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ABSTRACT

Monte Carlo simulation techniques that use function approx-
imations have been successfully applied to approximately
price multi-dimensional American options. However, for
many pricing problems the time required to get accurate
estimates can still be prohibitive, and this motivates the de-
velopment of variance reduction techniques. In this paper,
we describe a zero-variance or ‘perfect’ control variate to
price American options. We then discuss how function ap-
proximation may be used to approximate this perfect control
variate. Empirically, we observe that on simple one dimen-
sional examples, this approximately perfect control variate
gives orders of magnitude of variance reduction compared
to naive estimation.

1 INTRODUCTION

Accurate estimation of the price of an American option and
the optimal exercise policy when the dimensionality of the
underlying process is large remains an important problem
in option pricing. Typically, this problem is simplified by
restricting times at which the option can be exercised to a
finite set of values so that it may be modeled as a discrete
time Markov decision process (MDP), or more specifically,
an optimal stopping problem in discrete time. Unfortunately,
the well known numerical techniques for solving such MDP’s
suffer from a ‘curse of dimensionality’.

Recently, significant literature has developed that ap-
proximately solves the optimal stopping problem associated
with theAmerican option using Monte Carlo simulation (see,
e.g., the overview in Chapter 8 of Glasserman 2004, Bolia
and Juneja 2005). These typically involve generating many
sample paths (or more general sample trees) of the under-
lying assets until the expiry of the option and then using
some form of backward induction to obtain an approximate
solution. Carrière (1996), Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001) propose regression based
function approximations to aid in accurate and quick ex-
1

ecution of this backward induction step. These methods
involve approximating the ‘continuation value’ (the value
of the option if not exercised) as a linear combination of
certain easily evaluated and well-chosen basis functions.
Bolia, Glasserman and Juneja (2004) build upon the func-
tion approximation techniques proposed in Longstaff and
Schwartz (2001) and Tsitsiklis and Van Roy (2001) and
show how they may be used to develop an approximate
zero variance or ‘perfect’ importance sampling estimator
for pricing American options.

Henderson and Glynn (2001) show that for commonly
used performance measures in Markovian settings, a mar-
tingale may be constructed that serves as a perfect control
variate in the sense that the resultant performance measure
estimator has zero variance. This martingale is typically
unimplementable as it requires knowledge of measures that
are at least as difficult to estimate as the performance mea-
sure of interest. For example, in the American option setting,
if our interest is in estimating the value of the option at a
particular time at a particular value of the underlying as-
sets, then (as we note later), a perfect control variate can be
constructed that requires knowledge of the complete option
price process, i.e., it requires knowledge of the price of
option at each state of the underlying assets, at each time
period, up till option maturity.

As mentioned earlier, Bolia, Glasserman and Juneja
(2004) used function approximations to develop an ap-
proximately perfect importance sampling estimator to price
American options. In this paper we extend their analysis,
combining it with the results from Henderson and Glynn
(2001), to develop an approximately perfect control vari-
ate estimator for the same purpose. We note that in simple
one dimensional settings, the control variate based estimator
that we develop here, provides far greater variance reduction
compared to the importance sampling estimator developed
by Bolia, Glasserman and Juneja (2004).

In Section 2, we develop our mathematical framework
and discuss the perfect zero-variance control variate. Here,
we also observe its connection to the well known additive
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duality for developing accurate estimates of an upper bound
to the option price. In Section 3, we discuss the proposed
approximation methodology. Experimental results display-
ing the effectiveness of the proposed scheme are given in
Section 4.

2 MATHEMATICAL FRAMEWORK

We refer the reader to, e.g., Karatzas and Shreve (1991),
Duffie (1996), Kallianpur and Karandikar (1999) for a de-
scription of continuous time models used for asset price
movements and for technical conditions under which the
no-arbitrage condition implies the existence of a unique
risk neutral measure so that the price of a European option
is an expectation of its discounted payoffs under the risk
neutral measure. We assume that such conditions hold.
Furthermore, we assume that the option under considera-
tion can be exercised at finite number of time points. In
practice, options that provide fixed finite number of times
at which they can be exercised are referred to as Bermudan
options. American options that expire at time T are well
approximated by Bermudan options by dividing T into a
large number of well spaced intervals. We assume that the
probability density functions are available to us so that we
can generate samples of asset prices at the finite number of
time intervals where they can be exercised. In some cases,
this may only be approximately true (see, e.g., Glasserman
2004), however, we do not dwell on this issue in the paper.

