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ABSTRACT 

Product design is a complex decision-making process re-
quiring intense interaction between designers and the de-
signed product.  Consequently, the design process is sig-
nificantly different from a pure mathematical optimization.  
This paper presents a decision support platform for interac-
tive design that integrates mathematical optimization with 
human interaction based on VE-Suite. Current efforts are 
geared toward seamlessly linking high fidelity models, 
numerical optimization and human interaction to improve 
efficiency and quality in system performance. The de-
signer’s interaction causes the optimization process to dy-
namically change by adding, deleting, and modifying ob-
jectives, constraints, and other parameters that govern the 
process. As an illustration, a coal pipe design case is used 
to demonstrate the new platform’s capabilities. The case 
has demonstrated that adding user interaction into the de-
sign process has the potential to improve design efficiency 
and quality. 

1 INTRODUCTION 

Today, there are numerous research and software packages 
available in the literature. In general, machine-based nu-
merical optimization has significant utility within well-
defined routines and detailed design domains. In these sys-
tems the stereotypical role of the designer is to specify the 
problem including predefined constraints and control pa-
rameters, and then initiate a computer search to find an op-
timal solution. One of the major drawbacks of this type of 
design system is that this approach neglects the important 
aspect of the optimization task which is to obtain useable 
solutions. In practical applications, it is the solution sug-
gested by the optimizer, not the actual details of the design, 
that are most interesting. Anderson (2000) pointed out that 
in many contexts interaction is more important than effi-
ciency since the optimization algorithm is working with an 
impoverished objective function, and the ability to success-
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fully implement the solution depends on how well people 
understand and trust it. Users must understand and trust the 
generated solutions to use them effectively. Those limita-
tions have led Vladimir (2002) to report that numerical op-
timization technology  still has very limited success in an 
industrial design environment.  

In recent years research related to user-based interac-
tive optimization has increased rapidly. More and more re-
searchers agree that users are more likely to understand a 
solution that they helped to create than one that is simply 
presented to them. Research shows that including humans 
“in-the-loop” during the design process can enhance opti-
mization performance. However, most literature in this 
field focuses on extreme cases. For example, some interac-
tive optimization algorithms require user guidance at every 
step. Without user instruction, such algorithms cannot 
function. Therefore, they are typically only considered in 
cases where it is hard or impossible to use numerical mod-
els to represent the problems such as in works of art (Hong 
2004). Understandably, given the demands on user time 
imposed by algorithms of this kind, these algorithms are 
seldom used in the engineering design process. 

Other researchers used computational steering tech-
nology to interactively control a computational process, 
such as CFD simulation and optimization, during execution 
(i.e. SCIRun 2005). With computational steering, users are 
continuously provided with visual feedback about the state 
of their simulation and can change parameters on the fly. 
This allows designers to modify parameters in order to op-
timize their product. Although the concept of computa-
tional steering is  powerful, the implementation of compu-
tational steering is very difficult. It requires knowledge of 
simulation, visualization, user interfacing, and data com-
munication (Xiao and Bryden 2004 ). Therefore, while 
computational steering technologies offer significant capa-
bilities, they are generally time consuming to use and hard 
to adapt to meet the actual project requirements. For exam-
ple, to integrate an existing application into these systems, 
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the application source code has to be manually annotated 
with program statements by the application developer. 

From these experiences, we observe that  there are two 
key issues in designing interactive engineering systems. 
First, an appropriate division of labour between humans 
and computers is needed so that humans’ superior abstract 
thinking and computers’ superior computational speed can 
work together to produce a better performance than either 
could do alone.  The extent to which human interaction 
should influence the optimization process is still unclear.  
Fortunately, end-users usually have more experience han-
dling this issue if the system allows the user to guide the 
design process. Secondly, in order for the system to gain 
acceptance, it should be easy to use and provide real-world 
usability. Based on these two key requirements, this system 
should have the following characteristics: 

 
1. Scalability ― enable users from different areas to 

easily build applications inside the system or add 
new capabilities without dealing with system pro-
gramming issues. 

