
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  
 
 

SIMULATION-BASED SCHEDULING FOR PARCEL CONSOLIDATION TERMINALS: 
A COMPARISON OF ITERATIVE IMPROVEMENT AND SIMULATED ANNEALING 

 
 

Douglas L. McWilliams 
 

Department of Industrial Technology 
401 North Grant Street 

Purdue University 
West Lafayette, IN 47906, U.S.A. 

 
 

ABSTRACT 

This research explores the application of a simulation-
based scheduling algorithm to generate unload schedules 
for processing feeder trailers in a parcel consolidation ter-
minal.  The study compares the performance of iterative 
improvement and simulated annealing to produce quality 
schedules.  The paper reports the results from a number of 
experimental test problems. 

1 INTRODUCTION 

The parcel delivery industry is a significant segment of the 
transportation industry.  According to the Bureau of Trans-
portation Statistics’ Commodity Flow Survey of 2002, the 
parcel delivery industry moved approximately 12.1% 
($1.03 trillion) of goods in the United States in 2002.  Fac-
tors that have increased the demand of the parcel delivery 
industry are just-in-time production principle (JIT), global 
manufacturing, and electronic retailing.  For instance, JIT 
production and global manufacturing require reliable, high-
speed, low-cost delivery service to transport goods in small 
batch sizes; and consumers continue to purchase goods 
such as personal computers, compact discs, books, jewelry, 
and apparel over the Internet, which require deliveries 
from the retailers’ remote locations to the customers’ sites. 

To improve the delivery service, many companies—
USPS, UPS, FedEx, and DHL—have invested in informa-
tion technology and in high-speed automated sorting sys-
tems, with the objective of the high-speed automated sort-
ing systems reducing the amount of time required to 
process large volumes of parcels through the parcel con-
solidation terminals.  However, most high-speed sorting 
systems seldom operate at maximum throughput because 
the stated capacity does not consider the labor constraints 
of the systems.  The unloading of incoming trailers at re-
ceiving docks and the loading of outgoing trailers at ship-
ping docks continue to be relatively slow labor-intensive 
operations.  These manual loading and unloading opera-
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tions are the bottlenecks that limit the throughputs.  There-
fore, the challenge in the parcel delivery industry is to 
maximize the throughputs of the parcel consolidation ter-
minals, which can only be achieved by considering the 
loading and unloading constraints. 

A typical sorting system in a parcel consolidation ter-
minal consists of a complex network of conveyors to move 
parcels from receiving docks to shipping docks (Figure 1).  
The terminal in Figure 1 has three receiving docks repre-
sented by nodes 1, 2, and 3, and nine shipping docks repre-
sented by nodes 10 through 18.  The shaded rectangles rep-
resent incoming or feeder trailers to be processed at the 
receiving docks.  A large number of feeder trailers must be 
processed at the receiving docks.  The clear rectangles rep-
resent outgoing trailers.  Each dock is usually allocated at a 
particular destination.  Nodes 4, 5, and 6 represent initial 
diverting points, and nodes 7, 8, and 9 represent final di-
verting points.  Parcels entering the sorting system are di-
verted to appropriate induction line conveyors.  The induc-
tion line conveyors move the parcels downstream to 
mainline conveyors that feed output cells.  At nodes 7, 8, 
and 9, the parcels are diverted to the correct shipping docks 
for loading onto outgoing trailers. 

Not only do the manual loading and unloading opera-
tions have a negative impact on system performance.  But 
the flow pattern of parcels through the system may also 
have an adverse affect on performance.  The reason is that 
each incoming trailer contains a batch of heterogeneous 
parcels.  The batch is heterogeneous because each parcel is 
not bound for the same shipping dock.  Based on the par-
cels’ destinations, each parcel takes a predefined route 
through the system.  For example, at a small terminal, re-
gardless of the destinations for the parcels, each parcel is 
loaded onto the same trailer.  At the large consolidation 
terminals, the parcels get unloaded and routed to outgoing 
trailers for the appropriate destinations in the delivery sys-
tem.  When an incoming trailer is unloaded at a receiving 
dock, all parcels are unloaded before the trailer leaves the 
dock.  Given that consolidation terminals have multiple re-
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ceiving docks, many incoming trailers are unloaded simul-
taneously.  The outcome may result in an excessive num-
ber of specific parcel types entering the system.  In this 
case, a parcel type is based on the flow of a parcel over a 
particular lane of the conveyor network to a particular 
shipping dock.  If an excessive number of specific parcel 
types enters the system, the flow of parcels to a particular 
shipping dock may exceed the loading capacity to the par-
ticular outgoing trailer.  Parcels begin to form a queue in 
the lane to the shipping dock.  If the queue length propa-
gates upstream, the flow of parcels over the other lanes to 
the other shipping docks may becomes blocked because of 
the common conveyors.  The end results will be flow con-
gestion, idle workers, and loss capacity. 

