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ABSTRACT Their approach applies extreme value theory to the loss dis-
tributions conditional on the common factors. During this
We present an importance sampling procedure for the esti- step, the idiosyncratic risks fade away by the strong law of

mation of multifactor portfolio credit risk for the-copula large numbers. Then they focus on the remaining random-
model, i.e, the case where the risk factors have the multivari- ness, the common factors, which has a fixed size regardless
ater distribution. We use a version of the multivariatihat of the number of obligors. This extreme value theoretic

can be expressed as a ratio of a multivariate normal and a approach is useful for coming up with tail approximations
scaled chi-square random variable. The procedure consistsof loss distributions. However in both the Gaussian copula
of two steps. First, using the large deviations result for andz-copula case, no bounds are provided for the approx-
the Gaussian model in Glasserman, Kang, and Shahabud-imation errors. Hence Monte Carlo simulation constitutes
din (2005a), we devise and apply a change of measure to a viable alternative for the estimation of credit risk.
the chi-square random variable. Then, conditional on the Credit default events of obligors are rare and thus the
chi-square random variable, we apply the importance sam- probability of large losses in a portfolio of credits is usually
pling procedure developed for the Gaussian copula model small. Naive simulation is known to be inefficient for esti-
in Glasserman, Kang, Shahabuddin (2005b). We support mation of small probabilities and importance sampling (IS)
our importance sampling procedure by numerical examples. is widely used to increase simulation efficiency. Glasser-
man and Li (2003) and Glasserman, Kang, Shahabuddin
1 INTRODUCTION (2005b) (henceforth GKSb) presesgymptotically optimal
importance sampling changes of measure for the estimation
A number of recent papers address better empirical fits of of credit risk in the single and multifactor Gaussian copula
observed data by-copula. See, for example, Mashal and models, respectively. However, unlike the Gaussian copula
Zeevi (2002) and Breymann, Dias, and Embrechts (2003). model, a dependence structure based on-ttepula incurs
One reason for this is the asymptotic dependence property of a problem in devising importance sampling (IS) changes
t-copula (see Embrechts, Lidskog, and McNeal 2001) which of measure. The studenddistribution is heavy-tailed, and
captures the extreme co-movements of financial assets. Thehence the moment generating function does not exist. Hence
multifactorz-copula model of credit risk attempts to capture the usual approaches for devising IS changes of measure
thisinthe creditrisk setting. Inthis modelthe latent variables are not applicable here.
corresponding to obligors (e.g., normalized asset values of Unlike the earlier approximation work mentioned above,
obligors) or equivalently, the risk factors, are assumed to we avoid a direct approach to this problem. In particular,
have the multivariate distribution. This is in contrast to  we exploit theconditional Gaussiarproperty of the mul-
the Gaussian copula model where these are assumed to havéivariate ¢ distribution used in a version of the multifactor
the multivariate Gaussian distribution. t-copula model. This multivariatecan be represented as a
Currently, there are no closed form analytical results multivariate Gaussian random vector divided by the square
for both the Gaussian copula anadtopula models. Lucas, root of a univariate, scaled, chi-square random variable
Klaassen, Spreij, and Straetmans (2001) present approxima-(see, e.g., Embrechts, Lidskog, and McNeal 2001). Then
tions for the Gaussian copula case. Approximations for the the risk factors are normally distributed conditional on the
t-copula case are presented in Lucas, Klaassen, Spreij, andchi-square random variable. Thus, given a sample of the
Straetmans (2003), Kuhn (2004), and Kostadinov (2005). chi-square random variable, we can apply the fast simula-
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tion algorithms developed for the Gaussian copula model in the set of obligord1, ..., m} into types. Ifk € I](.’”), then
GKSb. The large deviations result for the Gaussian model the k-th obligor is of typej and its latent variable is given

in Glasserman, Kang and Shahabuddin (2005a) (henceforth by

GKSa) and concepts related mero-variance changes of
measure guide the IS for the chi-square random variable.
2 MULTIFACTOR PORTFOLIO CREDIT
RISK MODELS

We consider the distribution of losses from default over

a fixed horizon. We are interested in the estimation of
the probability that the credit loss of a portfolio exceeds a
given threshold. The default of each obligor is triggered

if a latent variable associated with the obligor exceeds a
threshold determined from its marginal default probability.