2. Extensibility― enable the system to grow by ex-
tending existing capabilities and adding new tech-
nologies. 

3. Flexibility ― enable users to choose from a vari-
ety of solvers and other computer aided engineer-
ing tools in  a platform independent manner. 

4. Physically-based, real-time visualization― enable 
users to observer the analysis result in a realistic 
and intuitive manner. 

 
Currently, there is no system available that meets these 

requirements. However, virtual engineering technology, 
which is defined as a technology that integrates and com-
bines geometric models, analysis, simulation, optimization 
and other decision making tools within a virtual environ-
ment to facilitate multidisciplinary and collaborative prod-
uct realization (Xiao and Bryden 2004), can be used as a 
way of gaining insight into the design space.  Furthermore, 
virtual engineering technology can also be used to quanti-
tatively and qualitatively identify innovative design op-
tions, which is exactly what interactive design system re-
quires. Hence, we have worked to extend the virtual design 
and engineering capabilities of VE_Suite to interactive 
product design. VE_Suite is an open source virtual engi-
neering software package that is currently under active de-
velopment by the complex system virtual engineering 
group at Iowa State University. VE_Suite serves as a high-
level support tool for engineers who want to transform 
their traditional applications into virtual engineering appli-
cations.  

The architecture of VE-Suite is shown in Figure 1. The 
core modules of VE-Suite are VE_Xplorer (the graphical 
engine), VE_Conductor (the GUI front end to the virtual 
engineering framework), and VE_CE (the computational 
19
engine). VE-Suite divides the implementation of virtual 
engineering into two tasks: WxWidgets based user inter-
faces and the computational unit (see Figure 1). These two 
tasks comprise the VE_Suite API. VE_Suite is general in 
nature and the three key components can run on a geo-
graphically diverse set of heterogeneous computer plat-
forms. For example, the VE_CE component can run on a 
Linux cluster; the VE_Xplorer component can run on an 
SGI machine; and VE_Conductor can run on a portable 
Tablet PC. Also, the three core components of VE-Suite 
can function as complete stand-alone applications provided 
that the necessary input files are prepared by the user. This 
feature ensures that VE-Suite can be used in a variety of 
applications. Additional details about VE_Suite can be 
found in McCorkle and Bryden’s report (2003). 

 

Figure 1: VE_Suite Architecture 
 
This paper illustrates this new interactive decision sup-

port system using evolutionary algorithms (EAs) as the op-
timization algorithm, computational fluid dynamic (CFD) 
as the evaluation mechanism, and VE_Suite as the back-
bone of the system. In Section 2 we introduce the neces-
sary background of the API provided by VE_Suite. Section 
3 contains a more detailed presentation of building a new 
interactive design system using the VE_Suite API. Empha-
sis is placed on building the computational unit and the 
plug-in GUI. In Section 4, the coal pipe design experi-
ments are presented to demonstrate the platform’s per-
formance. In the final section, we discuss what has been 
accomplished to date and present directions for future 
work. 

