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ABSTRACT 

Much of the project scheduling literature treats task dura-
tions as deterministic. In reality, however, task durations 
are subject to considerable uncertainty and that uncertainty 
can be influenced by the resources assigned. The purpose 
of this paper is to provide the means for program managers 
(who may have responsibility for multiple projects) to op-
timally allocate resources from common resource pools to 
individual tasks on several competing projects. Instead of 
the traditional use of schedules, we develop control poli-
cies in the form of planned resource allocation to tasks that 
capture the uncertainty associated with task durations and 
the impact of resource allocation on those durations. We 
develop a solution procedure for the model and illustrate 
the ideas in an example. 

1 INTRODUCTION 

Initial planning has a great deal to do with the potential 
success of any project effort. Whether the project involves 
delivery of a service, a new piece of software or hardware, 
renovating a building, etc., a key question is how to allo-
cate resources to tasks efficiently so that the projects can 
finish on time and on budget. For some projects, if there 
are delays in their completion beyond their due date, a fi-
nancial penalty is incurred. Under such circumstances care-
ful planning of resource use over time is crucial. 

Task durations are often subject to considerable uncer-
tainty. This uncertainty increases when the project is a 
unique attempt for which there is little past experience. It is 
very intuitive that if the amount of resources allocated to a 
single task increases, the mean and variance of its duration 
will decrease. For example, in construction projects multi-
ples of the ideal crew size can be used to shorten the dura-
tion of tasks. 

A program manager must balance the needs of multi-
ple projects. Resources must be allocated among the pro-
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jects so that they are completed on schedule.  In addition to 
optimal allocation of the currently available resources,  the 
project manager must evaluate potential changes in re-
source availability that are likely to be valuable. For in-
stance, the program manager might conclude that the 
availability of some resources are more than what is really 
needed while there is another resource that is scarce and 
therefore drives the duration of the project. This model can 
be used to develop the analysis to identify opportunities to 
change resource availabilities. 

The focus of this paper is the development of a model 
and a solution procedure for resource allocation across pro-
jects when there are significant uncertainties associated 
with the task durations and the resource needs of individual 
tasks. This paper makes two significant contributions to the 
literature on project management. First, it creates a mathe-
matical model that captures the uncertainty associated with 
task durations and resource requirements. Second, it devel-
ops a solution procedure that allocates available resources 
to tasks. The procedure is sensitive to the relationship be-
tween the resources allocated to a task and the probability 
distribution for the duration of the task. We use simulation 
to capture the risk associated with the resource assignments 
to tasks.  
The next section presents a review of the related literature. 
In section three the problem is defined and in section four a 
mixed-integer non-linear mathematical model is developed 
to support the definition. Section five presents a solution 
procedure for the problem that combines optimization and 
simulation to estimate optimum control policies for 
planned resource use. In section six, an illustrative example 
is discussed to show how this technique can be applied. 
The last section highlights the conclusions. 
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2 PRIOR RELATED WORK 

This research draws on literature in three major areas: re-
source-constrained project scheduling, stochastic PERT 
analysis, and combined simulation-optimization methods. 

The key question in this paper is how to allocate the 
available resources across competing projects under uncer-
tainty. Burt (1977) was one of the first to consider how al-
location of resources to tasks might affect the probability 
distributions for task duration. He developed a model 
based on the uniform and symmetric triangular distribu-
tions for task duration. In his model, the allocation of addi-
tional resources shifts the right end point of the distribution 
to the left. His model provided a simple mechanism for 
looking at resource allocations to tasks, where the effects 
of additional resources have a specific effect on both the 
mean and variance of task duration. His procedure was 
limited to looking at parallel sequences of serial tasks, and 
to allocating a single, non-renewable resource (e.g., overall 
budget), but it was an important beginning in examining 
the general problem.  

More recently, Gerchak (2000) studied a related prob-
lem where allocating more of a single limited resource to 
an activity can reduce the variability of its duration without 
affecting its mean duration. His objective was to construct 
analytic results for allocating a single resource (e.g., 
budget) to two activities in a sequence so as to minimize 
the variance in the sum of their durations.  