Specifically, suppose that the option can be exercised
only at N + 1 times 0, 1, 2, ..., N (these times need not
be integers or equally spaced, we do so for notational
simplicity).

The underlying security prices at these times are mod-
eled by a Markov process (Xn ∈ X : n ≤ N), where X
may be a multi-dimensional state space. The state descrip-
tion may include additional variables such as the value of
stochastic interest rates and volatilities, and supplementary
path dependent information, so that the resulting process
{Xn} is Markov. The value of the option at time n if ex-
ercised at that time, is denoted by gn : X → �+ (i.e., its
exercise value or intrinsic value). Let Tn denote the set of
stopping times taking values in {n, n + 1, . . . , N} (recall
that a random variable τ is a stopping time w.r.t. {Xn} if
the occurrence of {τ = n} can be ascertained by observing
(X1, . . . , Xn)). Let

Jn(x) = sup
τ∈Tn

E[gτ (Xτ )|Xn = x], x ∈ X ,

where the expectation is taken under the risk neutral measure.
Then Jn(x) is the value of the option at time n given that the
option is not exercised before time n. The initial state X0 =
x0 is fixed and known. So, our pricing problem is to evaluate
J0(x0). Since no closed form solutions are available for the
18
above except in the simplest cases, numerical and simulation
methods are needed for pricing such multi-dimensional and
multiple exercise opportunity options. This formulation is
sufficiently general to include discounted payoffs through
appropriate definition of the {Xn} and {gn} (see Glasserman
2004, p.425), and hence these are not explicitly stated.

Further, we suppose that the pdf of Xn+1 conditioned
on Xn = x evaluated at y is given by fn(x, y) under the
risk-neutral measure. For any function F : X → �, define

En[F ](x) = E[F(Xn+1)|Xn = x]
=

∫
X

F(y)fn(x, y)dy. (1)

It is well known that the value functions J = (Jn(x) :
x ∈ X , n ≤ N) satisfy the following backward recursions:

JN(x) = gN(x)

Jn(x) = max(gn(x), En[Jn+1](x)) (2)

for n = 0, 1, 2, ..., N − 1, for each x ∈ X . An alternative
set of recursions based on the continuation value function
Q = (Qn(x) : x ∈ X , n ≤ N −1) may be developed, where

Qn(x) = En[Jn+1](x).

These recursions are:

QN−1(x) = EN−1[gN ](x)

Qn(x) = En[max(gn+1, Qn+1)](x) (3)

for n = 0, 1, 2, ..., N − 2. Note that Jn(x) =
max(gn(x), Qn(x)).

2.1 Control Variates and a Zero-Variance Estimator

Let τ ∗ = min{n : gn(Xn) = Jn(Xn)}. Then, it is well
known that τ ∗ is an optimal stopping time for our problem,
i.e., J0(x0) = E[gτ∗(Xτ∗)] (see, e.g., Duffie 1996).

As noted, e.g., in Bolia, Glasserman and Juneja (2004),
this stopping time is easily and accurately estimated using
functional approximations in the sense that if τ approximates
τ ∗, then J0(x0)−E[gτ (Xτ )] is positive, but typically small.
Once an approximation τ to τ ∗ is known, J0(x0) may be
estimated by the usual Monte Carlo technique of generating
independent samples of gτ (Xτ ) and taking their average.

Suppose that Y is a random variable that is a function
of (x0, X1, . . . , Xτ ) whose mean equals zero. Then,

gτ (Xτ ) − Y

provides an unbiased estimator for E[gτ (Xτ )]. In the control
variate technique, one looks for such a Y that is highly
77
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positively correlated with gτ (Xτ ) so that gτ (Xτ ) − Y has
a much smaller variance compared to gτ (Xτ ). One way
to arrive at such control variates is through the following
martingale: For any collection of functions (Fn : X →
�, 1 ≤ n ≤ N) such that E[|Fn(Xn)|] < ∞ for all n, the
process

Mn =
n−1∑
i=0

(
Fi+1(Xi+1) − Ei[Fi+1](Xi)

)
,

for n = 1, . . . , N is a zero mean martingale w.r.t. filteration
(Fn : 1 ≤ n ≤ N), where Fn = σ(X1, X2, . . . , Xn) and
X0 = x0. Since, τ ≤ N , from the Martingale Stopping Time
Theorem, E[Mτ ] = 0 (see, e.g., Williams 1991). Thus, Mτ

may serve as a control variate for gτ (Xτ ). Specializing the
results from Henderson and Glynn (2001) to our setting,
we note that the random variable M̃τ∗ associated with the
zero mean martingale

