
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

INTRODUCING VIRTUAL ENGINEERING TECHNOLOGY INTO INTERACTIVE DESIGN PROCESS WITH
HIGH-FIDELITY MODELS

Gengxun Huang

Mechanical Engineering Department
2274 Howe Hall

Iowa State University
Ames, IA 50010, U.S.A.

 Kenneth Mark Bryden

Mechanical Engineering Department
3030 Black Engineering

Iowa State University
Ames, IA 50010, U.S.A.

ABSTRACT

Product design is a complex decision-making process re-
quiring intense interaction between designers and the de-
signed product. Consequently, the design process is sig-
nificantly different from a pure mathematical optimization.
This paper presents a decision support platform for interac-
tive design that integrates mathematical optimization with
human interaction based on VE-Suite. Current efforts are
geared toward seamlessly linking high fidelity models,
numerical optimization and human interaction to improve
efficiency and quality in system performance. The de-
signer’s interaction causes the optimization process to dy-
namically change by adding, deleting, and modifying ob-
jectives, constraints, and other parameters that govern the
process. As an illustration, a coal pipe design case is used
to demonstrate the new platform’s capabilities. The case
has demonstrated that adding user interaction into the de-
sign process has the potential to improve design efficiency
and quality.

1 INTRODUCTION

Today, there are numerous research and software packages
available in the literature. In general, machine-based nu-
merical optimization has significant utility within well-
defined routines and detailed design domains. In these sys-
tems the stereotypical role of the designer is to specify the
problem including predefined constraints and control pa-
rameters, and then initiate a computer search to find an op-
timal solution. One of the major drawbacks of this type of
design system is that this approach neglects the important
aspect of the optimization task which is to obtain useable
solutions. In practical applications, it is the solution sug-
gested by the optimizer, not the actual details of the design,
that are most interesting. Anderson (2000) pointed out that
in many contexts interaction is more important than effi-
ciency since the optimization algorithm is working with an
impoverished objective function, and the ability to success-

1

fully implement the solution depends on how well people
understand and trust it. Users must understand and trust the
generated solutions to use them effectively. Those limita-
tions have led Vladimir (2002) to report that numerical op-
timization technology still has very limited success in an
industrial design environment.

In recent years research related to user-based interac-
tive optimization has increased rapidly. More and more re-
searchers agree that users are more likely to understand a
solution that they helped to create than one that is simply
presented to them. Research shows that including humans
“in-the-loop” during the design process can enhance opti-
mization performance. However, most literature in this
field focuses on extreme cases. For example, some interac-
tive optimization algorithms require user guidance at every
step. Without user instruction, such algorithms cannot
function. Therefore, they are typically only considered in
cases where it is hard or impossible to use numerical mod-
els to represent the problems such as in works of art (Hong
2004). Understandably, given the demands on user time
imposed by algorithms of this kind, these algorithms are
seldom used in the engineering design process.

Other researchers used computational steering tech-
nology to interactively control a computational process,
such as CFD simulation and optimization, during execution
(i.e. SCIRun 2005). With computational steering, users are
continuously provided with visual feedback about the state
of their simulation and can change parameters on the fly.
This allows designers to modify parameters in order to op-
timize their product. Although the concept of computa-
tional steering is powerful, the implementation of compu-
tational steering is very difficult. It requires knowledge of
simulation, visualization, user interfacing, and data com-
munication (Xiao and Bryden 2004). Therefore, while
computational steering technologies offer significant capa-
bilities, they are generally time consuming to use and hard
to adapt to meet the actual project requirements. For exam-
ple, to integrate an existing application into these systems,

958

Huang and Bryden

the application source code has to be manually annotated
with program statements by the application developer.

From these experiences, we observe that there are two
key issues in designing interactive engineering systems.
First, an appropriate division of labour between humans
and computers is needed so that humans’ superior abstract
thinking and computers’ superior computational speed can
work together to produce a better performance than either
could do alone. The extent to which human interaction
should influence the optimization process is still unclear.
Fortunately, end-users usually have more experience han-
dling this issue if the system allows the user to guide the
design process. Secondly, in order for the system to gain
acceptance, it should be easy to use and provide real-world
usability. Based on these two key requirements, this system
should have the following characteristics:

1. Scalability ― enable users from different areas to

easily build applications inside the system or add
new capabilities without dealing with system pro-
gramming issues.

