2005b). We supp
our importance sampling procedure by numerical example

1 INTRODUCTION

A number of recent papers address better empirical fits
observed data byt-copula. See, for example, Mashal and
Zeevi (2002) and Breymann, Dias, and Embrechts (2003
One reason for this is the asymptotic dependence property
t-copula (see Embrechts, Lidskog, andMcNeal 2001) whic
captures the extreme co-movements of financial assets. T
multifactort-copula model of credit risk attempts to capture
this in the credit risk setting. In thismodel the latent variable
corresponding to obligors (e.g., normalized asset values
obligors) or equivalently, the risk factors, are assumed
have the multivariatet distribution. This is in contrast to
the Gaussian copula model where these are assumed to h
the multivariate Gaussian distribution.

Currently, there are no closed form analytical result
for both the Gaussian copula andt-copula models. Lucas,
Klaassen, Spreij, and Straetmans (2001) present approxim
tions for the Gaussian copula case. Approximations for th
t-copula case are presented in Lucas, Klaassen, Spreij, a
Straetmans (2003), Kuhn (2004), and Kostadinov (2005
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Their approach applies extreme value theory to the loss d
tributions conditional on the common factors. During th
step, the idiosyncratic risks fade away by the strong law
large numbers. Then they focus on the remaining rando
ness, the common factors, which has a fixed size regard
of the number of obligors. This extreme value theoret
approach is useful for coming up with tail approximation
of loss distributions. However in both the Gaussian copu
and t-copula case, no bounds are provided for the appro
imation errors. Hence Monte Carlo simulation constitut
a viable alternative for the estimation of credit risk.

Credit default events of obligors are rare and thus t
probability of large losses in a portfolio of credits is usuall
small. Naive simulation is known to be inefficient for est
mation of small probabilities and importance sampling (IS
is widely used to increase simulation efficiency. Glasse
man and Li (2003) and Glasserman, Kang, Shahabud
(2005b) (henceforth GKSb) presentasymptotically optimal
importance sampling changes of measure for the estimat
of credit risk in the single and multifactor Gaussian copu
models, respectively. However, unlike the Gaussian cop
model, a dependence structure based on thet-copula incurs
a problem in devising importance sampling (IS) chang
of measure. The studentt-distribution is heavy-tailed, and
hence themoment generating function does not exist. He
the usual approaches for devising IS changes of meas
are not applicable here.

Unlike theearlier approximationworkmentionedabov
we avoid a direct approach to this problem. In particula
we exploit theconditional Gaussianproperty of the mul-
tivariate t distribution used in a version of the multifacto
t-copula model. This multivariatet can be represented as
multivariate Gaussian random vector divided by the squa
root of a univariate, scaled, chi-square random variab
(see, e.g., Embrechts, Lidskog, and McNeal 2001). Th
the risk factors are normally distributed conditional on th
chi-square random variable. Thus, given a sample of t
chi-square random variable, we can apply the fast simu
59
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GKSb. The large deviations result for the Gaussian mod
in Glasserman, Kang and Shahabuddin (2005a) (hencefo
GKSa) and concepts related tozero-variance changes of
measure, guide the IS for the chi-square random variable

2 MULTIFACTOR PORTFOLIO CREDIT
RISK MODELS

We consider the distribution of losses from default ove
a fixed horizon. We are interested in the estimation o
the probability that the credit loss of a portfolio exceeds
given threshold. The default of each obligor is triggere
if a latent variable associated with the obligor exceeds
threshold determined from its marginal default probability
The latent variables consist of a linear combination of facto
variables that represent idiosyncratic risk and common ris
to all obligors. We use the following notation:

m = the number of obligors to which the portfolio is
exposed;

Yk = default indicator (= 1 for default, = 0 otherwise)
for the k-th obligor;

pk = marginal probability that thek-th obligor defaults;
ck = loss resulting from default of thek-th obligor;
Lm = c1Y1 + · · · + cmYm = total loss from defaults.

We are interested in the estimation ofP(Lm > x) for a
given thresholdx when the event{Lm > x} is rare. (For
easy reference, we refer to the event{Lm > x} as alarge
lossevent.) The lossck may be assumed to be stochastic
However, in this paper, for simplicity we will assume theck
to be deterministic and refer the reader to GKSa and GKS
for approaches for the stochastic case. For the depende
structure amongYk ’s, we consider the two copula models
mentioned before – the Gaussian copula and thet-copula.