The latent variables consist of a linear combination of factor
variables that represent idiosyncratic risk and common risks
to all obligors. We use the following notation:

m = the number of obligors to which the portfolio is
exposed;

Y; = default indicator (= 1 for default, = O otherwise)
for the k-th obligor;

pr = marginal probability that the-th obligor defaults;

cr = loss resulting from default of thee-th obligor;

L, =c1Y1+ -+ c,Y, = total loss from defaults.

We are interested in the estimation BfL,, > x) for a
given thresholdv when the even{L,, > x} is rare. (For
easy reference, we refer to the evént, > x} as alarge
lossevent.) The losg; may be assumed to be stochastic.
However, in this paper, for simplicity we will assume the

to be deterministic and refer the reader to GKSa and GKSb

Xy =a;Z+bj & (1)
wherea; € R? with 0 < |la;ll < 1,b; = \/1—-aja;, Z'is

a d dimensional standard normal random vector, apd

are i.i.d., standard normal random variables, independent
of theZ. TheZ represents systemic risk ang represents
idiosyncratic risk of thek-th obligor. a; is the vector

of factor loading coefficients (of the common factors) of
obligors belonging to typg; b; is the factor loading of the

idiosyncratic risk factor. Thé; = /1 — ajTaj ensures that

theX;’s areN (0, 1)’s. Letn;m) — |7\ | denote the number
of obligors of typej. Note that giverz, the probability of
default of obligork is

Thet-copula model differs from the Gaussian copula in the
sense that the latent variables have the multivariadés-
tribution, instead of the multivariate Gaussian distribution.
One version of the multivariatethat possesses the property
of extremal dependence is obtained by setting

- L — /L @r 4
Xp =y Xk = V‘(ajz+b]8k)

a]TZ — o 11— pp
bj

pe(Z) =@ ( 2

2.2 Thet-Copula Model

for approaches for the stochastic case. For the dependence

structure amond’;’s, we consider the two copula models
mentioned before — the Gaussian copula and:tbepula.

2.1 The Gaussian Copula Model

whereXy, Z, a; andb; are defined in exactly the same way
asin (1), and/ ~ sz (chi-square distribution with degrees
of freedom). SinceX; is N(0, 1), it is well known that
X, has the univariate standardlistribution withr degrees
of freedom. Then one setg = 1{X; > x;} where, as

Under the Gaussian copula, the dependence among thepefore,x; is the default threshold. Lek, be the cdf of a

default indicatorsY; is given by the following. Let®

be the cumulative distribution function (cdf) of a standard
normal random variable. We sé&}, = 1{X; > x;} where

X1, X, ... arecorrelatedstandard normal random variables
andx; := ®~1(1— py), so thatP(¥; = 1) = pr. The X}’s

are referred to as latent variables. Correlations between

these latent variables determine the dependence among the

default indicators. In practice, these correlations are often
derived from correlations in asset values or equity returns.

We consider thenultifactor Gaussian copula model
with a finite number of typeBy types, we mean groups of
homogeneous obligors in their dependence structure, which
will be characterized formally below: There adefactors

and: types of oingors.{Ii’"), ..., ™y is a partition of
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¢t distribution with » degrees of freedom. In this case we
needx; = F1(1 — py) to ensure thaP (Y, = 1) = p.
Kuhn (2004) and Kostadinov (2005) also consideicapula
model of this form.

3 LARGE DEVIATIONS AND FAST SIMULATION
OF MULTIFACTOR GAUSSIAN COPULA
MODEL

This section reviews the results and algorithms of GKSa

and GKSb. Since the current work is based heavily on these
papers, for the sake of completeness, we present a somewhat
detailed review. For Gaussian copula model, GKSb propose
an asymptotically optimal IS procedure. Their approach