2. Extensibility― enable the system to grow by ex-
tending existing capabilities and adding new tech-
nologies.

3. Flexibility ― enable users to choose from a vari-
ety of solvers and other computer aided engineer-
ing tools in a platform independent manner.

4. Physically-based, real-time visualization― enable
users to observer the analysis result in a realistic
and intuitive manner.

Currently, there is no system available that meets these

requirements. However, virtual engineering technology,
which is defined as a technology that integrates and com-
bines geometric models, analysis, simulation, optimization
and other decision making tools within a virtual environ-
ment to facilitate multidisciplinary and collaborative prod-
uct realization (Xiao and Bryden 2004), can be used as a
way of gaining insight into the design space. Furthermore,
virtual engineering technology can also be used to quanti-
tatively and qualitatively identify innovative design op-
tions, which is exactly what interactive design system re-
quires. Hence, we have worked to extend the virtual design
and engineering capabilities of VE_Suite to interactive
product design. VE_Suite is an open source virtual engi-
neering software package that is currently under active de-
velopment by the complex system virtual engineering
group at Iowa State University. VE_Suite serves as a high-
level support tool for engineers who want to transform
their traditional applications into virtual engineering appli-
cations.

The architecture of VE-Suite is shown in Figure 1. The
core modules of VE-Suite are VE_Xplorer (the graphical
engine), VE_Conductor (the GUI front end to the virtual
engineering framework), and VE_CE (the computational
19
engine). VE-Suite divides the implementation of virtual
engineering into two tasks: WxWidgets based user inter-
faces and the computational unit (see Figure 1). These two
tasks comprise the VE_Suite API. VE_Suite is general in
nature and the three key components can run on a geo-
graphically diverse set of heterogeneous computer plat-
forms. For example, the VE_CE component can run on a
Linux cluster; the VE_Xplorer component can run on an
SGI machine; and VE_Conductor can run on a portable
Tablet PC. Also, the three core components of VE-Suite
can function as complete stand-alone applications provided
that the necessary input files are prepared by the user. This
feature ensures that VE-Suite can be used in a variety of
applications. Additional details about VE_Suite can be
found in McCorkle and Bryden’s report (2003).

Figure 1: VE_Suite Architecture

This paper illustrates this new interactive decision sup-

port system using evolutionary algorithms (EAs) as the op-
timization algorithm, computational fluid dynamic (CFD)
as the evaluation mechanism, and VE_Suite as the back-
bone of the system. In Section 2 we introduce the neces-
sary background of the API provided by VE_Suite. Section
3 contains a more detailed presentation of building a new
interactive design system using the VE_Suite API. Empha-
sis is placed on building the computational unit and the
plug-in GUI. In Section 4, the coal pipe design experi-
ments are presented to demonstrate the platform’s per-
formance. In the final section, we discuss what has been
accomplished to date and present directions for future
work.

2 VE_SUITE CORE CHARACTERISTIC AND ITS
API

To enable performance on multiple operating systems and
immersive technology platforms, VE-Suite is built upon
59

Huang an

VR Juggler <http://www.vrjuggler.org>, SGI
OpenGL Performer
<http://www.sgi.com/products/software/p
erformer>, and Kitware’s VTK
<http://public.kitware.com/VTK>. The com-
munication between the different components and user-
defined modules is built upon the widely adapted and sta-
ble Common Object Request Broker Architecture
(CORBA) <http://www.omg.org> standard devel-
oped over the last decade. The Executive module (one of
the key modules in the VE_Suite Core) implements two of
the standard CORBA services bundled with the TAO
CORBA<http://www.ece.uci.edu./~schmidt/
TAO.html> distribution. The first service is the COSS
Naming Service that is used as a lookup table of the cur-
rently running processes which allows clients to find run-
ning process based on the given ID. The second service is
the interface that houses the functional and data type defi-
nitions and provides them graphically to the user to allow
him/her to define a workflow in the graphical interface. In
our system, the running process (usually the computational
unit) can broadcast its status and analysis information to
multiple GUI clients. Any given GUI can be connected
into the system information stream at any point in time to
view the current state of the running process. The system
was designed to allow the GUI to be shutdown and re-
started at will without any impact on the computational
unit’s execution. This attach/detach functionality gives the
user the ability to monitor the design process easily. As an
example, this functionality would allow a user to build and
start a simulation and then detach from the computational
engine. The user could then go to a different location, re-
attach to the running process, and regain monitoring and
control functions. The other advantage of the use of com-
ponent architecture design techniques is that multiple GUIs
can also be connected simultaneously from different com-
puters and allow multiple users to monitor a simulation
from different locations.