Our solution method is related to algorithms for the re-
source-constrained project scheduling problem (RCPSP). 
The RCPSP is a generalization of the static job shop prob-
lem and therefore is NP-hard (Blazewicz et al., 1983).  
Solving this problem has been a theoretical challenge for 
researchers. Brucker et al.(1999), Hartmann (1999), Hart-
mann and Kolisch(2000), and Herroelen et al.(1998) give 
thorough reviews on how RCPSP has been attacked by 
many different researchers. 

Because this problem is NP-hard, exact methods are 
very expensive and are generally not practical for even 
moderately sized problems. Therefore substantial research 
focuses on developing heuristics to solve the RCPSP.  Be-
side exact methods, there are two other main categories of 
procedures to attack the RCPSP: priority rules (Kolisch, 
1996) and meta-heuristic approaches (Bouleimen and Le-
cocq 2003, Hartmann 1998). 

We focus on the use of priority rule scheduling and 
meta-heuristics. In the meta-heuristic approach, usually an 
activity list is created and then by changing the order of the 
tasks in the list a neighboring schedule is identified. Simu-
lated annealing (SA), genetic algorithms (GA), tabu search 
and greedy search have all been tested by practitioners to 
solve the RCPSP. Hartmann’s (1998) GA and Bouleimen 
and Lecocq’s (2003) SA approach appear to be the best 
currently available methods. 
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Kolisch (1996) has explored priority rule scheduling in 
great detail. A priority rule schedule consists of two parts, 
a priority rule and a scheduling scheme. The scheduling 
scheme is constructed in a stage-wise fashion by building 
on partial schedules. The priority rule estimates, among the 
eligible tasks, which task should be scheduled at the cur-
rent time point with the goal of obtaining the shortest pro-
ject duration. 

Golenko-Ginzburg and Gonik (1998) focus on devel-
oping a decision-making process to determine, as a project 
unfolds, which tasks to start when and what resources to 
assign.  When a task finishes, a local optimization is per-
formed to determine which task or set of tasks should be 
started next, with what resource assignments.  They esti-
mate the effectiveness of this decision-making process us-
ing simulation.  This research is similar to ours in three re-
spects.  First both are focused on modeling project 
activities when the resources assigned affect the probabil-
ity distribution of the activity duration.  Second, both focus 
on a simulation-based philosophy to create a schedule and 
to evaluate that schedule.  Finally, both incorporate infor-
mation about what tasks are likely to be on the critical path 
when making resource assignments and placing activities 
on the schedule.  With that said, there are some important 
differences.  Perhaps, the most important difference is that 
Golenko-Ginzburg and Gonik (1998) focus on creating a 
decision-making process to be used as the project unfolds 
whereas this paper focuses on creating a plan.  Golenko-
Ginzburg and Gonik (1998) assume that the resources as-
signed to an activity have a linear impact on the random 
duration of an activity.   This paper is focused on a declin-
ing marginal impact on the duration as additional resources 
are assigned.  Golenko-Ginzburg and Gonik (1998) esti-
mate what tasks may or may not be on the critical path 
prior to doing the resource assignment, whereas this paper 
bases its estimates on the probability that an activity is on 
the critical path once a resource assignment is performed.   

This paper is built on a formulation proposed by 
Nozick et al. (2004). They introduce the notion of resource 
multipliers which determine the amount of a resource allo-
cated to a task. Changing the resource multipliers affects 
the probability distribution for the duration of the task. In 
this paper, we have adopted simulation to capture the effect 
of a particular set of resource assignments to tasks and the 
resulting uncertainty of the task durations. We develop a 
solution procedure based on combined use of simulation 
and optimization to make the planned resource assign-
ments. 