2.1 The Gaussian Copula Model

Under the Gaussian copula, the dependence among
default indicatorsYk is given by the following. Let�
be the cumulative distribution function (cdf) of a standar
normal random variable. We setYk = 1{Xk > xk} where
X1, X2, . . . arecorrelatedstandard normal randomvariables
andxk := �−1(1−pk), so thatP(Yk = 1) = pk. TheXk ’s
are referred to as latent variables. Correlations betwe
these latent variables determine the dependence among
default indicators. In practice, these correlations are ofte
derived from correlations in asset values or equity return

We consider themultifactor Gaussian copula model
with a finite number of types. By types, we mean groups of
homogeneous obligors in their dependence structure, wh
will be characterized formally below: There ared factors
and t types of obligors.{I(m)

1 , . . . , I(m)
t } is a partition of
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the set of obligors{1, . . . , m} into types. Ifk ∈ I(m)
j , then

the k-th obligor is of typej and its latent variable is given
by

Xk = a	
j Z + bj εk (1)

whereaj ∈ R
d with 0< ‖aj‖ < 1, bj =

√
1− a	

j aj , Z is

a d dimensional standard normal random vector, andεk ’s
are i.i.d., standard normal random variables, independe
of theZ. TheZ represents systemic risk andεk represents
idiosyncratic risk of thek-th obligor. aj is the vector
of factor loading coefficients (of the common factors) o
obligors belonging to typej ; bj is the factor loading of the

idiosyncratic risk factor. Thebj =
√
1− a	

j aj ensures that

theXk ’s areN(0,1)’s. Letn(m)
j = |I(m)

j | denote the number
of obligors of typej . Note that givenZ, the probability of
default of obligork is

pk(Z) = �

(
a	
j Z − �−1(1− pk)

bj

)
. (2)

2.2 The t-Copula Model

The t-copula model differs from the Gaussian copula in th
sense that the latent variables have the multivariatet dis-
tribution, instead of the multivariate Gaussian distribution
One version of the multivariatet that possesses the propert
of extremal dependence is obtained by setting

X′
k =

√
r

V
· Xk =

√
r

V
· (a	

j Z + bj εk)

whereXk,Z,aj andbj are defined in exactly the same way
as in (1), andV ∼ χ2

r (chi-square distribution withr degrees
of freedom). SinceXk is N(0,1), it is well known that
X′

k has the univariate standardt distribution withr degrees
of freedom. Then one setsYk = 1{X′

k > xk} where, as
before,xk is the default threshold. LetFr be the cdf of a
t distribution with r degrees of freedom. In this case we
needxk = F−1

r (1− pk) to ensure thatP(Yk = 1) = pk.
Kuhn (2004) and Kostadinov (2005) also consider at-copula
model of this form.

3 LARGE DEVIATIONS AND FAST SIMULATION
OF MULTIFACTOR GAUSSIAN COPULA
MODEL

This section reviews the results and algorithms of GKS
and GKSb. Since the current work is based heavily on the
papers, for the sake of completeness, we present a somew
detailed review. For Gaussian copula model, GKSb propo
an asymptotically optimal IS procedure. Their approac
60
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separates consideration of the credit exposures from t
dependence mechanism and default probabilities. Defi
aggregated credit exposures,

Cj := 1

m

∑
k∈I(m)

j

ck for j = 1, . . . , t and

C := 1

m

m∑
k=1

ck =
t∑

j=1

Cj .

GKSa introduce the concept of aq-minimal index set. These
are sets of obligor types. We say thatJ is a q-minimal
index set, 0< q < 1, if J ⊂ {1, · · · , t} and

max
J ′⊂J ,J ′ �=J

∑
j∈J ′

Cj < qC ≤
∑
j∈J

Cj . (3)

The intuitive meaning ofq-minimal index set is thatJ
is one of the index sets sufficient for the portfolio loss
to exceed the default thresholdx = qmC (note thatmC

is the maximum possible loss), if all obligors belonging
to each index inJ default, but this does not happen for
any index set strictly included inJ . This characterization
is important since, to achieve the optimal IS, it is crucia
to change the probability measure on the common facto
enough to increase the chance thatLm > x. But at the
same time, the new probability measure has to be as clo
to the original measure as possible given that the defa
event has occurred.