The VE-Suite core provides a simple API for the user
to build his own interface to fit the requirement of the ac-
tual application. wxWidgets
<http://www.wxWindows.org> is provided as the
GUI library for the user to use since it is easy to learn (C++
based), and well-maintained. A plug-in C++ base class
(Figure 2) defining the basic GUI interface is provided to
all module developers. Developers can create their own
GUIs and then compile the resulting code into a DLL in
Windows or shared libraries in Linux/Unix. VE-Suite is
able to dynamically discover, identify, and load the user’s
GUI from these shared libraries. Since this user-defined
GUI is inherited from the plug-in base class, it has all func-
tionality provided by the framework. This detachable GUI
is where the user is able to create the design configuration,
set model inputs, start and stop execution of simulation,
and view simulation results. Also, it is more likely to meet
19
d Bryden

user specific requirements because the interface is built by
the person who will use it. This useable interface will be
custom-tailored to the user’s demands and can easily be
adapted if the user’s focus of interests changes. In order to
transfer data from the GUI to its control, the function
TransferDataFromWindow in the base class should be
overriden. Figure 3 illustrates a simple, yet complete ex-
ample of how to transfer data from GUI components
(wxTextCtrl) to its own control.

Figure 2: PluginBase Class

Figure 3: Example of TransferDataFromWindow

Figure 4: Body_Unit_i Class

Since users from different fields have a wide variety of

needs, the analysis tools and their use require a detailed
understanding of the problem. VE-Suite uses the Computa-
tional engine (VE_CE) module to construct, coordinate,
schedule, and monitor the running processes. Because of
this, existing commercial, in-house, and open source analy-
sis packages can be used directly with VE_Suite. The
analysis package can vary from Microsoft ExcelTM spread
sheets to process models to CFD models. The analyst only
60

http://www.vrjuggler.org/
http://www.sgi.com/products/software/performer
http://www.sgi.com/products/software/performer
http://public.kitware.com/VTK
http://www.omg.org/
http://www.ece.uci.edu./~schmidt/TAO.html
http://www.ece.uci.edu./~schmidt/TAO.html
http://www.wxwindows.org/

Huang and Bryden

needs to provide a few routines to declare the communica-
tion variables. VE_CE provides a CORBA server with
which the detachable GUI connects. It is capable of run-
ning a simulation containing a multitude of different types
of models, each accepting and generating a myriad of data
types. Once a client-server connection is made, the unit is
able to send results, messages, updates, and communica-
tions from other attached GUIs in real time.

Figure 5: Template for SetParams and StartCalc

VE-Suite provides a template for users to fill their own

computation units into the VE-Suite framework. Figure 4
shows the basic functions in Body_Unit_i class. Figure 5
shows two important functions that users need to modify in
order to implement their own applications. First, SetPar-
ams needs to be implemented for the user’s customized
module. This call takes the GUI inputs passed by the
CORBA interface (Executive Module). Using Figure 3 as
example GUI inputs, every GUI variable that is needed can
be retrieved from the interface by calling
p.intfs[0].get***(“paramname”) (Note: *** represents the
data type such as Double, Int). Additional details of how to
add existing applications are discussed in Section 3 using
the new design platform as an example.