3 PROBLEM DEFINITION 

The program management problem can be stated as 
follows: There is a set of projects L that compete for re-
sources from common pools. Each of the projects l ∈ L 
consists of a set Jl of tasks. Due to technological require-
28
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ments, there will be precedence relationships among the 
tasks. To represent this relationship, we use the activity on 
node (AON) structure for the project network. We assume 
that the tasks are numbered based on their precedence, i.e., 
if task i is an immediate predecessor of task j then i < j. Pjl 
is the set of immediate predecessors of task j from the lth 
project and task j cannot be started until all of its predeces-
sors are completed. We consider additional dummy tasks 
as well: a single source node  and a single sink node  to 
identify the beginning and end of each project. Also, two 
additional dummy tasks will be added to the beginning and 
end of the collection of the projects to mark the successful 
start and completion of the entire set of projects. Without 
loss of generality, we can assume that these dummy nodes 
have zero duration and no resource requirements. 

We focus on renewable resources in this analysis, but 
extension to include nonrenewable or doubly-constrained 
resources is straightforward. Assume there is a set K of re-
newable resources. Each resource k∈K has some finite 
number of units Rkt  available in a small time slice indexed 
by t. For notational purposes it is convenient to index time 
by discrete periods, t, but we will allow task durations to 
vary continuously, so there is an implicit assumption that 
the periods t are very short relative to the duration of the 
project. 

Each task j of project l has a default requirement,  rilk0, 
of resource k in order for its duration distribution to be de-
scribed by a nominal distribution. The nominal mean dura-
tion of task il is µil0 and nominal variance is σ²il0. 

Assume Milk  is the resource multiplier of task i of pro-
ject l for resource k. If Milk  = 1 for all resources, then task i 
has a nominal average duration of µil0

, a nominal variance 
in duration equal to σ²il0

 and the resource requirement of 
task i for renewable resource k is rilk0. However, when the 
resource multipliers for different resources change, the 
mean and variance of the duration of task il  and the need 
for resource type k will change accordingly. λilk

 and γilk
 are 

elasticities of the mean and the variance, respectively of 
the duration of task il with regard to resource k.  Equations 
(1), (2) and (3) represent the mathematical relationship 
among these parameters. 

 
 0 ,i kl

l l li i i k l
k K

M i lλμ μ
∈

= ∀∏  (1) 

 2 2
0 ,i kl

l l li i i k l
k K

M i lγσ σ
∈

= ∀∏  (2) 

 0 , ,
l l li k i k i k lr r M i l k=      ∀  (3) 

 
If the resource multiplier of task il with respect to re-

source k, Milk
, is changed by 1%, the mean and the variance 

of the duration for that task will change by λilk
% and γilk

% 
respectively. This is the same notion as elasticity in micro-
economics.  
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To illustrate the effect of different resource allocations 
on the distribution of task duration consider the following 
example. Assume a project task requires only one resource 
and that its nominal duration is described by Normal dis-
tribution with a mean of 10 and variance of 9. The elastic-
ities of the mean and variance are both assumed to be -0.5. 
Further assume that in the nominal case, the task only 
needs one unit of the resource when active.  

Figure 1 shows how increasing the resource multipli-
ers shifts the probability density function of task duration 
to the left (lower mean) and compresses it (lower vari-
ance). 
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Figure 1: Effect of a Change in the Resource Multiplier on 
the Probability Distribution of Duration 

 
Figure 2 illustrates that the rate of decrease in the 

mean duration declines as the resource multiplier increases. 
This illustrates diminishing marginal returns to increasing 
resources. In equations (1) and (2) there will be diminish-
ing marginal returns as long as the elasticities are less than 
1.0 in absolute value. Figure 2 shows the relationship be-
tween expected duration and the resource multiplier for 
two different values of the elasticity parameter. 
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Figure 2: Effect of a Change in the Resource Multiplier on 
Expected Duration for Two Different Values of Elasticity 

 
The most commonly used objective function in the 

project management literature is to minimize the makespan 
of the project subject to honoring precedence and resource 
requirements. Makespan is defined to be the time span be-
tween the start and end of the project. For the purpose of 
this analysis we focus on minimizing the expected 
makespan of the collection of the projects subject to prece-
dence constraints and resource limitations. This analysis 
can be easily generalized to other objectives like minimiz-
ing weighted tardiness across the collection of projects. 