2 VE_SUITE CORE CHARACTERISTIC AND ITS 
API 

To enable performance on multiple operating systems and 
immersive technology platforms, VE-Suite is built upon 
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VR Juggler <http://www.vrjuggler.org>, SGI 
OpenGL Performer 
<http://www.sgi.com/products/software/p
erformer>, and Kitware’s VTK 
<http://public.kitware.com/VTK>. The com-
munication between the different components and user-
defined modules is built upon the widely adapted and sta-
ble Common Object Request Broker Architecture 
(CORBA) <http://www.omg.org> standard devel-
oped over the last decade. The Executive module (one of 
the key modules in the VE_Suite Core) implements two of 
the standard CORBA services bundled with the TAO 
CORBA<http://www.ece.uci.edu./~schmidt/
TAO.html> distribution. The first service is the COSS 
Naming Service that is used as a lookup table of the cur-
rently running processes which allows clients to find run-
ning process based on the given ID. The second service is 
the interface that houses the functional and data type defi-
nitions and provides them graphically to the user to allow 
him/her to define a workflow in the graphical interface. In 
our system, the running process (usually the computational 
unit) can broadcast its status and analysis information to 
multiple GUI clients. Any given GUI can be connected 
into the system information stream at any point in time to 
view the current state of the running process. The system 
was designed to allow the GUI to be shutdown and re-
started at will without any impact on the computational 
unit’s execution. This attach/detach functionality gives the 
user the ability to monitor the design process easily. As an 
example, this functionality would allow a user to build and 
start a simulation and then detach from the computational 
engine. The user could then go to a different location, re-
attach to the running process, and regain monitoring and 
control functions. The other advantage of the use of com-
ponent architecture design techniques is that multiple GUIs 
can also be connected simultaneously from different com-
puters and allow multiple users to monitor a simulation 
from different locations. 

The VE-Suite core provides a simple API for the user 
to build his own interface to fit the requirement of the ac-
tual application. wxWidgets 
<http://www.wxWindows.org> is provided as the 
GUI library for the user to use since it is easy to learn (C++ 
based), and well-maintained. A plug-in C++ base class 
(Figure 2) defining the basic GUI interface is provided to 
all module developers. Developers can create their own 
GUIs and then compile the resulting code into a DLL in 
Windows or shared libraries in Linux/Unix. VE-Suite is 
able to dynamically discover, identify, and load the user’s 
GUI from these shared libraries. Since this user-defined 
GUI is inherited from the plug-in base class, it has all func-
tionality provided by the framework. This detachable GUI 
is where the user is able to create the design configuration, 
set model inputs, start and stop execution of simulation, 
and view simulation results. Also, it is more likely to meet 
19
d Bryden 

user specific requirements because the interface is built by 
the person who will use it. This useable interface will be 
custom-tailored to the user’s demands and can easily be 
adapted if the user’s focus of interests changes. In order to 
transfer data from the GUI to its control, the function 
TransferDataFromWindow in the base class should be 
overriden. Figure 3 illustrates a simple, yet complete ex-
ample of how to transfer data from GUI components 
(wxTextCtrl) to its own control. 

 

 
Figure 2: PluginBase Class 

 

 
Figure 3: Example of TransferDataFromWindow 

 

 
Figure 4: Body_Unit_i Class 

 
Since users from different fields have a wide variety of 

needs, the analysis tools and their use require a detailed 
understanding of the problem. VE-Suite uses the Computa-
tional engine (VE_CE) module to construct, coordinate, 
schedule, and monitor the running processes. Because of 
this, existing commercial, in-house, and open source analy-
sis packages can be used directly with VE_Suite. The 
analysis package can vary from Microsoft ExcelTM spread 
sheets to process models to CFD models. The analyst only 
60
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needs to provide a few routines to declare the communica-
tion variables. VE_CE provides a CORBA server with 
which the detachable GUI connects. It is capable of run-
ning a simulation containing a multitude of different types 
of models, each accepting and generating a myriad of data 
types. Once a client-server connection is made, the unit is 
able to send results, messages, updates, and communica-
tions from other attached GUIs in real time. 

 

 
 

 
Figure 5: Template for SetParams and StartCalc 

 
VE-Suite provides a template for users to fill their own 

computation units into the VE-Suite framework. Figure 4 
shows the basic functions in Body_Unit_i class. Figure 5 
shows two important functions that users need to modify in 
order to implement their own applications. First, SetPar-
ams needs to be implemented for the user’s customized 
module. This call takes the GUI inputs passed by the 
CORBA interface (Executive Module). Using Figure 3 as 
example GUI inputs, every GUI variable that is needed can 
be retrieved from the interface by calling 
p.intfs[0].get***(“paramname”) (Note: *** represents the 
data type such as Double, Int). Additional details of how to 
add existing applications are discussed in Section 3 using 
the new design platform as an example. 