 

 
 

Figure 1: A Basic Sorting System. 
 
To reduce the risk of blocking and thus the time re-

quired to process a set of parcels through the system, the 
numbers of specific parcel types entering the sorting sys-
tem must be metered at the receiving docks.  However, 
controlling the numbers of specific parcel types flowing 
through a particular lane at any give time is a difficult task. 

This paper addresses the trailer-scheduling problem by 
considering the application of SA to solve the problem.  In 
Section 2, the relevant literature is discussed.  In Section 3, 
the problem statement and assumptions are presented.  A 
detailed description of the simulation-based scheduling al-
gorithm is presented in Section 4.  The algorithm is applied 
to small, medium, and large size problems; Section 5 
shows results of the algorithm.  Section 6 contains the con-
clusion and future research direction. 

2 RELEVANT LITERATURE 

The trailer-dock assignment problem is a similar problem 
to the trailer-scheduling problem.  The difference in the 
problems stems from the fact that a trailer-dock assignment 
problem is a static workload balancing problem (typically a 
20
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design issue) and this trailer-scheduling problem is a dy-
namic workload balancing problem (typically an opera-
tional issue).  Peck (1983), Tsui and Chang (1990 1992), 
Gue (1995 1997), Bartholdi and Gue (1998 2000), and 
Hwang and Cho (2002) have considered the trailer-dock 
assignment problem in the less-than-truckload (LTL) in-
dustry.  Masel and Goldsmith (1997) and Masel (1998) 
have considered the trailer-dock assignment problem in the 
parcel delivery industry, and McWilliams and Stanfield 
(2005) have studied the trailer-scheduling problem in the 
industry. 

Peck (1983) studied the effects of trailer-dock assign-
ment in LTL terminals.  A “greedy” heuristics is proposed 
to improve productivity by assigning incoming trailers and 
outgoing trailers to docks to minimize the total distance 
material handlers travel during the transfer operations.  The 
solution of the algorithm is evaluated using a simulation 
model of an LTL terminal.  The results show a 5% to 15% 
reduction in the time spans of transfer operations.  Tsui and 
Chang (1990) proposed an iterative improvement heuristics 
to the trailer-dock assignment problem with the objective 
of minimizing total forklift travel distance.  Tsui and 
Chang (1992) proposed an improved version of the as-
signment heuristics.  The model results in optimal assign-
ments for small size problems.  Computational time in-
creases significantly as the number of trailers and number 
of docks increase. 

Gue (1995 1999) proposed a solution methodology for 
the trailer-dock assignment problem.  While previous stud-
ies sought to minimize total travel distance, this solution 
methodology minimized total transfer time.  Since transfer 
time is a composition of both move time and wait time, 
minimizing total transfer time accounts for the total wait 
time.  A greedy algorithm is developed to solve the prob-
lem.  Results show a 3% to 30% reduction in total transfer 
time that equates to a 2% to 5% reduction in overall labor 
cost.  Bartholdi and Gue (2000) improved the solution 
methodology by replacing the greedy algorithm with simu-
lated annealing.  The results show labor cost reductions of 
approximately 20% to 45%. 

Masel and Goldsmith (1997) used a simulation study 
to evaluate various trailer-dock assignments for consolida-
tion terminals in the parcel delivery industry.  Masel 
(1998) proposed a list-scheduling heuristic to construct 
adequate trailer-dock assignments.  No computational re-
sults are provided for either approach.  McWilliams and 
Stanfield (2005) proposed a simulation-based scheduling 
algorithm (SSA) to assign incoming trailers to unload 
docks at the parcel consolidation terminals.  The SSA em-
beds an iterative improvement heuristics to search for good 
unload schedules.  The results show a 15% to 25% reduc-
tion in the required time to complete the transfer opera-
tions.  This study compares the performance of simulated 
annealing and iterative improvement to generate good so-
lutions to the problem. 
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3 THE PROBLEM STATEMENT 