Kang and Shahabuddin

separates consideration of the credit exposures from the sets may be empty. Because we need to define the new IS
dependence mechanism and default probabilities. Define distribution using these minimal index sets, a smali¢y is

aggregated credit exposures,

1
C; —~ ch for j=1,...,t and

kEI(~m)
J

1 m t
—ZC]( ZZC] .
mk:l j=1

GKSa introduce the concept ofjaminimal index setThese
are sets of obligor types. We say thdtis a g-minimal
index set, 0< ¢ < 1,if F c{1,---,t} and

max Cj <qC < C;. 3
j/CJ,j/#JZ J q _Z J ()

jed’ jed

The intuitive meaning ofy-minimal index set is that7

is one of the index sets sufficient for the portfolio loss
to exceed the default threshald= gmC (note thatmC

is the maximum possible loss), if all obligors belonging
to each index in7 default, but this does not happen for
any index set strictly included ig7. This characterization

is important since, to achieve the optimal IS, it is crucial
to change the probability measure on the common factors
enough to increase the chance tligf > x. But at the

same time, the new probability measure has to be as close

to the original measure as possible given that the default
event has occurred.
For each typej = 1, ..., ¢, define

dm

; a1 -P)) + a5 b0 (g)

and a halfspace

GE'") = {z eR:ajz> d](.m)} (4)

wherep; = max _,m pk is the maximum of default proba-
J

bilities of obligors belonging tg-th type and 0< ai’”) <1,
0< ag") < 1.

Define M, as the family of allg-minimal index sets
and

GY = (G forJeM, and
jied
(m) _ (m)
6w = U 6%
JeM,

Note that the conditiofja; | > 0in Section 2.1impliea; #

0. Ifall @; >0, thent;") #@forany 7 C {1, ---,t}.
However, if some components @; are negative, these
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desirable for efficient implementation. Hence, we introduce
asufficientsubfamily ofAM,, which includes enough minimal
index sets to define an efficient IS distribution. We denote
it by S,. It satisfies (for allmn):

Feasibility:
Covering property:

For eachJ € S, Gf}” # 0,
(m) _ ~(m)
UJeSq Gy = G/\/l,,'

Note that the choice of, may not be unique, but the
asymptotic efficiency of IS does not depend on this choice.
For each7 € S;, we defineuf;’) as theuniquesolution of
the following linearly constrained quadratic optimization
problem:

Mf}") = argmin{||z|| A Gf;”)} .

©)
The new importance sampling distribution for the com-
mon factors consists of a mixture of multivariate normal
distributions withug”), J € 8, as the mean vectors.

After sampling the common factora, we apply IS
to the idiosyncratic riskg; through changing the condi-
tional marginal default probabilities fromp(Z) (see (2))
to exponentially twisted ones given by

Pr(Z)edcx

Z) = 6
Pro(Z) 15 (@) (@ 1) (6)

for somed. Theo is chosen as
0 (2) := argmin{—0x + my,,, (0, 2)} @)

6>0

whereyr,,, (0, 2) is the conditional cumulant generating func-
tion divided bym,

Um(0,2) = 8

1
=~ logE [e”m
m

=

1« :
~ > log (1+ pi(2) (¢"* — 1))
k=1

The IS procedure for the Gaussian copula model is
summarized in Figure 1

To analyze theMIS algorithm one needs to focus on
asymptotic regimes, where large losses rare: in this paper, we
focus on thesmall default probabilitiesegime by imposing
the following assumption in addition to those in Section
2.1.

Assumption SDP:

1. O<cg <c<oofork=1,....
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Preliminaries: ~ DetermineS, and ;L(j'”), J €Sy,
as discussed above. Call thegs, ..., ug.
Letrs, ..., Ax denote the weights to be used
in the mixture distribution. Choose the total
number replicationsg, and;’s so thati; - n
is an integer for alk.

Main Loop: Repeat for replications =1, ..., 2; -
n,and fori =1,..., K

1 SampleZ from N(g;, ).
Find 6,,(Z) by solving (7).

Compute the twisted conditional defau
probabilitiespy g, z)(Z), k = 1, ..., m by
(6) and generat&;, k =1, ..., m.