A key aim of virtual engineering is to fully engage the 
human capacity  for problem solving by creating a realistic 
experience for the user so that s/he can focus entirely on 
the engineering problem. The advantage is that previously 
indescribable complexities can be understood and the full 
range of engineering solutions can be explored. The 
graphical engine (VE-Xplorer) provides the core function-
19
ality for the virtual engineering aspect of the framework. It 
can load geometry files, three-dimensional simulation data 
and experimental data of almost every format into a scene. 
VR Juggler is used to handle interfacing with VR hardware 
and graphics rendering platform. VE-Suite handles the 
creation of the virtual environment and VR Juggler allows 
software to run with any type of virtual environment, from 
a regular 2-D screen to a six-walled immersive virtual 
space. Due to the generality of the visualization require-
ments, the VE-Suite core provides the basic visualization 
GUI so that users can navigate and control the scene. The 
GUI is laid out in a tabbed notebook format as shown in 
Figure 6. Typical operations can be performed on each tab 
of the GUI. For example, the navigation tab is the main 
window for users to navigate through the scene and choose 
the location he or she wishes to observe the data from. 
Through the visualization tab, users can select different 
visualization methods (contour surface, vector fields, etc.) 
to visualize the fluid field. Figure 7 shows the streamline 
of flow through a 90 degree elbow. VE_Xplorer is de-
signed such that users need not know the details of graph-
ics and virtual reality programming. It should be noted that 
VE-Suite also provides an interface that allows advanced 
users to add or modify the existing functions or visualiza-
tion GUI. 

 

 
Figure 6: VE_Xplorer GUI 

 

 
Figure 7: Streamline Reprentation (Flow through Elbow) 

3 PROPOSED INTERACTIVE EVOLUTIONARY 
DESIGN PLATFORM 

As discussed in Section 1, to allow effective user interac-
tion, the design system should provide users with data and 
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other information about the designed product and its per-
formance in an understandable and intuitive way. In addi-
tion, the design system should  also give users the ability to 
exert influence on the process in an intuitive manner. VE-
Suite already provides this basic functionality, such as de-
tachable GUI, realistic graphical engine and bi-directional 
bindings between the GUI and the computational unit, 
which are necessary to meet the requirement of an interac-
tive evolutionary design system. Therefore, the implemen-
tation of the proposed interactive design platform is very 
straightforward. Figure 8 shows the basic information flow 
of this system. As shown, the primary component in the 
system that users will interact with is the plug-in GUI. Us-
ing VE-Suite, designers can not only access the traditional 
design information, such as tables, two-dimensional plots 
and colour codes, whenever they want, but also three-
dimensional virtual images (i.e. streamline) from high fi-
delity datasets such as CFD data. On the computational 
unit side, the main module connects with the CORBA in-
terface to accept the user’s input. A multi-threaded ap-
proach is used in order to minimize the effort of adapting 
the existing computational source code into an interactive 
design space. A centralized Database Manager module is 
used for interpreting the user’s request, data management 
and transfer. This additional Database Manager module 
provides a simple way to track the state of the running 
process and exchange information between the Model 
thread and View thread. The following sections will focus 
on the implementation of the computational unit and the 
plug-in GUI design. 