A key aim of virtual engineering is to fully engage the
human capacity for problem solving by creating a realistic
experience for the user so that s/he can focus entirely on
the engineering problem. The advantage is that previously
indescribable complexities can be understood and the full
range of engineering solutions can be explored. The
graphical engine (VE-Xplorer) provides the core function-
19
ality for the virtual engineering aspect of the framework. It
can load geometry files, three-dimensional simulation data
and experimental data of almost every format into a scene.
VR Juggler is used to handle interfacing with VR hardware
and graphics rendering platform. VE-Suite handles the
creation of the virtual environment and VR Juggler allows
software to run with any type of virtual environment, from
a regular 2-D screen to a six-walled immersive virtual
space. Due to the generality of the visualization require-
ments, the VE-Suite core provides the basic visualization
GUI so that users can navigate and control the scene. The
GUI is laid out in a tabbed notebook format as shown in
Figure 6. Typical operations can be performed on each tab
of the GUI. For example, the navigation tab is the main
window for users to navigate through the scene and choose
the location he or she wishes to observe the data from.
Through the visualization tab, users can select different
visualization methods (contour surface, vector fields, etc.)
to visualize the fluid field. Figure 7 shows the streamline
of flow through a 90 degree elbow. VE_Xplorer is de-
signed such that users need not know the details of graph-
ics and virtual reality programming. It should be noted that
VE-Suite also provides an interface that allows advanced
users to add or modify the existing functions or visualiza-
tion GUI.

Figure 6: VE_Xplorer GUI

Figure 7: Streamline Reprentation (Flow through Elbow)

3 PROPOSED INTERACTIVE EVOLUTIONARY
DESIGN PLATFORM

As discussed in Section 1, to allow effective user interac-
tion, the design system should provide users with data and
61

Huang and Bryden

other information about the designed product and its per-
formance in an understandable and intuitive way. In addi-
tion, the design system should also give users the ability to
exert influence on the process in an intuitive manner. VE-
Suite already provides this basic functionality, such as de-
tachable GUI, realistic graphical engine and bi-directional
bindings between the GUI and the computational unit,
which are necessary to meet the requirement of an interac-
tive evolutionary design system. Therefore, the implemen-
tation of the proposed interactive design platform is very
straightforward. Figure 8 shows the basic information flow
of this system. As shown, the primary component in the
system that users will interact with is the plug-in GUI. Us-
ing VE-Suite, designers can not only access the traditional
design information, such as tables, two-dimensional plots
and colour codes, whenever they want, but also three-
dimensional virtual images (i.e. streamline) from high fi-
delity datasets such as CFD data. On the computational
unit side, the main module connects with the CORBA in-
terface to accept the user’s input. A multi-threaded ap-
proach is used in order to minimize the effort of adapting
the existing computational source code into an interactive
design space. A centralized Database Manager module is
used for interpreting the user’s request, data management
and transfer. This additional Database Manager module
provides a simple way to track the state of the running
process and exchange information between the Model
thread and View thread. The following sections will focus
on the implementation of the computational unit and the
plug-in GUI design.

Figure 8: Diagram of the System Architecture

3.1 Computational Unit (Optimizer)

In the area of engineering analysis tools, there has been a
growing interest in optimal design in conjunction with
CFD in the field of fluid mechanics. In many cases, im-
proving the thermal fluid system design requires under-
standing precise details of the fluid flow, the heat transfer,
or other phenomena of interest. High-fidelity models such
as CFD can provide a greater level of detail and improved
19
solutions compared to simple engineering relationships.
Therefore, thermal system design can be improved if CFD
analysis is used instead of simplified modelling techniques
such as the Moody diagram, heat loss coefficients, etc.
However, it is not uncommon for one CFD analysis case to
take several days to complete. Therefore, traditionally, it is
extremely challenging to add human interaction into the
system which uses high-fidelity models such as CFD
solvers as an evaluation mechanism because of the differ-
ence in time between human thinking and machine prob-
lem solving. On the other hand, this system happens to be
the system that needs human interaction most, especially
when this system is used for conceptual or preliminary de-
sign. For instance, if a constraint is omitted or an assump-
tion is incorrectly made, numerical optimizers will often
return a physically unreasonable design or will fail to con-
verge after several days. However, when the user is al-
lowed to monitor the design evolution, it is more likely that
the user will catch the design flaw much earlier. Currently,
there is no established standard to determine how much
user time and expertise need to be devoted to steering the
search process in order for the added user interaction to be
most profitable. However, in the case of using high fidelity
solver as the analysis code, compared to the CPU time
needed for the CFD solver, the time used for the operation
of human interaction is minimal. Therefore, adding human
interaction into the optimization process can be generally
expected to be helpful.

The optimization algorithm (computational unit) we
propose here lies somewhere between two extremes as dis-
cussed in Section 1 in the sense of adding human interac-
tion into the design process. Using our framework, the user
does not determine the behaviour of the computational
process. Therefore it is still a machine-based optimization,
but users are given the capability to influence the process
by altering system parameters or changing objective func-
tions.