M̃n =
n−1∑
i=0

(
Ji+1(Xi+1) − Ei[Ji+1](Xi)

)
, (4)

is the perfect control variate for estimating J0(x0) in the
sense that

gτ∗(Xτ∗) − M̃τ∗ = J0(x0)

a.s. This follows by simply observing that along the set
{τ ∗ > n}, we have Ei[Ji+1](Xi) = Qi(Xi) = Ji(Xi) for
i ≤ n, so that

M̃τ∗ = Jτ∗(Xτ∗) − J0(x0) = gτ∗(Xτ∗) − J0(x0).

In this paper we use regression based functional
approximations of Jn(·) to approximate the martingale
(M̃n : n ≤ N). First we observe the connection of this
martingale with the well known additive duality in Ameri-
can options settings.

2.2 Additive Duality

Haugh and Kogan (2001) note that for any zero mean
martingale (Mn : 1 ≤ n ≤ N) w.r.t. the filteration (Fn :
1 ≤ n ≤ N),

J0(x0) = E[gτ∗(Xτ∗)] (5)

= E[gτ∗(Xτ∗) − Mτ∗ ] (6)

≤ E[max
n

(gn(Xn) − Mn)]. (7)

Thus, average of independent samples of
maxn(gn(Xn) − Mn) provide an estimate of an up-
per bound to the option price. Furthermore, they note
18
that the inequality in (5) is tight if the martingale
(M̃n : 1 ≤ n ≤ N) is considered in the upper bound.

This can be seen by observing that gn(Xn) − M̃n may
be re-expressed as:

gn(Xn) − Jn(Xn) +
n−1∑
i=0

(Ei[Ji+1](Xi) − Ji(Xi)) + J0(x0).

This in turn is dominated by J0(x0). To see this, note that
gn(Xn) − Jn(Xn) ≤ 0, and the well known fact that the
process (Jm(Xm) : 0 ≤ m ≤ N) is a super-martingale, so
that for each i, Ei[Ji+1](Xi)−Ji(Xi) ≤ 0 (see, e.g., Duffie
1996).

This suggests that if we have an approximation Ĵn(·) to
the true option value Jn(·) (for 1 ≤ n ≤ N ), then average

of independent samples of
[
maxn(gn − M̃n)

]
, with Ĵn(·)

replacing Jn(·) in the definition of M̃n, can provide a good
upper biased estimate of J0(x0). We test this observation
empirically in our experiments.

It is also noteworthy that perfect control variates solve
the additive dual problem, while, as noted in Bolia, Glasser-
man and Juneja (2004), the perfect importance sampling
distribution solves the multiplicative dual problem.

Before we develop specific approximations to Jn(·),
we characterize the errors that may be associated with such
approximations in the next section.

2.3 Characterizing Approximation Error

Consider an approximate value function process Ĵ =
(Ĵn(x) ≥ 0, n ≤ N, x ∈ X ) and a positive ε > 0 such
that, for all n,

E(Ĵn(Xn) − Jn(Xn))
2 ≤ ε2 (8)

and

E(En[Ĵn+1](Xn) − En[Jn+1](Xn))
2 ≤ ε2. (9)

A sufficient condition for this is that the error

sup
n,x

|J̃n(x) − Jn(x)| ≤ ε.

Here we also assume that E[Jn(Xn)]2 < ∞, ∀n. It follows

that E
[
En[Jn+1](Xn)

]2
< ∞, ∀n. Then, (8) and (9) imply

that E[Ĵn+1(Xn)]2 < ∞ and E
[
En[Ĵn+1](Xn)

]2
< ∞, ∀n.

Also, from (8) and (9), it follows that

E(|Ĵn(Xn) − Jn(Xn)|) ≤ ε (10)
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and

E(|En[Ĵn+1](Xn) − En[Jn+1](Xn)|) ≤ ε. (11)

The associated zero mean martingale M̂ = (M̂n ∈ � :
1 ≤ n ≤ N), as in (4), is then given by

M̂n =
n−1∑
i=0

(
Ĵi+1(Xi+1) − Ei[Ĵi+1](Xi)

)
. (12)

Let V (Y ) denote the variance of any rv Y . In the
following proposition we note that under the assumption
that τ ∗ is known, the variance of the control variate estimator
may not be very large. Thus, if (Jn : n ≤ N) can be closely
approximated by a known quantity (Ĵn : n ≤ N) and we
have an accurate approximation for τ , then the corresponding
M̂τ may provide a good proxy for the zero-variance control
variate Mτ∗ and good simulation efficiency may be expected.