 

 
Figure 8: Diagram of the System Architecture 

 

3.1 Computational Unit (Optimizer) 

In the area of engineering analysis tools, there has been a 
growing interest in optimal design in conjunction with 
CFD in the field of fluid mechanics. In many cases, im-
proving the thermal fluid system design requires under-
standing precise details of the fluid flow, the heat transfer, 
or other phenomena of interest. High-fidelity models such 
as CFD can provide a greater level of detail and improved 
19
solutions compared to simple engineering relationships. 
Therefore, thermal system design can be improved if CFD 
analysis is used instead of simplified modelling techniques 
such as the Moody diagram, heat loss coefficients, etc. 
However, it is not uncommon for one CFD analysis case to 
take several days to complete. Therefore, traditionally, it is 
extremely challenging to add human interaction into the 
system which uses high-fidelity models such as CFD 
solvers as an evaluation mechanism because of the differ-
ence in time between human thinking and machine prob-
lem solving. On the other hand, this system happens to be 
the system that needs human interaction most, especially 
when this system is used for conceptual or preliminary de-
sign. For instance, if a constraint is omitted or an assump-
tion is incorrectly made, numerical optimizers will often 
return a physically unreasonable design or will fail to con-
verge after several days. However, when the user is al-
lowed to monitor the design evolution, it is more likely that 
the user will catch the design flaw much earlier. Currently, 
there is no established standard to determine how much 
user time and expertise need to be devoted to steering the 
search process in order for the added user interaction to be 
most profitable. However, in the case of using high fidelity 
solver as the analysis code, compared to the CPU time 
needed for the CFD solver, the time used for the operation 
of human interaction is minimal. Therefore, adding human 
interaction into the optimization process can be generally 
expected to be helpful.  

The optimization algorithm (computational unit) we 
propose here lies somewhere between two extremes as dis-
cussed in Section 1 in the sense of adding human interac-
tion into the design process. Using our framework, the user 
does not determine the behaviour of the computational 
process. Therefore it is still a machine-based optimization, 
but users are given the capability to influence the process 
by altering system parameters or changing objective func-
tions. 

The computational unit for this interactive design sys-
tem utilizes a standard Evolutionary Algorithms optimiza-
tion software. The standard EA optimizer includes several 
components: selection, crossover, mutation, and replace-
ment. For more information about EAs see Goldberg 
(1989). This core function (the Evolve function in the 
Model class in Figure 9) becomes the central process of the 
computational unit. The template class Body_Unit_i pro-
vides necessary CORBA interfaces required for framework 
integration and communication. Therefore, a simple App 
class is added as an interface between the Model class and 
the Body_Unit_i class. A classical Subject/Observer design 
pattern is used among these three classes (See Figure 9).  
This is mainly used when new results need to be sent back 
to the plug-in GUI so that users can assess the latest design 
information. In our approach, the App class acts as a me-
diator between the other two classes; it is the observer of 
Model and subject of Body_Unit_i. As a subject of App, 
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Model will notify its observer App that new result is ready 
for user to pick up. As a subject of Body_Unit_i, in App’s 
Update function, it notifies Body_Unit_i and passes the in-
formation to Body_Unit_i. This Subject/Observer/ 
Mediator trio is commonly known as the Model View Con-
troller (MVC) pattern.  The advantage of this method is 
that the Model class can be almost the same as before. As 
mentioned previously, a multi-threaded approach is used in 
which the Model thread  executes the optimization loop 
and runs the analysis routines through the Evolve function 
in Figure 9, and the View thread dynamically displays the 
evolutions of the system according to users’ requests. The 
system is designed in this way so that the main optimiza-
tion loop will not be interrupted when users inspect the 
complex physical-based images.  

 

 
Figure 9: Computational Unit Scheme 
 

 

 
Figure 10: Computational Unit Application 
 
Figure 10 shows the implementation of these three 

classes. Notice, the user-defined Model class needs to in-
herit from Subject class and call the NotifyObservers func-
tion in the Evolve function; this function notifies all ob-
servers that new data is available. In our case, since it may 
1963
be of interest to the designer to visualize the path taken by 
the EAs optimizer, the NotifyObservers function is added 
at the end of each mating event loop. Therefore, users can 
always have access to the newest information such as the 
fitness and new creature’s geometry whenever they check 
the result from GUI.  Also, threading is done using the 
high-level threading API provided in VPR, the VR Juggler 
Portable Runtime Library. It is worth mentioning that there 
is an external TCP/IP Socket (VPR-based) connection be-
tween the View module and VE_Xplorer (VE-Suite 
graphical engine). This connection allows large high-
fidelity datasets to be transferred to the graphical engineer-
ing without interrupting the overall network communica-
tion. 