Calculatelr(i) =1L, > x}
h%e efgm @)L +miprim (Om(2),2)

X (Zszl Ai exp(uiTZ - %Mﬁh‘))

1K A i
n Zi=1 Zr:?. I”(l)

t

-1

Return the estimate

Figure 1: Mixed Importance Sampling (MIS)
2. If the k-th obligor is of type; then its default
probability is given byp; = pﬁ.’") = O (—sj/m)
wheres; > 0. Hence the conditional default prob-
ability (given the factor&) of the same obligor is
given by

alz —sjym
@) =p" @)= (%) .
J

For eachtypg =1,...,1¢,

. 1
lim = Z cx <oo and

m—oo m
keZ!™
J

1 m t
lim — k= C;.
Jim =% =) C
k=1 j=1

oF

The total loss from defaults and the portfolio default
threshold are

m

Lw=Y ¥
k=1

m
and x = x,, ZQZCk
k=1

whereYk(’”) =1 and 0< g < 1.

]
Recall that) ;" ¢ is the maximum possible loss
and thus we are interested in the loss exceeding a
fraction g of this. We impose a mild restriction
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on the possible values qf, ¢ is not a value in the
finite set,{%zjejcj s JCfL - ,t}}.

We apply the original definition aj-minimal index set
with theseC; andC. Define a halfspace

G;= {zeRd cajz>s)),
and then for eaclyy € M,, define

Gy:=()Gj
jeg

Definey ; as theuniquesolution of the followinglinearly
constrainedproblem:

-]

Define

argmin{|iz| : ze Gz}
(00, ...,00)T

if Gy #0
it Gyr=0.

yo=min{|ys|:J e My}

breaking ties arbitrarily, if necessary. Note that =
(00, ...,00) T and|ly,|l = if Gz =¢ forall J e M,
by definition. The following large deviations result was
proved in GKSa

Theorem 1  In the multifactor Gaussian copula
model with finite number of types, if assumpti®bP is
satisfied then

1 1
lim_ —~10gP (L > ) = 3 |v.|” .

m—o00 m

The sets5; andGE’") (defined in (4)) are related, in the
sense that under SDP, in the limitias— oo, the halfspace
G}’”)/ﬁ (a set where each elementﬁﬁm) is divided by
/m) coincides with the halfspac&;. This implies that

underSDP, p 7 = iMoo %ﬁﬂ?)-

Denote the second moment of IS estimator as
Mo (x,, 6,,(2)). If we show that the logarithmic limit of
Mo (x,,, 0,,(2)) is twice of the RHS constant in Theorem 1,
thenthis is the fastest possible rate for any unbiased estimator
because of Jensen’s inequality. In the rare event simulation
literature, estimators that achieve this are calilegmptoti-
cally optimal The asymptotic optimality can be interpreted
as the following: there is a positive constant(in fact,
¢ = 3||y.II?) for whichP(L,, > x,,) = exp(—c-m+o(m))
and Mz (x,,, 0, (Z)) = exp(—2¢ - m + o(m)). This means
that the second moment of the estimator decreases at twice
the exponential rate of the loss probability itself. For
naive simulation, the second moment decreases at the rate

exp(—c - m + o(m)).
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The choices ob\" anday” in (4) are important to
achieve a large variance reduction. We limit ourselves to

1

(m) (m)

o =1—¢€, and a, =1- (9)
Jiogm

wheree,, > 0 is such thak, — 0 ande,/m — oo as

m — oo. We usem~1/3 in our experiments. GKSb proves

that MIS with (9) is asymptotically optimal unde8DP.
Theorem 2 In the multifactor Gaussian copula

model with finite number of types, suppose that assumption

SDP holds andS, # ¢. If we applyMIS with (9) then

lim sup—

m—oo M

L log Mattn. (@) < — 7.7
Hence (using Theorem 1)

2 lim — IogP (L > xp) = I|m — Iog Mo (xp, 0 (2)),
m—oo m
and we have asymptotic optimality of the two-step IS esti-
mator obtained byMIS.
For details of the analysis and another limiting paramet-
ric regime under whiciMIS is also asymptotically optimal,
see GKSb.