Moving parcels from incoming trailers to outgoing trailers 
is a transfer operation.  The trailer-scheduling problem of 
minimizing the time span of the transfer operation is de-
fined as follows.  A parcel consolidation terminal has a set 
of incoming trailers.  Each incoming trailer contains a 
batch of heterogeneous parcels.  The parcels must be 
unloaded at receiving docks, routed to appropriate shipping 
docks, and then loaded onto outgoing trailers.  The objec-
tive is to assign the incoming trailers to the receiving docks 
with the objective of minimizing the required time to com-
plete the transfer operation.  The time starts when the first 
parcel enters the system and ends when the last parcel exits 
the system.  The basic assumptions in this study as stated 
in McWilliams and Stanfield (2005) are as follows: 

 
1. All trailers are available at the beginning of the 

transfer operation; 
2. Empty incoming trailers are instantaneously re-

placed with nonempty incoming trailers; 
3. Full outgoing trailers are instantaneously replaced 

with empty outgoing trailers; 
4. Setup time for trailers are negligible and equal to 

zero; 
5. No priority exists for any one trailer; 
6. No trailer can be preempted once its unloading or 

loading has begun; 
7. The number of receiving docks and the number of 

shipping docks remain fixed throughout the dura-
tion of the transfer operations; 

8. Receiving docks are identical—a receiving dock 
can process any incoming trailer and receiving 
docks have equal and constant service rates; 

9. Shipping docks are identical—a shipping dock 
can process any outgoing trailer and shipping 
docks have equal and constant service rates; 

10. Parcel movement through the sorting system is via 
a network of conveyors; 

11. Conveying times are negligible and equal to zero; 
and 

12. Loading, unloading, and sorting times are known 
and deterministic. 

4 METHODOLOGY 

A conveyor network is a queuing network.  The complexity 
of queuing networks makes it extremely difficult to develop 
analytical models of their stochastic behavior.  Thus, this 
study assesses the use of an SSA with simulated annealing to 
generate unload schedules.  An SSA is the implementation 
of computer simulation to optimize systems that are too 
complex to be modeled analytically (Andradöttir, 1998).  
SSA involves finding the best schedule where the perform-
ance evaluation is based on results from a discrete-event 
208
simulation model of the real-world system.  Figure 2 illus-
trates the conceptual design of the SSA.  The proposed SSA 
embeds a local search heuristics, a list-scheduling algorithm, 
and a deterministic simulation model.  This study compares 
the performance of iterative improvement and simulated an-
nealing to find good unload schedules. 

4.1 Iterative Improvement 

Iterative improvement is a local search heuristics that uses 
permutation representation for the solution structure.  It 
starts with a generated initial random solution s, which is 
stored as the current solution.  At each iteration, the heuris-
tic generates a new solution s’ using a particular move 
strategy.  The heuristic then compares the quality of the so-
lution s’, C(s’), with the quality of the current solution s, 
C(s).  If C(s’) ≤ C(s), the heuristics replaces the current so-
lution with the new solution; otherwise, the heuristics 
keeps the current solution.  This procedure continues until 
a termination criterion is satisfied, i.e., maximum iterations 
or maximum computational time. 

 

 
 

Figure 2:  The Conceptual Design of the SSA. 

4.2 Simulated Annealing 

Simulated Annealing (SA) is a meta-strategy local search 
heuristics.  Similar to iterative improvement, SA starts with 
a generated initial random solution s, which is stored as the 
current solution.  At each iteration, the heuristic generates 
a new solution s’ using a move strategy.  The heuristic then 
compares the quality of the solution with the quality of the 
current solution s.  If C(s’) ≤ C(s), the heuristics replaces 
the current solution with the new solution; otherwise, SA 
uses random acceptance to determine if the new solution is 
to replace the current solution.  The random acceptance 
strategy allows occasional uphill moves to be accepted 
with certain probabilities to avoid producing poor local op-
timum solutions.  The probability of acceptance equation is 
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where ΔCss’= C(s’) − C(s) and ck is the temperature (control 
parameter).  The equation is the Metropolis criterion (Me-
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tropolis et al., 1953).  For a non-homogeneous SA algo-
rithm, the temperature ck is incrementally decreases in 
magnitude as the algorithm progresses according to the 
cooling schedule.  At each increment of ck, a number of so-
lutions are evaluated.  The decreasing of ck causes the ac-
ceptance probability of degenerative solutions to lower as 
the algorithm progresses.  Kirkpatrick et al. (1982) propose 
a cooling schedule for SA.  The temperature ck for k > 0 is 
calculated by ck + 1 = α × ck where α is the control parame-
ter for the cooling schedule.  Limiting the maximum value 
for k sets the stopping criterion. 