3.2 Plug-in GUI 

Since the goal of our study is to set up an interactive design 
system that allows users to provide input parameters to the 
underlying high fidelity analysis models, observe the 
analysis result, and optimize the product design, the 
graphical user interface must be easy to use. Over the 
course of development of GUI, it was found that certain 
features are required. For example, the ability to save the 
current case, reload the existing case file, basic EAs con-
trol parameters setup, etc. Although the current GUI is still 
in its initial stage, it has the basic functionality such as se-
lecting active design parameters, defining EA parameters, 
defining constraints, and selecting initial design candi-
dates. Figure 11 shows the MainFrame provided by 
VE_Conductor. It provides the method to connect to the 
CORBA interface. The main window for the user-defined 
plug-in GUI is shown in Figure 12. From this main win-
dow, the user is able to access the active “system 
setup”dialog (Figure 13), “Active Design Params Setup” 
dialog (Figure 14) and “EAs Params Setup” dialog, etc. 
Users can design the design case using this GUI or load 
necessary information from an existing file. The current 
GUI also provides a method for the user to set up the initial 
populations (See Figure 15). Once the task is completely-
filled out in the VE_Condutor’s  Executation menu (Figure 
11), the task can be submitted to the computational unit de-
fined by the user across a network. Usually, an optimiza-
tion not only runs results about the solutions to a specific 
problem, but also provides a wealth of information about 
the design space. However, this kind of information is 
rarely communicated in an effective way to the designer. 
The result generator enables the user to review this infor-
mation interactively. For example, the summary window 
(Figure 16) will always show the latest information from 
the computational unit. By adding the free software 
GNUPLOT <http://www.gnuplot.info>  into the 
GUI, any design parameter and other useful information 
can be selected for plotting for inspection. A sample of a 
created plot can be seen in Figure 18, which displays the 
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history of fitness variation through the evolutionary proc-
ess that is summarized in Figure 17.  

In the following section, this interactive design tool is 
applied to a simplified pipe design case. Applying this tool 
to this simplified model will provide a proof of concept 
and a test bed; it also enables developers to focus on the 
methodology and keep the effort tractable.  Figure 11-18 
shows screen shots of the functions that are already im-
plemented. 

 

 
Figure 11: MainFrame Provided by VE_Suite 

 

 
 Figure 12: Main Window of plug-in GUI 

 

 
Figure 13: Design Params Setup Dialog 

 

 
Figure 14: EAs Controal Params Setup Dialog 
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Figure 15: Active Design Params Setup Dialog 

 

 
Figure 16: Initial Population Table 

 

 
Figure 17: Example of Result Paramter 

 

 
Figure 18: Example of Result Plot  
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4 TEST CASE 

The optimization problem used here as a test case is a sim-
plified coal transport pipe which operates under the dilute 
phase condition. Currently, dilute phase pneumatic convey-
ing system design is largely dependent on the use of inte-
gral modelling techniques such as head loss coefficients. In 
general cases, as long as the head loss requirement is met, 
the details of gas-solid flow, such as particle distribution 
and velocity profile are not used to drive the search proc-
ess. It is well-known that in order to achieve constant high 
performance from the furnace, the coal transport piping 
system should be designed such as to ensure uniform rate 
and continuous feed of pulverized fuel to the burners. 
Therefore, in the case of coal piping system of a coal-fired 
power plant, more information than the head loss and flow 
rate is needed to develop high-quality designs. To meet the 
operation requirement, a uniform coal distribution across 
pipe cross-sections is necessary; this type of information 
can be obtained by detailed multiphase CFD analysis. 