3.1 Computational Issue in MIS: Approximate
Importance Sampling on Common Factors

For instances with large number of types or large number of
common factorsMIS may be computationally intractable.
This maybe because either the sizeSyfis too big (po-
tentially it may have up to‘2elements), or identifyings,
takes a long time. GKSb show tha&}, can at most have
14 distinct elements. Also, they reformulated the problem
of identifying these distinct elements as solving subset sum
problems of negligible computing efforts. However, for
larget andd, this could still be prohibitive. To reduce the
computing burden, one needs to reducer d. To reduce
the number of types one may consider clustering ideas as
in Hastie, Tibshirani, and Friedman (2001). GKSb focus
on the reduction of the number of factafs

Assume that initially the number of factorsiis Hence
a; € RP for j =1,...,t. We want to reduce factor di-
mension fromD to d (< D). GKSb suggest the use of
Principal Components Analysi®®CA). By applying PCA
(without mean adjusting) tda; - --a,]", they choose the
best subspace &P to explain the variations among factor
loading vectors under the restriction of the subspace di-
mension beingi. Then, with the projected factor loading
vectorsa;. € R4 on this subspace (i.ea; is the projection of
a; onto the subspace), they compl{msf‘7 1 J € S;I} Cc R
by solving the convex quadratic optimization (5) and subset
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sum problems (see GKSb for details of this subset sum
problem) inR¢ with  types. Here we use the notatidlg

to emphasize that these factor shifting mean vectors come
from the approximation. One can also reduce the number
of types by aggregating two types if their projected factor
loading vectors are close to each other since the marginal
default probabilities are allowed to vary within a type. Us-
ing the orthonormal basis on the subspace constructed by
PCA, one can recovép 7 : J € S(;} c RP corresponding

to {[L:7 1 J € S(;}'

GKSb use{u s : J € S[]} to shift the common factors
and to compute the likelihood ratios, but they usedkact
factor Ioadlngs{a]}]_l, in the valuation of latent variables
for each obligor. Hence this IS procedure using approximate
mean shifting vectors is unbiased. One expects variance
reductions becausé of the most important factor loadings
are considered.

4 FAST SIMULATION FOR THE
t-COPULA MODEL

We now present the main contribution of this paper, i.e,
an importance sampling algorithm for the t-copula model
(see Section 2.2). In the discussion that follows we use a
SDP type of regime where we parameterjze= p(’")
F,(—sj/m) if the kth obligor is of type j (mstead of
Dk = p(’") = ®(—s;4/m) that we used for the Gaussian
copula model in the SDP regime). Assume that v > 0

is fixed. Then

/o r T i
X, = ;'(ajz+b]8k)>xk

& ajTZ +bjer > ;S,’«/ﬁ

That is, givenV = v, we return to the Gaussian copula
model with changed marginal default probability. We can
then useMIS.

We now focus on the change of measure for the
One can expres®(L,, > x,) = E (P(Ly, > x,|V)). If
P(L,, > x,|V = v) were computable easily for eaah
then one could estimate(L,, > x,,), by first samplingV'’s
and then computind®(L,,, > x,,|V) for each sampled'.

A change of measure on théthat will yield zero variance
in this estimation is given by

P(Ln > xm|V = v)fxrz(v)
Jo P > x|V = v) fr2(v)dv’

(10)

However sinceP(L,, > x,|V = v) is not easily com-
putable, we will use an approximation R(L,, > x,,|V =

v) as its surrogate, and then use that in (10) to come up with
a change of measure on tfe We will use Theorem 1 to
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come up with such an approximation, since givén= v,
we can use results from the Gaussian copula model.
Theorem 1 tells us that

1 1.2
lim —logP(Ly > x|V =v) = —=|p, |l
m—00 m 2

wherey , is the optimal solution to the optimization problem
based on the constraint sets

AT v
{z.ajzzs, /;}.

Denote the optimal solution to the= 1 case byy,. Then
Y, = Jvy, is the optimal solution to the&/ = v case.
Hence we get

. 1 1 5
lim —1ogP(Ly > xu|V =v) = —Z|ly.l“v.
m—o0 m 2
We can re-write this as
P(Ly > x|V = v) = eXp(—cy - v + 0y(m))

where

5 (11)

=75 m- ||yl
Note thato,(m) depends orv as well asm. This means
that them large enough to discarad,(:m) may depend on
v. Hence, for a fixedn, the conditional probability is not
proportional to exp—c,, - v) for all values ofv. However,

we still use the approximation,

P(L,; > x|V = v) = constantx exp(—cy,, - v)  (12)

as a surrogate fdP(L,, > x,,|V = v) in (10). This gives

o=V erz(v)/Mm (13)

as the expression in (10) where

00
Mm / e m?. CUr/Zileiv/sz
0

Elexp(—cm V)] = (2cm + 1)77/2.