4.3 Move Strategy 

Each new solution s’ is a neighbor of the current solution s.  
The size of the neighborhood NB(s), a subset of the set S of 
feasible solutions, is defined by a specified move strategy.  
To obtain new solutions, small changes (perturbations) are 
made to the current solution.  The selected move strategy 
has a crucial influence on the quality of solutions obtain-
able and the required computational time.  If the neighbor-
hood is too small, the search is very restricted, and thus it 
may be nearly impossible to reach good solutions.  On the 
other hand, if the neighborhood is too large, a good solu-
tion may be found; however, the computational time to 
find the solution may be significantly high.  Various move 
strategies were evaluated in McWilliams and Stanfield 
(2005).  The best move strategies are evaluated under 
simulated annealing.  The move strategies are trailer-
insertion (TIS), 2-trailer swap (2TS), 3-trailer swap (3TS), 
and random (RND). 

TIS.  The set of solutions obtainable by removing a 
trailer from one position in the permutation and inserting it 
into another position (Figure 3).  The size of the neighbor-
hood is O(n2). 

 
1 2 3 4 5 6 7 8 9

1 2 6 3 4 5 7 8 9  
 

Figure 3: The Trailer Insertion Move Strategy. 
 
2TS.  The set of solutions obtainable by exchanging 

the positions of two trailers in the permutation (Figure 4).  
The size of the neighborhood is O(n2). 

 

 
 

Figure 4: The 2-Trailer Swap Move Strategy. 
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 3TS.  The set of solutions obtainable by exchanging 
the positions of three trailers in the permutation (Figure 5).  
The size of the neighborhood is O(n3). 

 

 
 

Figure 5: The 3-Trailer Swap Move Strategy. 
 
RND.  The universal set of all solutions obtainable by 

generating a new random permutation (Figure 6).  The size 
of the neighborhood is O(n!). 

 
1 2 3 4 5 6 7 8 9

7 3 4 8 2 6 9 1 5  
 

Figure 6: The Random Move Strategy. 

4.4 List-scheduling algorithm (LSA) 

To compute the quality of each new solution, a LSA maps 
each permutation sequence to a corresponding unload 
schedule.  Each solution (permutation) is a priority list, 
where incoming trailers appear on the list in decreasing or-
der of priority.  The LSA constructs a feasible schedule 
from each list systematically by assigning one trailer after 
the other to the first available receiving dock.  Figure 7 
shows two consecutive permutations: s1 and s2.  At itera-
tions 1 and 2 respectively, the LSA retrieves permutations 
s1 and s2 then maps the appropriate unload schedules dur-
ing the simulation runs. 

4.5 Simulation Model 

A detailed deterministic simulation model of the parcel 
consolidation terminal is used to evaluate each unload 
schedule.  The model includes all internal operations that 
affect the operating performance of the system, such as the 
unloading, loading, and sorting operations.  The speed and 
availability of these resources affect the time span of the 
transfer operations.  For additional reading on the 
simulation modeling of parcel consolidation terminals, the 
reader is referred to Rohrer (1995).  The evaluation func-
tion for schedule s’ is 

 
( )sevalf ′= , where ( )sNBs ∈′ . 
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Figure 7: Illustration of the List-Scheduling Algorithm. 

5 EXPERIMENTAL RESULTS 

An experimental analysis is conducted to evaluate the 
SSA.  The experiment determines the impact of simulated 
annealing and iterative improvement, along with the move 
strategies.  Three sizes of parcel consolidation terminals 
are considered: “small,” “medium,” and “large.”  The 
small terminal has three receiving docks and nine shipping 
docks as in Figure 1.  The medium terminal has 10 receiv-
ing docks and 32 shipping docks, and the large terminal 
has 50 receiving docks and 160 shipping docks.  The 
hourly throughput capacities of the small, medium, and 
large terminals are 1,800, 6,000, and 30,000 parcels, re-
spectively.  These throughput capacities are so selected to 
reflect the real-world system. 

The test problems are taken from McWilliams and 
Stanfield (2005).  Twenty random instances are used for 
the small and medium size terminals, and one random in-
stances is used for the large terminal.  The constraints for 
the test problems are as follows.  The cumulative loads 
from the incoming trailers to the shipping docks are evenly 
distributed.  For the small, medium, and large terminals, 
the number of trailers in each instance is 30, 100, and 500, 
respectively.  There are 600 parcels in each trailer; thus, 
the cumulative volume sizes for the small, medium, and 
large terminals are 18,000, 60,000, 300,000 parcels, re-
spectively. 