For each typej = 1, . . . , t , define

d
(m)
j := α

(m)
1 �−1(1− pj ) + α

(m)
2 bj�

−1(q)

and a halfspace

G
(m)
j :=

{
z ∈ R

d : a	
j z ≥ d

(m)
j

}
(4)

wherepj = max
k∈I(m)

j

pk is the maximum of default proba-

bilities of obligors belonging toj -th type and 0≤ α
(m)
1 < 1,

0 ≤ α
(m)
2 < 1.

DefineMq as the family of allq-minimal index sets
and

G
(m)

J :=
⋂
j∈J

G
(m)
j for J ∈ Mq and

G
(m)

Mq
:=

⋃
J ∈Mq

G
(m)

J .

Note that the condition
∥∥aj∥∥ > 0 in Section 2.1 impliesaj �=

0. If all aj ≥ 0, thenG
(m)

J �= ∅ for any J ⊂ {1, · · · , t}.
However, if some components ofaj are negative, these
18
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sets may be empty. Because we need to define the new
distribution using these minimal index sets, a smallerMq is
desirable for efficient implementation. Hence, we introduc
asufficientsubfamily ofMq which includes enoughminimal
index sets to define an efficient IS distribution. We deno
it by Sq . It satisfies (for allm):

Feasibility: For eachJ ∈ Sq , G
(m)

J �= ∅;
Covering property:

⋃
J ∈Sq

G
(m)

J = G
(m)

Mq
.

Note that the choice ofSq may not be unique, but the
asymptotic efficiency of IS does not depend on this choic
For eachJ ∈ Sq , we defineµ(m)

J as theuniquesolution of
the following linearly constrained quadratic optimization
problem:

µ
(m)

J := argmin
{
‖z‖ : z ∈ G

(m)

J
}

. (5)

The new importance sampling distribution for the com
mon factors consists of a mixture of multivariate norma
distributions withµ

(m)

J , J ∈ Sq , as the mean vectors.
After sampling the common factorsZ, we apply IS

to the idiosyncratic risksεk through changing the condi-
tional marginal default probabilities frompk(Z) (see (2))
to exponentially twisted ones given by

pk,θ (Z) = pk(Z)eθck

1+ pk(Z)
(
eθck − 1

) (6)

for someθ . The θ is chosen as

θm(z) := argmin
θ≥0

{−θx + mψm(θ, z)} (7)

whereψm(θ, z) is the conditional cumulant generating func
tion divided bym,

ψm(θ, z) := 1

m
logE

[
eθLm

∣∣∣Z = z
]

(8)

= 1

m

m∑
k=1

log
(
1+ pk(z)

(
eθck − 1

))
.

The IS procedure for the Gaussian copula model
summarized in Figure 1

To analyze theMIS algorithm one needs to focus on
asymptotic regimes, where large losses rare: in this paper,
focus on thesmall default probabilitiesregime by imposing
the following assumption in addition to those in Sectio
2.1.

Assumption SDP:

1. 0< ck ≤ c < ∞ for k = 1, . . ..
61
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J , J ∈ Sq ,
as discussed above. Call theseµ1, . . . ,µK .
Letλ1, . . . , λK denote the weights to be used
in the mixture distribution. Choose the total
number replications,n, andλi ’s so thatλi · n
is an integer for alli.

Main Loop: Repeat for replicationsr = 1, . . . , λi ·
n, and for i = 1, . . . , K

1 SampleZ from N(µi , I ).

2 Find θm(Z) by solving (7).

3 Compute the twisted conditional default
probabilitiespk,θm(Z)(Z), k = 1, . . . , m by
(6) and generateYk, k = 1, . . . , m.

4 CalculateI (i)
r = 1{Lm > x}

×e−θm(Z)Lm+mψm(θm(Z),Z)

×
(∑K

i=1 λi exp
(
µi

	Z − 1
2µi

	µi

))−1
.

Return the estimate 1
n

∑K
i=1

∑λi ·n
r=1 I

(i)
r

Figure 1: Mixed Importance Sampling (MIS)

2. If the k-th obligor is of typej then its default
probability is given bypk = p

(m)
j := �(−sj

√
m)

wheresj > 0. Hence the conditional default prob-
ability (given the factorsZ) of the same obligor is
given by

pk(Z) = p
(m)
j (Z) = �

(
a	
j Z − sj

√
m

bj

)
.