Proposition 1 Under (8) and (9),

V
(
gτ∗(Xτ∗) − M̂τ∗

)
≤ (8N2 + N)ε2. (13)

Proof Throughout the proof, we suppress the use of Xn

in expressing Jn(Xn) and gn(Xn) for ease of notation. Set
Ĵ0(x0) = J0(x0). Then by rearranging terms, Y = gτ∗−M̂τ∗
can be re-expressed as

Y = gτ∗ − Ĵτ∗ +
τ∗−1∑
k=0

(Ek[Ĵk+1] − Ĵk) + J0(x0). (14)

Subtracting and adding Ek[Jk+1] to each term in the sum in
(14), and noting from (2) that Jk = Ek[Jk+1] for k ≤ (τ ∗−1)

and Jτ∗ = gτ∗ , we get

Y = (Jτ∗ − Ĵτ∗) +
τ∗−1∑
k=0

(Ek[Ĵk+1] − Ek[Jk+1])

+
τ∗−1∑
k=0

(Jk − Ĵk) + J0(x0).

We may re-express the variance E(Y −J0(x0))
2 as E[Z1 +

Z2+Z3]2, where Z1 = Jτ∗ −Ĵτ∗ , Z2 = ∑τ∗−1
k=0 (Ek[Ĵk+1]−

Ek[Jk+1]), and Z3 = ∑τ∗−1
k=0 (Jk − Ĵk). Let I{A} denote the

indicator function of any event A, i.e., I{A} = 1 if A occurs
and 0 otherwise. Then,

(E[Z1])2 ≤ E[Z2
1] ≤

N∑
k=1

E
[
(Jk − Ĵk)

2I{τ∗=k}
]

≤ Nε2.

(15)
187
The Cauchy-Schwartz inequality implies that

E[Z2
2] ≤

N−1∑
k=0

E(Ek[Ĵk+1] − Ek[Jk+1])2 + 2
∑
i<j

[E(Ei[Ĵi+1]−Ei[Ji+1])2 ·E(Ej [Ĵj+1]−Ej [Jj+1])2]1/2.

It therefore follows from (9) that E[Z2
2] ≤ N2ε2. Similarly,

E[Z2
3] ≤ N2ε2. Further,

E[Z1Z2]

≤ [E(Jτ∗ − Ĵτ∗)2]1/2
N−1∑
k=0

[E(Ek[Ĵk+1] − Ek[Jk+1])2]1/2

≤ N2ε2,

where the first inequality follows from the Cauchy-Schwartz
inequality, and the second one from (15) and (11). Similarly,
E[Z1Z3] ≤ N2ε2 and E[Z2Z3] ≤ N2ε2. Therefore,

E[Z1 + Z2 + Z3]2 ≤ Nε2 + 8N2ε2

and the proposition follows. �

3 PROPOSED METHODOLOGY

As in Bolia, Glasserman and Juneja (2004), we adopt a two-
phase approach to pricing the option. In the first phase, we
approximately estimate the optimal stopping policy. For this
purpose we develop approximations Q̂ for Q = (Qn(x), n ≤
N − 1, x ∈ X ). Tsitsiklis and Van Roy (2001) find that
methods based on least squares regressions are better suited
for estimating Q rather than J = (Jn(x), n ≤ N, x ∈ X ), as
the estimates of the former have better bias characteristics.

In the second phase we evaluate this policy using control
variates. However, for control variates we also need to find
estimators Ĵ for J . Furthermore, to compute the value of the
control variate, it is desirable that the integral En[Ĵn+1](x)

be known explicitly. We now discuss how this is achieved
using functional approximations. (the discussion here is
essentially that in Bolia, Glasserman and Juneja 2004, we
repeat it to make this presentation self contained).