The local search heuristics are coded in C language 
and run on IBM workstations with 3 GHz and 1 GB RAM.  
The simulation models of the parcel consolidation termi-
20
nals were implemented using Arena 7.0 simulation soft-
ware package, a product of Rockwell Automation.  The 
average computational time for each replication of the 
simulation models are 0.03, 0.20, and 2.00 minutes for the 
small, medium, and large terminals, respectively.  Maxi-
mum iteration is used as the termination: 200 iterations for 
the small and medium instances and 1000 for the large in-
stance. 

Table 1 shows the summary statistics for the small in-
stances.  The table also shows the initial and worst solu-
tions statistics.  The worst performance is 1206 minutes.  
Compared to the initial and worst solutions, the SSA gen-
erates good unload schedules for this problem.  Table 2 is 
an ANOVA table.  With alpha equal to 0.05, the table 
shows that there is no statistical significance between the 
algorithms.  The iterative improvement and the simulated 
annealing generate similar results; however, the table does 
show that there is statistical significance between the move 
strategies.  Figure 8 is an interaction plot.  The figure 
shows that RND results in the worst performance for the 
SSA under both iterative improvement and simulated an-
nealing.  In fact, simulated annealing performance best 
with pairwise interchange. 

 
Table 1: Summary for Small Instances. 

 Min Mean Max Std Dev. 
Initial 730 837 989  65 
Worst 974 1037 1206  44 
Iterative     
 TIS 616 640 668  12 
 2TS 613 640 670  15 
 3TS 612 646 677  16 
 RND 648 690 720  15 
SA     
 TIS 616 641 660  11 
 2TS 615 635 671  13 
 3TS 619 645 678  17 
 RND 664 689 714  13 

 
Table 2: ANOVA Summary for Small Instances. 

Source DF SS MS F P 
Move strategy 3 63691 21230 97.76 0.000 
Algorithm 1 6 6 0.03 0.864 
Interaction 3 422 141 0.65 0.585 
Error 152 33010 217   
Total 159 97130    

 
Table 3 shows the summary statistics for the medium 

instances.  This table also shows the initial and worst solu-
tions.  Compared to the initial and worst solutions, SSA 
still generates good solutions.  Table 4 is an ANOVA table 
of the medium instances.  The table shows similar results 
as in Table 2.  No statistical significance exists between 
iterative improvement and simulated annealing; however, 
statistical significance does exist between the move strate-
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gies.  The significance is illustrated in Figure 9.  Finally, 
Figure 10 shows a plot of the large instance for 1000 itera-
tions.  The plot shows that simulated annealing performs 
best.  The initial solution quality was 851 minutes, and the 
resulting solution quality for the iterative improvement and 
simulated annealing were 775 minutes and 752 minutes, 
respectively.  The runtime for the large problem was 1847 
minutes. 
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Figure 8: Interaction Plot for Small Problems. 
 

Table 3: Summary for Medium Instances. 
 Min Mean Max Std Dev. 
Initial 708 812 890  40 
Worst 956 1134 1320  51 
Iterative     
 TIS 639 664 692  13 
 2TS 637 657 673  10 
 3TS 637 661 684  14 
 RND 672 703 713  9 
SA     
 TIS 637 665 695  14 
 2TS 639 661 718  16 
 3TS 635 664 682  12 
 RND 688 705 721  9 

 
Table 4: ANOVA Summary for Medium Instances. 

Source DF SS MS F P 
Move strategy 3 53204 17735 116.92 0.000 
Algorithm 1 276 276 1.82 0.180 
Interaction 3 75 25 0.17 0.919 
Error 152 23056 152   
Total 159 76611    
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Figure 9: Interaction Plot for Medium Problems. 
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Figure 10: A Plot of Large Terminal Performance per It-
eration. 

6 CONCLUSIONS AND FUTURE RESEARCH 

This research compared the performance of simulated an-
nealing and iterative improvement in a simulation-based 
scheduling algorithm to find unload schedules for the 
trailer-scheduling problem.  Four different move strategies 
were evaluated for the local search methods.  The results 
show that the SSA produces unload schedules that reduce 
the required time of transfer operations by 15% to 25% for 
the small and medium instances.  Each move strategy pro-
duced good schedules except the random move strategy.  
Also, there no statistical significance between iterative im-
provement and simulated annealing.  The SSA provides 
insight for future research on the trailer-scheduling prob-
lem.  Future research should include the application of dis-
tributed simulation or a meta-modeling approach to reduce 
required computational time to obtain given solutions.  
Other important issues involve systematically relaxing the 
assumptions. 
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