We will use this as the candidate IS distribution fior

A change of measure of the type given by (13) is
referred to in the literature, as an “exponential tilting” or
“exponential twisting” of the original measure by amount
—cm. One can easily show that exponentially tilting a chi-
square distribution with- degrees of freedom by amount
—cp, yields a Gamma(2, (c,, + 1/2)71), i.e., a gamma
distribution with shape parametef2 and scale parameter
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(em + 1/2)‘1. Thus in the IS procedure, one will need
to sample from this Gamma distribution. LBt denote a
random variable with this new distribution. Note that one
can samplé¥, by first sampling the original chi-squaké,
and then scaling by2c,, +1)71, i.e., setW = 26—1+1V We
use the latter approach in our experiments. The associated
likelihood ratio is given by
eV M, (14)

As mentioned before, after samplifg from the new
distribution (i.e., samplingV), one can appliIS . Although
this can theoretically be done, this poses a computational
problem. Since the conditional default probabilities given
W change for every sample d¥, we need to solve the
optimization problems for finding the mean-shift vectors
for each sample ofW. To overcome this problem, we
apply stratification to theW. For each stratum, we fix
mean shiftings as the one computed for the midpoint of the
interval onW. Note that since we use these mean-shifts only
in the change of measure, this dagst introduce bias in
our estimates. Stratification also has the effect of reducing
the variance of the likelihood ratio in (14).

The IS for the t-copula model is summarized in Figure 2.

5 NUMERICAL EXAMPLES

5.1 Exact IS for 30 Random Instances with
the Small Number of Factors

We apply IS to an example based on theopula model.
The description of (1) is as follows. 60% of the coefficients
of the factor-loading vectors are non-zero. Each nonzero
component is uniformly generated ¢r0.2, 1]. Then they
are scaled such thgs; ||, j =1,...,r are distributed uni-
formly on [0.1,0.7]. The potential loss amount of each
obligor is deterministic and chosen from a discrete uni-
form distribution on{1, 2, ...,30}. The marginal default
probabilities associated with theth obligor is generated
by 0.0255+ 0.0245x sin(16mk/m) such that it lies within
(0.1%, 5%). We also randomize the number of obligors
in each type. We generate a uniform random number on
[0.4, 1] for each type. We divide this by the sum of the
generated numbers for all types to compute proportions of
the number of obligors of that type. We also make sure that
the number of obligors in one type does not exceed 150%
of that of any other type.

We test 30 randomly generated instances of 1000 oblig-
ors belonging to one of 25 types. We set the degree of
freedom of thes-distribution to 5. (The effect of varying
degrees of freedom is considered in Section 5.2.) The prob-
abilities of the portfolio loss exceeding 30%, 40%, and 50%
of the total credit exposure are estimated. These thresh-
old values are chosen because they produce portfolio loss
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Compute ¢;,: Apply the procedure for Gaussian
copula to findy,. Then compute;,, by (11).

Construct equiprobable strata: ~ To construct s
equiprobable strata, sef; i/s for i =
0,...,s. Findv;,, 1 < i < s, such that
P(V < v) = %L where V has the
x2 distribution. Setw; = v;/(2c, + 1).
(This is equivalent to findingw; such that
P(W < w;) = 4=3% whereW is Gamma(//2,
(cm + 1/2)_1))-

Main Loop: Repeat for each stratuin=1,...,s
1 By assuming/%xk as the new threshold

of the Gaussian latent varialde Z +b e,
determineS, and compute the mean shif
ing vectorsp 7 for 7 € S,.

Generaten; samples ofV from sz dis-
tribution by the inverse transform methad
using n; uniform samples or{g;_1, ¢;).
Then computdV = V/(2¢,, +1). (Thisis
equivalent to generating; samples ofW
from Gammaf/2, (c,, + 1/2)~1) by the
inverse transform method using uniform
samples orig;-1, gi).)

For each sample®, change the threshold

of Gaussian latent variable @xk and
applyMIS with mean shifting vectorg ;
for 7 e S,.

For each sample®, multiply the output
from MIS with the likelihood ratice" .
M,,.