The computational unit for this interactive design sys-
tem utilizes a standard Evolutionary Algorithms optimiza-
tion software. The standard EA optimizer includes several
components: selection, crossover, mutation, and replace-
ment. For more information about EAs see Goldberg
(1989). This core function (the Evolve function in the
Model class in Figure 9) becomes the central process of the
computational unit. The template class Body_Unit_i pro-
vides necessary CORBA interfaces required for framework
integration and communication. Therefore, a simple App
class is added as an interface between the Model class and
the Body_Unit_i class. A classical Subject/Observer design
pattern is used among these three classes (See Figure 9).
This is mainly used when new results need to be sent back
to the plug-in GUI so that users can assess the latest design
information. In our approach, the App class acts as a me-
diator between the other two classes; it is the observer of
Model and subject of Body_Unit_i. As a subject of App,
62

Huang and Bryden

Model will notify its observer App that new result is ready
for user to pick up. As a subject of Body_Unit_i, in App’s
Update function, it notifies Body_Unit_i and passes the in-
formation to Body_Unit_i. This Subject/Observer/
Mediator trio is commonly known as the Model View Con-
troller (MVC) pattern. The advantage of this method is
that the Model class can be almost the same as before. As
mentioned previously, a multi-threaded approach is used in
which the Model thread executes the optimization loop
and runs the analysis routines through the Evolve function
in Figure 9, and the View thread dynamically displays the
evolutions of the system according to users’ requests. The
system is designed in this way so that the main optimiza-
tion loop will not be interrupted when users inspect the
complex physical-based images.

Figure 9: Computational Unit Scheme

Figure 10: Computational Unit Application

Figure 10 shows the implementation of these three

classes. Notice, the user-defined Model class needs to in-
herit from Subject class and call the NotifyObservers func-
tion in the Evolve function; this function notifies all ob-
servers that new data is available. In our case, since it may
1963
be of interest to the designer to visualize the path taken by
the EAs optimizer, the NotifyObservers function is added
at the end of each mating event loop. Therefore, users can
always have access to the newest information such as the
fitness and new creature’s geometry whenever they check
the result from GUI. Also, threading is done using the
high-level threading API provided in VPR, the VR Juggler
Portable Runtime Library. It is worth mentioning that there
is an external TCP/IP Socket (VPR-based) connection be-
tween the View module and VE_Xplorer (VE-Suite
graphical engine). This connection allows large high-
fidelity datasets to be transferred to the graphical engineer-
ing without interrupting the overall network communica-
tion.

3.2 Plug-in GUI

Since the goal of our study is to set up an interactive design
system that allows users to provide input parameters to the
underlying high fidelity analysis models, observe the
analysis result, and optimize the product design, the
graphical user interface must be easy to use. Over the
course of development of GUI, it was found that certain
features are required. For example, the ability to save the
current case, reload the existing case file, basic EAs con-
trol parameters setup, etc. Although the current GUI is still
in its initial stage, it has the basic functionality such as se-
lecting active design parameters, defining EA parameters,
defining constraints, and selecting initial design candi-
dates. Figure 11 shows the MainFrame provided by
VE_Conductor. It provides the method to connect to the
CORBA interface. The main window for the user-defined
plug-in GUI is shown in Figure 12. From this main win-
dow, the user is able to access the active “system
setup”dialog (Figure 13), “Active Design Params Setup”
dialog (Figure 14) and “EAs Params Setup” dialog, etc.
Users can design the design case using this GUI or load
necessary information from an existing file. The current
GUI also provides a method for the user to set up the initial
populations (See Figure 15). Once the task is completely-
filled out in the VE_Condutor’s Executation menu (Figure
11), the task can be submitted to the computational unit de-
fined by the user across a network. Usually, an optimiza-
tion not only runs results about the solutions to a specific
problem, but also provides a wealth of information about
the design space. However, this kind of information is
rarely communicated in an effective way to the designer.
The result generator enables the user to review this infor-
mation interactively. For example, the summary window
(Figure 16) will always show the latest information from
the computational unit. By adding the free software
GNUPLOT <http://www.gnuplot.info> into the
GUI, any design parameter and other useful information
can be selected for plotting for inspection. A sample of a
created plot can be seen in Figure 18, which displays the

http://www.gnuplot.info/

Huang and Bryden

history of fitness variation through the evolutionary proc-
ess that is summarized in Figure 17.