One of the most important factors contributing to un-
even coal distribution is the development of coal roping. 
Coal roping is generally found in elbows and is hard to 
prevent. The details of mechanisms that result in coal rop-
ing can be found in  Schallert (2000), Schneider (2002) and 
Yilmaz (1997) 

Figure 19 shows the geometry of a test pipe. This ba-
sic pipe geometry consisted of a vertical pipe with a length 
of five pipe diameters, the elbow section, and a horizontal 
pipe with a length of fifteen pipe diameters followed by 
another elbow and a vertical pipe with a length of three 
pipe diameters. Both elbows are 90˚ elbows and the radius 
of the elbows is three times the pipe diameter. In this de-
sign problem, one elliptical orifice is installed somewhere 
in the long horizontal pipe to break the coal rope. The 
lower part of Figure 19 shows the parameters determining 
the shape of the orifice.  The design parameters in this case 
 

 
 

Figure 19: Sketch of Testing Pipe Geometry 
 

θ

orifice-minor R

orifice-major R

pipe R

 A-A 

A 
A 
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Table 1 : Geometry Sizes of the Testing Facility 

Pipe Di-
ameter, d 

(m) 

First 
Vertical 

Pipe 
Length  

Hori-
zontal 
Pipe 

Length  

Second 
Vertical 

Pipe 
Length  

Elbow 
Radius  

d =0.154 5 × d  15 × d 3 × d 3 × d 
 

 
include the location of the orifice, L, the orientation of the 
orifice,θ , and the ratio of the radius of orifice (Rorific-major) 
and the pipe, r~ . The goal of the pipe design optimization is 
to minimize the coal distribution difference at the exit sur-
face of the pipe. To facilitate a quantitative comparison be-
tween the cases with different orifices, a mixing index (MI) 
defined by Bilirgen (1998) is used as the index to the coal 
distribution. The mixing index is computed using: 
 

( )( )
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Where pC  is the mean particle concentration in the pipe’s 
cross-section, ( )kCm  is the local particle concentration 
measured at different locations in the x-direction, and n is 
the total number of measurements along the pipe diameter. 
Equation 1 gives the degree of variation in concentration as 
a standard deviation. The flow is assumed to be well mixed 
when mixing index tends to zero. The optimization prob-
lem is then formulated as shown in Figure 20. In Figure 20 

orificeS and pipeS represent the area of the cross section of 
orifice and pipe, respectively.  
 

Minimize:   
 

MI 
where:                   οο θ 900 <<  

2 14d L d⋅ < < ⋅  
9.0~7.0 << r  

8.0=
pipe

orifice

S
S

 

Figure 20: Test Case Problem Setup 
 
 In this study, Gambit™, which is the preprocessor of 
the Fluent™ package, is used to build geometry based on 
parameters generated by computers or chosen by users. 
The renormalization group RNG ε−k  turbulence model 
provided by the Fluent™ was used to simulate turbulent 
gas-particle flows through the pipe. A C program written 
with the user-defined function (UDF) API provided by Flu-
ent™ is used to calculate the mixing coefficient.  The 
Evolve function in the Model class (see section 2) links 
above pipe simulation with the evolutionary algorithm so 
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that proposed design changes are automatically evaluated. 
Figure 21 shows a simplified block diagram of the Evolve 
function. As shown, the process proceeds in an iterative 
manner; for each feasible design change, a CFD analysis is 
automatically executed in the background to evaluate fit-
ness. The CFD analysis is followed by another design 
change along with the computational re-meshing of the 
new design. The design is again evaluated, and through the 
evolutionary optimization process, the best design is found. 
 