3. For each typej = 1, . . . , t ,

Cj := lim
m→∞

1

m

∑
k∈I(m)

j

ck < ∞ and

C := lim
m→∞

1

m

m∑
k=1

ck =
t∑

j=1

Cj .

4. The total loss fromdefaults and the portfolio defaul
threshold are

Lm =
m∑

k=1

ckY
(m)
k and x ≡ xm = q

m∑
k=1

ck

whereY (m)
k = 1{

Xk>�−1
(
1−p

(m)
j

)} and 0< q < 1.

Recall that
∑m

k=1 ck is the maximum possible loss
and thus we are interested in the loss exceeding
fraction q of this. We impose a mild restriction
18
t

a

on the possible values ofq; q is not a value in the

finite set,
{
1
C

∑
j∈J Cj : J ⊂ {1, · · · , t}

}
.

We apply the original definition ofq-minimal index set
with theseCj andC. Define a halfspace

Gj =
{
z ∈ R

d : a	
j z ≥ sj } ,

and then for eachJ ∈ Mq , define

GJ :=
⋂
j∈J

Gj .

Defineγ J as theuniquesolution of the followinglinearly
constrainedproblem:

γ J =
{

argmin
{‖z‖ : z ∈ GJ

}
if GJ �= ∅

(∞, . . . ,∞)	 if GJ = ∅ .

Define

γ ∗ = min
{∥∥γ J

∥∥ : J ∈ Mq

}
breaking ties arbitrarily, if necessary. Note thatγ ∗ =
(∞, . . . ,∞)	 and‖γ ∗‖ = ∞ if GJ = ∅ for all J ∈ Mq

by definition. The following large deviations result was
proved in GKSa

Theorem 1 In the multifactor Gaussian copula
model with finite number of types, if assumptionSDP is
satisfied then

lim
m→∞

1

m
logP (Lm > xm) = −1

2

∥∥γ ∗
∥∥2 .

The setsGj andG
(m)
j (defined in (4)) are related, in the

sense that under SDP, in the limit asm → ∞, the halfspace
G

(m)
j /

√
m (a set where each element ofG

(m)
j is divided by√

m) coincides with the halfspaceGj . This implies that

underSDP, γ J = limm→∞ 1√
m

µ
(m)

J .
Denote the second moment of IS estimator as

M2(xm, θm(Z)). If we show that the logarithmic limit of
M2(xm, θm(Z)) is twice of the RHS constant in Theorem 1,
then this is the fastest possible rate for any unbiased estimat
because of Jensen’s inequality. In the rare event simulatio
literature, estimators that achieve this are calledasymptoti-
cally optimal. The asymptotic optimality can be interpreted
as the following: there is a positive constantc (in fact,
c = 1

2‖γ ∗‖2) for whichP(Lm > xm) = exp(−c ·m+o(m))

andM2(xm, θm(Z)) = exp(−2c · m + o(m)). This means
that the second moment of the estimator decreases at twi
the exponential rate of the loss probability itself. For
naive simulation, the second moment decreases at the ra
exp(−c · m + o(m)).
62
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The choices ofα(m)
1 andα

(m)
2 in (4) are important to

achieve a large variance reduction. We limit ourselves to

α
(m)
1 = 1− εm and α

(m)
2 = 1− 1√

logm
(9)

whereεm > 0 is such thatεm → 0 andεm
√
m → ∞ as

m → ∞. We usem−1/3 in our experiments. GKSb proves
thatMIS with (9) is asymptotically optimal underSDP.

Theorem 2 In the multifactor Gaussian copula
model with finite number of types, suppose that assumptio
SDP holds andSq �= ∅. If we applyMIS with (9) then

lim sup
m→∞

1

m
logM2(xm, θm(Z)) ≤ − ∥∥γ ∗

∥∥2 .
Hence (using Theorem 1)

2 lim
m→∞

1

m
logP (Lm > xm) = lim

m→∞
1

m
logM2(xm, θm(Z)),

and we have asymptotic optimality of the two-step IS est
mator obtained byMIS .