In the following section, this interactive design tool is
applied to a simplified pipe design case. Applying this tool
to this simplified model will provide a proof of concept
and a test bed; it also enables developers to focus on the
methodology and keep the effort tractable. Figure 11-18
shows screen shots of the functions that are already im-
plemented.

Figure 11: MainFrame Provided by VE_Suite

 Figure 12: Main Window of plug-in GUI

Figure 13: Design Params Setup Dialog

Figure 14: EAs Controal Params Setup Dialog

196

Figure 15: Active Design Params Setup Dialog

Figure 16: Initial Population Table

Figure 17: Example of Result Paramter

Figure 18: Example of Result Plot
4

Huang and Bryden

4 TEST CASE

The optimization problem used here as a test case is a sim-
plified coal transport pipe which operates under the dilute
phase condition. Currently, dilute phase pneumatic convey-
ing system design is largely dependent on the use of inte-
gral modelling techniques such as head loss coefficients. In
general cases, as long as the head loss requirement is met,
the details of gas-solid flow, such as particle distribution
and velocity profile are not used to drive the search proc-
ess. It is well-known that in order to achieve constant high
performance from the furnace, the coal transport piping
system should be designed such as to ensure uniform rate
and continuous feed of pulverized fuel to the burners.
Therefore, in the case of coal piping system of a coal-fired
power plant, more information than the head loss and flow
rate is needed to develop high-quality designs. To meet the
operation requirement, a uniform coal distribution across
pipe cross-sections is necessary; this type of information
can be obtained by detailed multiphase CFD analysis.

One of the most important factors contributing to un-
even coal distribution is the development of coal roping.
Coal roping is generally found in elbows and is hard to
prevent. The details of mechanisms that result in coal rop-
ing can be found in Schallert (2000), Schneider (2002) and
Yilmaz (1997)

Figure 19 shows the geometry of a test pipe. This ba-
sic pipe geometry consisted of a vertical pipe with a length
of five pipe diameters, the elbow section, and a horizontal
pipe with a length of fifteen pipe diameters followed by
another elbow and a vertical pipe with a length of three
pipe diameters. Both elbows are 90˚ elbows and the radius
of the elbows is three times the pipe diameter. In this de-
sign problem, one elliptical orifice is installed somewhere
in the long horizontal pipe to break the coal rope. The
lower part of Figure 19 shows the parameters determining
the shape of the orifice. The design parameters in this case

Figure 19: Sketch of Testing Pipe Geometry

θ

orifice-minor R

orifice-major R

pipe R

 A-A

A
A
19
Table 1 : Geometry Sizes of the Testing Facility

Pipe Di-
ameter, d

(m)

First
Vertical

Pipe
Length

Hori-
zontal
Pipe

Length

Second
Vertical

Pipe
Length

Elbow
Radius

d =0.154 5 × d 15 × d 3 × d 3 × d

include the location of the orifice, L, the orientation of the
orifice,θ , and the ratio of the radius of orifice (Rorific-major)
and the pipe, r~ . The goal of the pipe design optimization is
to minimize the coal distribution difference at the exit sur-
face of the pipe. To facilitate a quantitative comparison be-
tween the cases with different orifices, a mixing index (MI)
defined by Bilirgen (1998) is used as the index to the coal
distribution. The mixing index is computed using:

()()
21

1

2

1
11

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
= ∑

=

n

k
pm

p
CkC

nC
MI (1)

Where pC is the mean particle concentration in the pipe’s
cross-section, ()kCm is the local particle concentration
measured at different locations in the x-direction, and n is
the total number of measurements along the pipe diameter.
Equation 1 gives the degree of variation in concentration as
a standard deviation. The flow is assumed to be well mixed
when mixing index tends to zero. The optimization prob-
lem is then formulated as shown in Figure 20. In Figure 20

orificeS and pipeS represent the area of the cross section of
orifice and pipe, respectively.