Let φk : X → � for 1 ≤ k ≤ K denote a set of
basis functions. Consider a parameterized value function
Q̂ : X × �K → � that assigns values Q̂(x, r) to state
x, where r = (r(1), . . . , r(K)) ∈ �K is a vector of free
parameters and

Q̂(x, r) =
K∑

k=1

φk(x)r(k).
9



Bolia and Juneja
Using simulated paths, we find parameters r∗
0 , r∗

2 , . . . , r∗
N−1

(each ∈ �K ) so that

Q̂(x, r∗
n) ≈ Qn(x)

for each x and n. These approximations are then used to
estimate the optimal stopping policy.

To compute the control variate, consider a parameterized
value function Ĵ : X ×�K → � that assigns values Ĵ (x, s)

to state x, where again, s = (s(1), . . . , s(K)) ∈ �K , and

Ĵ (x, s) =
K∑

k=1

φk(x)s(k).

We choose each φk(·) so that En[φk](x) can be explicitly
evaluated. We estimate parameters s∗

1 , s∗
2 , . . . , s∗

N (each in

�K ) so that Ĵ (x, s∗
n) ≈ Jn(x) for each x and n.

Different basis functions can be used for Q̂ and Ĵ .
These could further depend upon the time period n. The
number of basis functions used could also be a function of
n. However, to keep the notation simple we avoid these
generalizations. We now discuss the procedure outlined
above in detail

3.1 Approximately Evaluating the Optimal Policy

As mentioned earlier, we follow the type of approach used in
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy
(2001) to approximate the optimal stopping time τ ∗. This
involves generating L sample paths (xm,n : n ≤ N, m ≤ L)

of the process (Xn : n ≤ N) using the densities fn(·, ·).
The parameters r∗

0 , . . . , r∗
N−1 are found recursively:

r∗
N−1 = arg min

r

L∑
m=1

[gN(xm,N) −
K∑

k=1

φk(xm,N−1)r(k)]2.

Here, gN(xm,N) is an unbiased sample of
QN−1(xm,N−1) = EN−1[gN ](xm,N−1). Then, using the
approximation Q̂(·, r∗

N−1) for QN−1(·) along each gener-
ated path m we can approximately evaluate when to exercise
the option, given that we have not exercised it till time N−2.
Call this time τm,N−2.

Recursively, consider time n. Suppose that we know
τm,n, the time to exercise the option along path m, given
that we have not exercised it till time n. Then, parameters
r∗
n are found as a solution to the least squares problem:

r∗
n = arg min

r

L∑
m=1

[gτm,n(xm,τm,n) −
K∑

k=1

φk(xm,n)r(k)]2.
18
Note that if τm,n is a realization of the optimal stopping
time, then gτm,n(xm,τm,n) above is an unbiased sample of
the continuation value Qn(xm,n) (and hence a reasonable
proxy).

We modify this approach to determine the parameters
s∗

1 , . . . , s∗
N . Set

s∗
N = arg min

s

L∑
m=1

[gN(xm,N) −
K∑

k=1

φk(xm,N)s(k)]2.

The parameters s∗
n for n ≤ N − 1 are found after

parameters r∗
n have been determined. Knowing r∗

n allows
us to determine whether to exercise the option at state xm,n

or not by comparing gn(xm,n) and Q̂(xm,n, r
∗
n) for each m.

Then, τm,n−1 is known for each m. Set

s∗
n = arg min

s

L∑
m=1

[gτm,n−1(xm,τm,n−1) −
K∑

k=1

φk(xm,n)s(k)]2.

The parameters r∗
n and s∗

n above are determined using
the least squares method (see, e.g., Bertsekas and Tsitsiklis
1996). Again, if τm,n−1 is a realization of the optimal
stopping time, then gτm,n−1(xm,τm,n) above is an unbiased
sample of Jn(xm,n). Note that in Bolia, Glasserman and
Juneja (2004) we had restricted s∗

n to be non-negative, hence
non-negative least squares regression was used. This was
useful in implementing importance sampling. However this
restriction is no longer necessary in control variate settings
suggesting that Ĵn estimated here is more accurate than that
in Bolia, Glasserman and Juneja (2004).

3.2 Estimating the Option Price

Once (Ĵ (x, s∗
n) : x ∈ X , n ≤ N) are known, we start the

second phase of the algorithm using the control variate to
evaluate the price of the option.

As in (4), we define the martingale M̂ = (M̂n ∈ � :
0 ≤ n ≤ N) as

M̂n =
n−1∑
i=0

(
Ĵi+1(Xi+1) − Ei[Ĵi+1](Xi)

)
.