Computey; as the sample mean of the
outputs, an(ﬁi2 as the sample variance ¢
the n; outputs.

=

Estimator: Return% Y i_1@; as the estimator and
%Z Yoig 5,-2/'11' as the sample variance of the
estimator.

Figure 2: Importance Sampling fercopula (S-T)

probabilities within a range of 1&° to 10°°. We used the
parametrization given by (9) favlIS. In this experiment,
we use the exact minimal index sets, that is, we do not use
approximate 1S. Figure 3 depicts the pairs — portfolio loss

4

T
+ 30% Loss
+ 40% Loss
* 50% Loss

350 *

IoglO(V.R. Factor)

4
+ o
o
+y
Iy ﬁ%{:
s
T
4
+ 4

-25

15
-55

-5 -4.5 -4 -3.5 -3

I°g1oP(Lm > X)
Figure 3: Plot of the Pairs — Estimates of Portfolio Loss
Probabilities and Variance Reduction Factors — of 30 Ran-
dom Instances, on Logarithmic Scales. For each Instance,
the Triplet (+;,%x) Represents the Numbers Corresponding
to Portfolio Losses of More Than 30%, 40%, and 50%,
Respectively, of the Total Credit Exposure

5.2 Exact IS for a Random Instance with
Various Degrees of Freedom

To see the effect of degrees of freedom on the variance
reductions, we fix one random instance (the first one in
Table 1) and applS-T for various degrees of freedom
for the ¢-distribution and various portfolio loss thresholds.
We used 2,3,4,5, and 6 as the different degrees of freedom
and 10%, 20%, 30%, 40%, 50%, and 60% as the different
portfolio loss thresholds. Hence we tested the instance
for 30 combinations of parameters. Figure 4 depicts line
plots for each degree of freedom with respect to several
portfolio loss thresholds. Except = 2 case, we see a
strong linear relationship between the loss probabilities and
variance reductions. Sinoce= 2 case corresponds to the
heaviest-tailed risk factors (which results in the largest loss
probabilities among the tested degrees of freedom), the
variance reductions seems not sufficiently large at the small
portfolio loss thresholds. From this experiment, we see
that the variance reductions are not affected much by the
degrees of freedom since the variance reductions at portfolio
loss thresholds corresponding to the same portfolio loss
probability are quite similar.

5.3 Approximate IS for Structured Factor
Models with Sparse Factor Loadings

probabilities and estimated variance reduction factors. The T1his example is taken from Glasserman and Li (2003), but

plot shows estimated variance reduction factors of more
than 100 if the probability of the portfolio loss exceeding
the threshold is less than 18 and more than B if it is

less than 10%. Table 1 gives some details of the results.
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adapted to the t-copula case. There are 1000 obligors with
probabilities of default given by

Di 0.01- (1 + sin(16zk/m)), k=1,...,100Q



Kang and Shahabuddin

Table 1: Estimated Probabilities and Variance Reduction Factors at Three Loss
Levels in the 25-type Model. The Degree of Freedomydfis 5. We Just

Present 5 of the 30 Instances
Est. Prob. Est. V.R.
Instance No.| ¢=30% | ¢=40% | ¢=50% | ¢q=30% | ¢=40% | ¢=50%
1 0.0017 | 0.00031| 3.5e-005 70 141 619
2 0.0014 | 0.00017| 1.4e-005 76 241 724
3 0.0015| 0.0002 | 1.7e-005| 137 468 2936
4 0.0026 | 0.00053| 8.6e-005 56 138 418
5 0.0013 | 0.00016| 1.1e-005| 133 525 2717

Table 2: The Ratio of Explained Squared Variations of Factor Loading Coefficients

(ag, oF, ag)
(0.8,0.4,0.4)] (0.5,0.4,0.4)[ (0.2,0.4,0.4)[ (0.25, 0.15,0.05
Single Dominating Factor ifR?: 79% 60% 25% 74%
Two Dominating Factors ifR%? 80% 64% 31% 77%
4 ‘ ‘ ‘ ‘ ‘ Table 5: Variance Reduction Factors in 21-

factor Model, the Factor Loading Coefficients
are (0.2, 0.4, 0.4)

3.51

fhis]