Minimize:

MI
where: οο θ 900 <<

2 14d L d⋅ < < ⋅
9.0~7.0 << r

8.0=
pipe

orifice

S
S

Figure 20: Test Case Problem Setup

 In this study, Gambit™, which is the preprocessor of
the Fluent™ package, is used to build geometry based on
parameters generated by computers or chosen by users.
The renormalization group RNG ε−k turbulence model
provided by the Fluent™ was used to simulate turbulent
gas-particle flows through the pipe. A C program written
with the user-defined function (UDF) API provided by Flu-
ent™ is used to calculate the mixing coefficient. The
Evolve function in the Model class (see section 2) links
above pipe simulation with the evolutionary algorithm so
65

Huang and Bryden

that proposed design changes are automatically evaluated.
Figure 21 shows a simplified block diagram of the Evolve
function. As shown, the process proceeds in an iterative
manner; for each feasible design change, a CFD analysis is
automatically executed in the background to evaluate fit-
ness. The CFD analysis is followed by another design
change along with the computational re-meshing of the
new design. The design is again evaluated, and through the
evolutionary optimization process, the best design is found.

Figure 21: Evolve Function

It is well known that choosing an initial population is

important when using EAs as a searching method. A good
choice can result in rapid convergence, whereas a bad
choice can cause the algorithm to search randomly for a
very long time before closing in on the solution. Selecting
the initial design population is very straightforward in our
system. After testing different design parameters, the effect
of the key active parameters upon the design problem can
be studied and evaluated. As a result, the users can interac-
tively explore the design candidates and also gain addi-
tional insight into the underlying physical and mathemati-
cal models for the proposed designs, which in turn aids the
optimization of the configuration and geometry of the de-
sign. Moreover, users’ experience and knowledge are inte-
grated into this exploration process and helps them choose
the initial designs that are relatively close to the optimum
result. It may take some extra time to find these relatively
optimal starting design configurations because users have
to test many cases before they can determine which pro-
posed designs should be used as initial designs. The virtual
environment provides a natural interface between humans
and computers; it helps users grasp information quickly
and accurately, which has been demonstrated in many VR-
related publications.

Three runs were carried out in this study; each has an
initial population of 32 and stopped after 770 generations.
In the first two runs, the members of the initial population
were selected arbitrarily from the design space by the
computer. In the third run, designers defined the first 24
members (from 58 tries) based on their experience gained
from the interactive process; the computer randomly gen-
19
erated the remaining 8 members to keep diversity amongst
the population. With all three runs, the computer randomly
generated the crossover operator probability cp and the
mutation operator probability mp . The technique success-
fully converged; the optimum parameters such as orifice
radius and orifice angles, converged to very close values
with different starting initial design candidates. The varia-
tions of the best individual’s fitness during the evolution
process in the run are shown in Figure 22. It shows that
with a good initial population, EAs can find the optimal
solution much faster. In our case, the required mating
events reduces from 650 to 330. Table 2 shows that the
computational time was reduced to 96 hours from the
original 175 hours by using the new interactive design plat-
form.

0 100 200 300 400 500 600 700 800

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Fi
te

ss

Mating Events

 User-chose
 Random-generated1
 Random-generated2

Figure 22: Fitness Variations in the Evolution Processes

Table 2: Comparison between Traditional and Interactive
Design System

Traditional
Design Sys-

tem

Interactive
Design
System

Total Popsize 32 32
Randomly-Generated

Initial Popsize 32 8

User-chosen Initial
Popsize 0 58

Mating Events 650 330
Time Required to Com-

plete One Case by
Computer (min)

4 4

Average Time Spent by
Users for Choosing One
Design Candidate (min)

0 5

Total Calls to CFD
solver 2632 1378

Total Time (h) 175 96

While the above case shows the value that can be
gained from our new interactive design system, users can
also freely monitor the health of this search process by
66

Huang a

checking earlier results. For instance, in this coal pipe case,
if the constraint on the orifice area is forgotten, the opti-
mizer would try to reduce the orifice area to increase mix-
ing capability of the turbulence. Therefore, after several
iterations, the design is driven towards physically unrea-
sonable space. Most likely, users would detect this error in
the design formulation earlier by checking the current
status of the design space in the virtual environment. For a
more complicated product design, these wasted iterations
could be time-consuming and costly. Keeping users in the
loop allows them to detect a flaw in the mathematical
model, and change the optimization early, thus decreasing
the amount of time wasted on generating incorrect results.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a novel method for building a new
interactive design. A framework was established for adding
human interaction into the design loop; this is a big step
forward in the development of an interactive design sys-
tem. This system provides an easy and intuitive way to in-
troduce designers into the optimization process. As demon-
strated in the test case, we were able to reduce the total
computational time for the test case by more than 40%.
Hence, it is safe to say, for a simple CFD related design
optimization problem, this virtual engineering design tool
can help designers solve the problem within a much shorter
time frame. Additional work needs to be focused on paral-
lelizing the CFD optimization tasks since it is widely
known that EAs can be used to take full advantage of a
parallel computer structure.