We generate another set independent paths of the stock
price that is also independent of the paths generated earlier
to estimate the optimal policy. The martingale realization
at time step n along the path m (xm,n : 1 ≤ n ≤ N) is
then given by M̂m,n. The estimate of the option price is the
average of gτm,0(xτm,0) − M̂m,τm,0 over all m. The estimate
of the upper bound on the option price is the average of
maxn(gn(xm,n)−M̂m,n) over all m. The stopping time τm,0
80
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along path m is found by comparing the Q̂n approximated
earlier with gn at every time step n.

4 NUMERICAL RESULTS

We conduct simulation experiments to price a one dimen-
sional American put assuming that the risk-neutral stock
price process follows the stochastic differential equation:

dS = rSdt + σSdZ

where r and σ are constants, Z is standard Brownian motion,
and the stock does not pay dividends. The expiration time
for the option is denoted by T . Let Xn denote S(n�t) and
set N = T/�t . Then (Xn : n ≤ N) is a Markov process.
Let N(a, b) denote a Gaussian random variable with mean
a and variance b. Note that and Xn+1 has the distribution

Xn exp[(r − σ 2/2)�t + √
�tN(0, σ 2)]

or, given Xn = x, we may set

Xn+1 = exp[N(μ̂, σ̂ 2)],

where μ̂ = (r −σ 2/2)�t + log x and σ̂ 2 = �tσ 2 (see, e.g.,
Glasserman 2004, p.94).

Thus, fn(x, y) (or f (x, y) as the densities are time-
homogeneous) equals

1√
2πσ̂y

exp[− 1

2σ̂ 2 (log y − μ̂)2].

For each k ≤ K , and constants (α1k, α2k) we select our
basis function

φk(y) = exp[α1k log2 y + α2k log y]. (16)

We keep α1k ≤ 0. Note that if α1k > 1
2σ̂ 2 , En[φk](x) blows

up and if α1k = 0, then φk(y) = yα2k .
Then,

φk(y)f (x, y) = 1√
2πσ̂y

×

exp[− 1

2σ̂ 2 (log y − μ̂)2] exp[α1k log2 y + α2k log y].

After simple algebraic manipulations this can be seen
to equal

σ̃

σ̂
exp[ μ̃2

2σ̃ 2 − μ̂2

2σ̂ 2 ]d(k)

μ̃,σ̃ 2(y),
18
where μ̃ = μ̂+σ̂ 2α2k

1−2σ̂ 2α1k
and σ̃ 2 = σ̂ 2

1−2σ̂ 2α1k
and d

(k)

μ̃,σ̃ 2(y) is

the pdf of the exp[N(μ̃, σ̃ 2)] distributed random variable.

Let β∗
n(k) = s∗

n+1(k) σ̃
σ̂

exp[ μ̃2

2σ̃ 2 − μ̂2

2σ̂ 2 ], then,

En[Ĵn+1](x) =
∑
k≤K

β∗
n(k).

Thus, we have closed form expressions for En[Ĵn+1](·)
and hence an implementable control variate.

Specifically, in all experiments, we price an American
put with a strike price of 40, T = 1 year and r = 0.06.
We consider three values of σ - 0.1, 0.2 and 0.3. In all
experiments, we use 4 basis function having the structure
as in (16). The respective parameters used are (α11, α21) =
(−1, 0), (α12, α22) = (−1, 1), (α13, α23) = (−1, 2) and
(α14, α24) = (−1, 3). Bolia, Glasserman and Juneja (2004)
empirically establish that the time taken to learn the optimal
parameters r∗ = (r∗

0 , . . . , r∗
N−1) is quite small. Therefore,

in all the further experiments, we report results with the
r∗ and the s∗ learnt from 10,000 paths. Longstaff and
Schwartz (2001) use finite difference methods to find that
for time periods N = 50, σ = 0.2 and initial stock price
X0 = 36, the price equals 4.478.

In our first experiment, we compare the control variate
estimator with naive simulation on our example using the
r∗ and the s∗ as learnt above. We conduct simulations for
N = 10, 20 and 50 (T remains equal to one year) and for
initial stock price X0 = 36 (in-the-money). We do this for
3 values of σ : 0.1, 0.2 and 0.3. For each simulation 106

paths are generated to evaluate the option price. The results
are shown in Table 1. The variance reduction factor (VR)
corresponds to the ratio of the estimate of naive variance
and the estimate of control variate variance. If we define
time factor as the ratio of time taken per path with the
control variate to time taken per path in the naive method],
the computational effort reduction factor (CR) in the table
(calculated as the ratio of VR and time factor) indicates the
overall reduction in the computational effort.