Loss % | P(L > x) by IS | Est. V.R.
g 3 10% 0.0160 12
i 20% 0.0027 52
29 30% 0.0005 275
= 40% 0.00008 1863
o 2r

Table 6: Variance Reduction Factors in 21-
factor Model, he Factor Loading Coefficients
are (0.25, 0.15, 0.05)

15F

Y s s i = =2 = Loss % | P(L > x) by IS | Est. V.R.
109,0P (L, > %) 10% 0.0152 10
20% 0.0024 44
Figure 4: Plot of the Pairs — the Large Loss Probability of 30% 0.0004 294
Portfolio and Estimate of Variance Reduction Factor — of 40% 0.00006 3281

Experiments in Logarithmic Scales
Table 7: Variance Reduction Factors in 22-

factor Model, the Factor Loading Coefficients
are (0.8, 0.4, 0.4)

Table 3: Variance Reduction Factors in 21-
factor Model, the Factor Loading Coefficients

are (0.8, 0.4, 0.4) Loss % | P(L > x) by IS | Est. V.R.
Loss % | P(L > x) by IS | Est. V.R. 10% 0.0276 13
10% 0.0268 18 30% 0.0059 14
30% 0.0081 49 50% 0.0013 45
50% 0.0029 54 70% 0.0001 470
70% 0.0008 144

Table 8: Variance Reduction Factors in 22-
factor Model, the Factor Loading Coefficients
are (0.5, 0.4, 0.4)

Table 4: Variance Reduction Factors in 21-
factor Model, the Factor Loading Coefficients

are (0.5, 0.4, 0.4) Loss % | P(L > x) by IS | Est. V.R.
Loss % | P(L > x) by IS | Est. V.R. 10% 0.0210 22
10% 0.0227 33 20% 0.0052 29
30% 0.0025 142 30% 0.0015 157
50% 0.0003 992 40% 0.0005 225
60% 0.0001 3088 50% 0.0001 760
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Table 9: Variance Reduction Factors in 22-
factor Model, the Factor Loading Coefficients
are (0.2, 0.4, 0.4)

Loss % | P(L > x) by IS | Est. V.R.
10% 0.0163 12
20% 0.0024 39
30% 0.0004 321
40% 0.00006 2850
Table 10: Variance Reduction Factors in 22-

factor Model, the Factor Loading Coefficients
are (0.25, 0.15, 0.05)

Loss % | P(L > x) by IS | Est. V.R.
10% 0.0183 0.1
20% 0.0050 0.06
30% 0.0003 78
40% 0.00003 2867
and loss given default given by
99
ck = 1+@(k—1), k=1,...,1000Q

There are 100 types and 21 factors. The factor loading
matrix A, the jth row of which isa;, is given by

F G

cG

F |G CG

R is a column vector of 100 entries, all equal to a constant

F is a column vector of 10 entries, all equal to a constant

G is a 10x 10 diagonal matrix with the diagonal elements
set to a constant;. The 21-factor model thus has a single
dominant market factor. Each set of 10 obligors (1-10, 11-
20, -- ) are of the same type. We consider different factor
loadings: (ckr, cF, cg) = (0.8,0.4, 0.4) is associated with a
large market factor cas&r, cr, cg) = (0.5, 0.4, 0.4) with

a medium market factor, an@g, cr, cg) = (0.2,0.4, 0.4)
with a small market factor. We also consideg, cr, cg) =
(0.25,0.15, 0.05), suggested by Morokoff (2004).

In addition, we also consider a 22-factor model, with
two dominant market factors. The 22-factor model differs
from the 21-factor model only irR. R is now a 100x
2 matrix with the first fifty entries of the first column and
the last fifty entries of the second column equakgg all
other entries ofR are zero.

To apply approximate IS, we compute singular value
decompositions oA or more specifically, eigenvectors of
ATA. We measured the effectiveness of these approxima-
tions by a sum of squared variations. Table 2 summarizes
how much portion of squared variations of factor loading
coefficients is explained by these approximations.
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Approximate IS works well for both models. Tables
3 — 6 summarize the variance reduction estimates for the
21-factor model, and Takder — 10 for the22-factor model.
We set the degrees of freedom of thé (and thus the t
distribution) to 5 in these experiments.
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