REFERENCES

Anderson D., E. Anderson, N. Lesh, J. Marks, B. Mirtich,
D. Ratajczak, and K. Ryall. 2000. Human-guided sim-
ple search. In Proceeding Of AIAA 2000.

Bilirgen, H., E. Levy, and A. Yilmaz. 1998. Prediction of
pneumatic conveying flow phenomena using commer-
cial CFD software. In Powder Technology, 95:37-41.

CORBA, Available via Object Management Group
<http://www.omg.org/> [accessed April 12,
2005].

Goldberg, D. E. 1998. Genetic algorithm in search, optimi-
zation and machine learning. Addison-Wesley, MD.

Hong L., T. Mingxi, and H. F. John. 2004. Supporting
creative design in a visual evolutionary computing en-
vironment. In Journal Advances in Engineering Soft-
ware, 35:261-271.

McCorkle, D.S., K. M. Bryden, and S. J. Kirstukas. 2003.
Building a foundation for power plant virtual engi-
neering. In Proceedings of the 28th International
Technical Conference on Coal Utilization and Fuel
Systems, 118-127, Clearwater, FL.
19
nd Bryden

Schallert, R. and E. Levy. 1998. Effect of a combination of
two elbows on particle roping in pneumatic convey-
ing. In Power Technology, 107:226-233.

Schneider, H., T. Frank, D.K. Pachler, and K. Bernert.
2002. A numerical study of the gas-particle flow in
pipework and flow splitting devices of coal-fired
power plant. In 10th Workshop on Two-Phase Flow
Predictions, 227-236.

 SCIRun, Available via <www.sci.utah.edu> [ac-
cessed April 12, 2005].

SGI-OpenGL Performer, Available via
<www.sgi.com/products/software/perfo
rmer> [accessed April 12, 2005].

TAO CORBA, Available via
<www.ece.uci.edu./~schmidt/TAO.html>
[accessed April 12, 2005].

The Visualization ToolKit (VTK), Available via
<http://public.kitware.com/VTK> [ac-
cessed April 12, 2005].

Vladimir O. B, C. Christophe, G. Dipankar, Q. Gary, N.
V. Garret. 2002. VisualDOC: a software system for
general-purpose integraton and design optimization. In
AIAA/ISSMO’2002, Atlanta-Georgia.

VRJuggler, Available via <
http://www.vrjuggler.org > [accessed April
12, 2005].

wxWidgets, Available via
<http://www.wxWindows.org> [accessed April
12, 2005].

Xiao, A. and K. M. Bryden. 2004. Virtual Engineering: A
vision of the next-generation product realization using
virtual reality technologies. In Proceedings of ASME
Design Engineering Technical, Computers in Engi-
neering Conference, Salt lake City, Utah,
DETC2004/CIE-57698.

Yilmaz, Ali. 1997. Roping phenomena in lean phase pneu-
matic conveying. Ph.D. Thesis, Lehigh University.

AUTHOR BIOGRAPHIES

GENGXUN HUANG is a doctoral candidate in the De-
partment of Mechanical Engineering at Iowa State Univer-
sity. She is a member of ASME and AIAA. Her e-mail
address is <hgx@iastate.edu>

KENNETH M. BRYDEN is an associate professor and
associate chair of the Department of Mechanical Engineer-
ing at Iowa State University. His e-mail address is
<kmbryden@iastate.edu>

67

http://www.omg.org/
http://www.sgi.com/products/software/performer
http://www.sgi.com/products/software/performer
http://public.kitware.com/VTK
http://www.vrjuggler.org/
http://www.wxwindows.org/
mailto:<hgx@iastate.edu>
mailto:<kmbryden@iastate.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