In our second experiment, we price the same option,
but with X0 = 50 (all other parameters remain the same).
The results are reported in Table 1. We observe that the
control variate estimator performs better in all cases. The
least improvment is when the option is out-of-money with
X0 = 50 and σ = 0.1. This is as expected since starting
from X0 = 50, because of a low volatility of 0.1, fewer
paths go below the strike price of 40 (for a put option, a
path can contribute to the price only if the stock price is
less than the strike price) than in other cases, and hence
Ĵn’s are poor approximations of Jn in this region.

Finally, we report the upper bound for the various cases
of volatility in Table 2. The last column in the table is the
corresponding (lower biased) estimate of the option price
obtained using the control variate method described above.
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5 CONCLUDING REMARKS

This paper develops a control variate based method for the
pricing of American options. The method is based on the
observation that the value function of the pricing problem
provides a zero-variance control variate based estimator. We
use approximations to the value function to approximate
this optimal estimator. Similar ideas lead to an upper bound
on the option price that is tight under the control variate
based on the true option price.
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Table 1: Point Estimates and 95% CI Halfwidths using Naive
Simulation and Control Variate

σ = 0.1, X0 = 36

N Naive Est. CV Est. VR CR

10 3.769 (0.002) 3.770 (0.000) 80.2 39.5

20 3.882 (0.002) 3.881 (0.000) 169.0 79.0

50 3.952 (0.001) 3.952 (0.000) 4391.3 1928.2

σ = 0.2, X0 = 36

N Naive Est. CV Est. VR CR

10 4.440 (0.006) 4.442 (0.001) 60.2 42.0

20 4.458 (0.005) 4.460 (0.001) 61.1 44.8

50 4.472 (0.005) 4.471 (0.001) 59.1 45.7

σ = 0.3, X0 = 36

N Naive Est. CV Est. VR CR

10 5.678 (0.009) 5.673 (0.001) 59.5 41.8

20 5.675 (0.008) 5.678 (0.001) 82.8 62.3

50 5.681 (0.008) 5.677 (0.001) 63.5 47.7

σ = 0.1, X0 = 50

N Naive Est. CV Est. VR CR

10 0.003 (0.000) 0.003 (0.000) 4.7 3.5

20 0.003 (0.000) 0.003 (0.000) 4.2 3.2

50 0.003 (0.000) 0.003 (0.000) 2.2 1.7

σ = 0.2, X0 = 50

N Naive Est. CV Est. VR CR

10 0.318 (0.002) 0.317 (0.001) 17.4 13.1

20 0.319 (0.002) 0.319 (0.000) 22.5 17.4

50 0.317 (0.002) 0.317 (0.000) 27.7 22.0

σ = 0.3, X0 = 50

N Naive Est. CV Est. VR CR

10 1.230 (0.005) 1.233 (0.001) 23.6 17.5

20 1.237 (0.005) 1.237 (0.001) 36.8 28.4

50 1.241 (0.005) 1.238 (0.001) 40.8 32.1
18
Table 2: Upper Bound Estimates and 95% CI Halfwidths

σ = 0.1, X0 = 36

N Dual Upper Bound Est. Price

10 4.352 (0.001) 4.000

20 4.286 (0.001) 4.000

50 4.215 (0.001) 4.000

σ = 0.2, X0 = 36

N Dual Upper Bound Est. Price

10 4.919 (0.001) 4.442

20 4.793 (0.001) 4.461

50 4.703 (0.001) 4.471

σ = 0.3, X0 = 36

N Dual Upper Bound Est. Price

10 6.120 (0.002) 5.678

20 6.096 (0.001) 5.682

50 6.175 (0.002) 5.666

σ = 0.1, X0 = 50

N Dual Upper Bound Est. Price

10 0.014 (0.000) 0.003

20 0.015 (0.000) 0.003

50 0.016 (0.000) 0.003

σ = 0.2, X0 = 50

N Dual Upper Bound Est. Price

10 0.394 (0.001) 0.320

20 0.404 (0.001) 0.319

50 0.414 (0.001) 0.318

σ = 0.3, X0 = 50

N Dual Upper Bound Est. Price

10 1.377 (0.001) 1.239

20 1.413 (0.001) 1.242

50 1.445 (0.001) 1.239
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