 
Figure 21: Evolve Function 

 
It is well known that choosing an initial population is 

important when using EAs as a searching method. A good 
choice can result in rapid convergence, whereas a bad 
choice can cause the algorithm to search randomly for a 
very long time before closing in on the solution. Selecting 
the initial design population is very straightforward in our 
system. After testing different design parameters, the effect 
of the key active parameters upon the design problem can 
be studied and evaluated. As a result, the users can interac-
tively explore the design candidates and also gain addi-
tional insight into the underlying physical and mathemati-
cal models for the proposed designs, which in turn aids the 
optimization of the configuration and geometry of the de-
sign. Moreover, users’ experience and knowledge are inte-
grated into this exploration process and helps them choose 
the initial designs that are relatively close to the optimum 
result. It may take some extra time to find these relatively 
optimal starting design configurations because users have 
to test many cases before they can determine which pro-
posed designs should be used as initial designs. The virtual 
environment provides a natural interface between humans 
and computers; it helps users grasp information quickly 
and accurately, which has been demonstrated in many VR-
related publications. 

Three runs were carried out in this study; each has an 
initial population of 32 and stopped after 770 generations.  
In the first two runs, the members of the initial population 
were selected arbitrarily from the design space by the 
computer.  In the third run, designers defined the first 24 
members (from 58 tries) based on their experience gained 
from the interactive process; the computer randomly gen-
19
erated the remaining 8 members to keep diversity amongst 
the population.  With all three runs, the computer randomly 
generated the crossover operator probability cp  and the 
mutation operator probability mp . The technique  success-
fully converged; the optimum parameters such as orifice 
radius and orifice angles, converged to very close values 
with different starting initial design candidates. The varia-
tions of the best individual’s fitness during the evolution 
process in the run are shown in Figure 22. It shows that 
with a good initial population, EAs can find the optimal 
solution much faster.  In our case, the required mating 
events reduces from 650 to 330.  Table 2 shows that the 
computational time was reduced to 96 hours from the 
original 175 hours by using the new interactive design plat-
form. 
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Figure 22: Fitness Variations in the Evolution Processes 

 
Table 2: Comparison between Traditional and Interactive       
Design System 

 
Traditional 
Design Sys-

tem 

Interactive 
Design 
System  

Total Popsize 32 32 
Randomly-Generated 

Initial Popsize 32 8 

User-chosen Initial 
Popsize 0 58 

Mating Events 650 330 
Time Required to Com-

plete One Case by 
Computer (min) 

4 4 

Average Time Spent by 
Users for Choosing One 
Design Candidate (min) 

0 5 

Total Calls to CFD 
solver 2632 1378 

Total Time (h) 175 96 
 

While the above case shows the value that can be 
gained from our new interactive design system, users can 
also freely monitor the health of this search process by 
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checking earlier results. For instance, in this coal pipe case, 
if the constraint on the orifice area is forgotten, the opti-
mizer would try to reduce the orifice area to increase mix-
ing capability of the turbulence. Therefore, after several 
iterations, the design is driven towards physically unrea-
sonable space. Most likely, users would detect this error in 
the design formulation earlier by checking the current 
status of the design space in the virtual environment. For a 
more complicated product design, these wasted iterations 
could be time-consuming and costly. Keeping users in the 
loop allows them to detect a flaw in the mathematical 
model, and change the optimization early, thus decreasing 
the amount of time wasted on generating incorrect results. 

5 CONCLUSION AND FUTURE WORK 

In this paper, we present a novel method for building a new 
interactive design. A framework was established for adding 
human interaction into the design loop; this is a big step 
forward in the development of an interactive design sys-
tem. This system provides an easy and intuitive way to in-
troduce designers into the optimization process. As demon-
strated in the test case, we were able to reduce the total 
computational time for the test case by more than 40%.  
Hence, it is safe to say, for a simple CFD related design 
optimization problem, this virtual engineering design tool 
can help designers solve the problem within a much shorter 
time frame.  Additional work needs to be focused on paral-
lelizing the CFD optimization tasks since it is widely 
known that EAs can be used to take full advantage of a 
parallel computer structure.   
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