For details of the analysis and another limiting paramet
ric regime under whichMIS is also asymptotically optimal,
see GKSb.

3.1 Computational Issue in MIS: Approximate
Importance Sampling on Common Factors

For instances with large number of types or large number o
common factors,MIS may be computationally intractable.
This maybe because either the size ofSq is too big (po-
tentially it may have up to 2t elements), or identifyingSq

takes a long time. GKSb show thatSq can at most have
td distinct elements. Also, they reformulated the problem
of identifying these distinct elements as solving subset sum
problems of negligible computing efforts. However, for
large t andd, this could still be prohibitive. To reduce the
computing burden, one needs to reducet or d. To reduce
the number of typest one may consider clustering ideas as
in Hastie, Tibshirani, and Friedman (2001). GKSb focus
on the reduction of the number of factorsd.

Assume that initially the number of factors isD. Hence
aj ∈ R

D for j = 1, . . . , t . We want to reduce factor di-
mension fromD to d (< D). GKSb suggest the use of
Principal Components Analysis(PCA). By applying PCA
(without mean adjusting) to[a1 · · ·at ]	, they choose the
best subspace ofRD to explain the variations among factor
loading vectors under the restriction of the subspace d
mension beingd. Then, with the projected factor loading
vectorsa′

j ∈ R
d on this subspace (i.e.,a′

j is the projection of

aj onto the subspace), they compute{µ′
J : J ∈ S ′

q} ⊂ R
d

by solving the convex quadratic optimization (5) and subse
18
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sum problems (see GKSb for details of this subset sum
problem) inR

d with t types. Here we use the notationS ′
q

to emphasize that these factor shifting mean vectors come
from the approximation. One can also reduce the number
of types by aggregating two types if their projected factor
loading vectors are close to each other since the marginal
default probabilities are allowed to vary within a type. Us-
ing the orthonormal basis on the subspace constructed by
PCA, one can recover{µJ : J ∈ S ′

q} ⊂ R
D corresponding

to {µ′
J : J ∈ S ′

q}.
GKSb use{µJ : J ∈ S ′

q} to shift the common factors
and to compute the likelihood ratios, but they use theexact
factor loadings,{aj }Tj=1, in the valuation of latent variables
for each obligor. Hence this IS procedure using approximate
mean shifting vectors is unbiased. One expects variance
reductions becaused of the most important factor loadings
are considered.

4 FAST SIMULATION FOR THE
t-COPULA MODEL

We now present the main contribution of this paper, i.e,
an importance sampling algorithm for the t-copula model
(see Section 2.2). In the discussion that follows we use a
SDP type of regime where we parameterizepk = p

(m)
j =

Fr(−sj
√
m) if the kth obligor is of typej (instead of

pk = p
(m)
j = �(−sj

√
m) that we used for the Gaussian

copula model in the SDP regime). Assume thatV = v > 0
is fixed. Then

X′
k =

√
r

v
· (a	

j Z + bj εk) > xk

⇔ a	
j Z + bj εk >

√
v

r
sj

√
m.

That is, givenV = v, we return to the Gaussian copula
model with changed marginal default probability. We can
then useMIS .

We now focus on the change of measure for theV .
One can expressP(Lm > xm) = E (P (Lm > xm|V )). If
P(Lm > xm|V = v) were computable easily for eachv,
then one could estimateP(Lm > xm), by first samplingV ’s
and then computingP(Lm > xm|V ) for each sampledV .
A change of measure on theV that will yield zero variance
in this estimation is given by

P(Lm > xm|V = v)fχ2
r
(v)∫∞

0 P(Lm > xm|V = v)fχ2
r
(v)dv

. (10)

However sinceP(Lm > xm|V = v) is not easily com-
putable, we will use an approximation toP(Lm > xm|V =
v) as its surrogate, and then use that in (10) to come up with
a change of measure on theV . We will use Theorem 1 to
63
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come up with such an approximation, since givenV = v,
we can use results from the Gaussian copula model.

Theorem 1 tells us that

lim
m→∞

1

m
logP(Lm > xm|V = v) = −1

2
‖γ v‖2

whereγ v is the optimal solution to the optimization problem
based on the constraint sets{

z : a	
j z ≥ sj

√
v

r

}
.

Denote the optimal solution to thev = 1 case byγ ∗. Then
γ v = √

vγ ∗ is the optimal solution to theV = v case.
Hence we get

lim
m→∞

1

m
logP(Lm > xm|V = v) = −1

2
‖γ ∗‖2v.

We can re-write this as

P(Lm > xm|V = v) = exp(−cm · v + ov(m))

where

cm = 1

2
· m · ‖γ ∗‖2. (11)

Note thatov(m) depends onv as well asm. This means
that them large enough to discardov(m) may depend on
v. Hence, for a fixedm, the conditional probability is not
proportional to exp(−cm · v) for all values ofv. However,
we still use the approximation,

P(Lm > xm|V = v) ≈ constant× exp(−cm · v) (12)

as a surrogate forP(Lm > xm|V = v) in (10). This gives

e−cm·v · fχ2
r
(v)/Mm (13)

as the expression in (10) where

Mm =
∫ ∞

0
e−cmv · Cvr/2−1e−v/2dv

= E[exp(−cmV )] = (2cm + 1)−r/2 .

We will use this as the candidate IS distribution forV .
A change of measure of the type given by (13) is

referred to in the literature, as an “exponential tilting” or
“exponential twisting” of the original measure by amount
−cm. One can easily show that exponentially tilting a chi-
square distribution withr degrees of freedom by amount
−cm, yields a Gamma(r/2, (cm + 1/2)−1), i.e., a gamma
distribution with shape parameterr/2 and scale parameter
186
(cm + 1/2)−1. Thus in the IS procedure, one will need
to sample from this Gamma distribution. LetW denote a
random variable with this new distribution. Note that one
can sampleW , by first sampling the original chi-squareV ,
and then scaling by(2cm+1)−1, i.e., setW = 1

2cm+1V . We
use the latter approach in our experiments. The associat
likelihood ratio is given by

ecmW · Mm. (14)

As mentioned before, after samplingV from the new
distribution (i.e., samplingW ), one canapplyMIS .Although
this can theoretically be done, this poses a computation
problem. Since the conditional default probabilities given
W change for every sample ofW , we need to solve the
optimization problems for finding the mean-shift vectors
for each sample ofW . To overcome this problem, we
apply stratification to theW . For each stratum, we fix
mean shiftings as the one computed for the midpoint of th
interval onW . Note that since we use thesemean-shifts onl
in the change of measure, this doesnot introduce bias in
our estimates. Stratification also has the effect of reducin
the variance of the likelihood ratio in (14).

The IS for the t-copulamodel is summarized in Figure 2

5 NUMERICAL EXAMPLES

5.1 Exact IS for 30 Random Instances with
the Small Number of Factors

We apply IS to an example based on thet-copula model.
The description of (1) is as follows. 60% of the coefficients
of the factor-loading vectors are non-zero. Each nonze
component is uniformly generated on[−0.2,1]. Then they
are scaled such that‖aj‖, j = 1, . . . , t are distributed uni-
formly on [0.1,0.7]. The potential loss amount of each
obligor is deterministic and chosen from a discrete un
form distribution on{1,2, . . . ,30}. The marginal default
probabilities associated with thek-th obligor is generated
by 0.0255+ 0.0245× sin(16πk/m) such that it lies within
(0.1%,5%). We also randomize the number of obligors
in each type. We generate a uniform random number o
[0.4,1] for each type. We divide this by the sum of the
generated numbers for all types to compute proportions
the number of obligors of that type. We also make sure th
the number of obligors in one type does not exceed 150
of that of any other type.

We test 30 randomly generated instances of 1000 obli
ors belonging to one of 25 types. We set the degree
freedom of thet-distribution to 5. (The effect of varying
degrees of freedom is considered in Section 5.2.) The pro
abilities of the portfolio loss exceeding 30%, 40%, and 50%
of the total credit exposure are estimated. These thres
old values are chosen because they produce portfolio lo
4
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Compute cm: Apply the procedure for Gaussian
copula to findγ ∗. Then computecm by (11).

Construct equiprobable strata: To construct s

equiprobable strata, setqi = i/s for i =
0, . . . , s. Find vi , 1 ≤ i ≤ s, such that
P(V ≤ vi) = qi−1+qi

2 , where V has the
χ2
r distribution. Setwi = vi/(2cm + 1).

(This is equivalent to findingwi such that
P(W ≤ wi) = qi−1+qi

2 whereW isGamma(r/2,
(cm + 1/2)−1)).

Main Loop: Repeat for each stratumi = 1, . . . , s

1 By assuming
√

wi

r
xk as the new threshold

of the Gaussian latent variablea	
j Z+bj εk,

determineSq and compute the mean shift-
ing vectorsµJ for J ∈ Sq .

2 Generateni samples ofV from χ2
r dis-

tribution by the inverse transform method
using ni uniform samples on[qi−1, qi).
Then computeW = V/(2cm+1). (This is
equivalent to generatingni samples ofW
from Gamma(r/2, (cm + 1/2)−1) by the
inverse transform method usingni uniform
samples on[qi−1, qi).)

3 For each sampledW , change the threshold

of Gaussian latent variable as
√

W
r
xk and

applyMIS with mean shifting vectorsµJ
for J ∈ Sq .

4 For each sampledW , multiply the output
fromMIS with the likelihood ratioecmW ·
Mm.

5 Computeα̂i as the sample mean of theni

outputs, and̂σ 2
i as the sample variance of

the ni outputs.

Estimator: Return 1
s

∑s
i=1 α̂i as the estimator and

1
s2

∑s
i=1 σ̂

2
i /ni as the sample variance of the

estimator.

Figure 2: Importance Sampling fort-copula (IS-T)

probabilities within a range of 10−2.5 to 10−5. We used the
parametrization given by (9) forMIS . In this experiment,
we use the exact minimal index sets, that is, we do not u
approximate IS. Figure 3 depicts the pairs – portfolio los
probabilities and estimated variance reduction factors. T
plot shows estimated variance reduction factors of mo
than 100 if the probability of the portfolio loss exceeding
the threshold is less than 10−3; and more than 102.5 if it is
less than 10−4. Table 1 gives some details of the results.
18
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Figure 3: Plot of the Pairs – Estimates of Portfolio Loss
Probabilities and Variance Reduction Factors – of 30 Ran
dom Instances, on Logarithmic Scales. For each Instance
the Triplet (+,·,∗) Represents the Numbers Corresponding
to Portfolio Losses of More Than 30%, 40%, and 50%,
Respectively, of the Total Credit Exposure

5.2 Exact IS for a Random Instance with
Various Degrees of Freedom

To see the effect of degrees of freedom on the varianc
reductions, we fix one random instance (the first one in
Table 1) and applyIS-T for various degrees of freedom
for the t-distribution and various portfolio loss thresholds.
We used 2,3,4,5, and 6 as the different degrees of freedo
and 10%, 20%, 30%, 40%, 50%, and 60% as the differen
portfolio loss thresholds. Hence we tested the instanc
for 30 combinations of parameters. Figure 4 depicts line
plots for each degree of freedom with respect to severa
portfolio loss thresholds. Exceptr = 2 case, we see a
strong linear relationship between the loss probabilities an
variance reductions. Sincer = 2 case corresponds to the
heaviest-tailed risk factors (which results in the largest loss
probabilities among the tested degrees of freedom), th
variance reductions seems not sufficiently large at the sma
portfolio loss thresholds. From this experiment, we see
that the variance reductions are not affected much by th
degrees of freedom since the variance reductions at portfoli
loss thresholds corresponding to the same portfolio los
probability are quite similar.

5.3 Approximate IS for Structured Factor
Models with Sparse Factor Loadings

This example is taken from Glasserman and Li (2003), bu
adapted to the t-copula case. There are 1000 obligors wit
probabilities of default given by

pk = 0.01 · (1+ sin(16πk/m)), k = 1, . . . ,1000,
65
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Table 1: Estimated Probabilities and Variance Reduction Factors at Three Loss
Levels in the 25-type Model. The Degree of Freedom ofχ2 is 5. We Just
Present 5 of the 30 Instances

Est. Prob. Est. V.R.
Instance No. q=30% q=40% q=50% q=30% q=40% q=50%

1 0.0017 0.00031 3.5e-005 70 141 619
2 0.0014 0.00017 1.4e-005 76 241 724
3 0.0015 0.0002 1.7e-005 137 468 2936
4 0.0026 0.00053 8.6e-005 56 138 418
5 0.0013 0.00016 1.1e-005 133 525 2717

Table 2: The Ratio of Explained Squared Variations of Factor Loading Coefficients
(αR, αF , αG)

(0.8,0.4,0.4) (0.5,0.4,0.4) (0.2,0.4,0.4) (0.25, 0.15,0.05)
Single Dominating Factor inR21 79% 60% 25% 74%
Two Dominating Factors inR22 80% 64% 31% 77%
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Figure 4: Plot of the Pairs – the Large Loss Probability of
Portfolio and Estimate of Variance Reduction Factor – of
Experiments in Logarithmic Scales

Table 3: Variance Reduction Factors in 21-
factorModel, the Factor LoadingCoefficients
are (0.8, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0268 18
30% 0.0081 49
50% 0.0029 54
70% 0.0008 144

Table 4: Variance Reduction Factors in 21-
factorModel, the Factor LoadingCoefficients
are (0.5, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0227 33
30% 0.0025 142
50% 0.0003 992
60% 0.0001 3088
1866
Table 5: Variance Reduction Factors in 21-
factorModel, the Factor LoadingCoefficients
are (0.2, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0160 12
20% 0.0027 52
30% 0.0005 275
40% 0.00008 1863

Table 6: Variance Reduction Factors in 21-
factor Model, he Factor Loading Coefficients
are (0.25, 0.15, 0.05)

Loss % P(L > x) by IS Est. V.R.
10% 0.0152 10
20% 0.0024 44
30% 0.0004 294
40% 0.00006 3281

Table 7: Variance Reduction Factors in 22-
factorModel, the Factor LoadingCoefficients
are (0.8, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0276 13
30% 0.0059 14
50% 0.0013 45
70% 0.0001 470

Table 8: Variance Reduction Factors in 22-
factorModel, the Factor LoadingCoefficients
are (0.5, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0210 22
20% 0.0052 29
30% 0.0015 157
40% 0.0005 225
50% 0.0001 760
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Table 9: Variance Reduction Factors in 22-
factorModel, the Factor LoadingCoefficients
are (0.2, 0.4, 0.4)

Loss % P(L > x) by IS Est. V.R.
10% 0.0163 12
20% 0.0024 39
30% 0.0004 321
40% 0.00006 2850

Table 10: Variance Reduction Factors in 22-
factorModel, the Factor LoadingCoefficients
are (0.25, 0.15, 0.05)

Loss % P(L > x) by IS Est. V.R.
10% 0.0183 0.1
20% 0.0050 0.06
30% 0.0003 78
40% 0.00003 2867

and loss given default given by

ck = 1+ 99

999
(k − 1), k = 1, . . . ,1000.

There are 100 types and 21 factors. The factor loadin
matrix A, the j th row of which isaj , is given by

A =



F G

R
.. .

...

F G


 , G =




cG
. . .

cG


 .

R is a column vector of 100 entries, all equal to a constantcR;
F is a column vector of 10 entries, all equal to a constantcF ;
G is a 10× 10 diagonal matrix with the diagonal elements
set to a constantcG. The 21-factor model thus has a single
dominant market factor. Each set of 10 obligors (1-10, 11
20, · · · ) are of the same type. We consider different facto
loadings:(cR, cF , cG) = (0.8,0.4,0.4) is associated with a
large market factor case,(cR, cF , cG) = (0.5,0.4,0.4) with
a medium market factor, and(cR, cF , cG) = (0.2,0.4,0.4)
with a small market factor. We also consider(cR, cF , cG) =
(0.25,0.15,0.05), suggested by Morokoff (2004).

In addition, we also consider a 22-factor model, with
two dominant market factors. The 22-factor model differs
from the 21-factor model only inR. R is now a 100×
2 matrix with the first fifty entries of the first column and
the last fifty entries of the second column equal tocR; all
other entries ofR are zero.

To apply approximate IS, we compute singular value
decompositions ofA or more specifically, eigenvectors of
A	A. We measured the effectiveness of these approxim
tions by a sum of squared variations. Table 2 summarize
how much portion of squared variations of factor loading
coefficients is explained by these approximations.
186
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Approximate IS works well for both models. Tables
3 – 6 summarize the variance reduction estimates for the
21-factor model, and Tables 7 – 10 for the22-factor model.
We set the degrees of freedom of theχ2 (and thus the t
distribution) to 5 in these experiments.
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