4 MODEL FORMULATION 

Equation (4) represents the precedence constraints. It states 
that a task can only start when all of its predecessors are 
complete. Pjl

 is the set of all immediate predecessors of 
task j in project l. The duration of task il (

li
d ) is a random 

variable whose probability density function (pdf) depends 
on its nominal mean and variance and the resource multi-
plier for each of the resources. We will denote this pdf as  

2
0 0( | , , )

l l l li i k i if t M μ σ . Silt
 is a binary variable that equals 

one if task il is scheduled to start in period t and zero oth-
erwise.  The entire project has an allowable time span of T 
time periods. 
  

 
1 1

,
l l l l

T T
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τ τ

τ τ
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+ ≤     ∀ ∈ ∀∑ ∑   (4) 

 
Assume Nl is the completion task for project l. This 

task is a dummy task and therefore has a duration of zero 
with no resource requirements. Equation (5) represents the 
project completion constraint for each project. 

 

 
1

1
l

T
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Equation (6) represents the resource requirement con-

straints. In these constraints, rilk
 is the amount of resource k 

allocated to task il if the resource multiplier is Milk
.  Rkt 

represents the amount of resource k available at time t. If 
fil

(t) is the probability density function for the duration of 
task il (suppressing the parameters for notational simplifi-
cation), then Fil

(t-τ) is the cumulative probability that this 
task would complete by time t, assuming it started at time 
τ. Therefore the inner summation in equation (6) represents 
the probability that task il is active in period t. 
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In many cases the resource multipliers can only be 
changed within a certain range. Equation (7)  says that the 
resource multiplier of task il for resource k should stay 
within its bounds. 

 
 min max , ,

l l li k i k i k lM M M i l k≤ ≤           ∀    (7) 
 
The objective is to minimize the weighted expected 

makespan of the collection of the projects, where the 
weights represent the relative importance of each project. 
If Nl  is the dummy completion task for the lth project and  
wl  is the relative importance of this project ( 0lw ≥  and 

1l
l L

w
∈

=∑ ), then the objective function in (8) is minimized 

subject to equations (1) through (7). 
 

 
1
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l

T

l N
l L

w S τ
τ

τ
∈ =
∑∑  (8) 

 
This problem differs from the usual RCPSP because 

the task durations that appear in equation (4) are random 
variables and the resource multipliers can be adjusted to 
change the task duration distributions. However, simula-
tion can be combined with heuristic optimization tools to 
yield a robust method for allocating the resources effec-
tively. 

In the next section we develop a simulation-
optimization solution procedure that captures the uncer-
tainty associated with the duration of the tasks when opti-
mizing the resource multipliers. 

5 SOLUTION PROCEDURE 

5.1 Overview 

The formulation that is presented in the previous section 
cannot be solved directly because the task durations are 
uncertain. However, a solution procedure can be con-
structed that iteratively updates the resource multipliers (an 
optimization step) and evaluates the implications of spe-
cific values for the multipliers (a simulation step). Simu-
lated annealing is the optimization tool used to improve the 
resource allocation.  Based on a given set of resource mul-
tipliers, Monte Carlo simulation is used to estimate the dis-
tribution of the duration for each project. 

The following subsections describe the various ele-
ments of the solution procedure. We begin by discussing 
the generation of the initial solution. The third subsection 
focuses on the evaluation of a given resource allocation 
policy, using simulation. The fourth subsection describes 
how the simulated annealing (SA) algorithm moves to a 
new solution (set of resource multipliers) in the neighbor-
hood of the existing solution. Subsection five describes 
30
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how sequential sampling can be used to improve the effi-
ciency of the simulation portion of the algorithm. 

5.2 Initial Solution Generation 

The initial solution for each run is chosen by random sam-
pling. Initial resource multipliers are sampled independ-
ently from uniform distributions defined by the stated  
bounds (equation 7). It is important to note that if the elas-
ticity of the mean and the elasticity of the variance of task 
il for resource k are both zero, then Milk  should be set to 
one since there is no incentive for increasing the amount of 
resource allocated to il .  When the nominal requirement of 
task  il for resource k is zero, no additional resources of that 
type should be assigned. These special circumstances are 
implemented by setting the bounds on the resource multi-
pliers appropriately. 

Once the initial resource multipliers have been identi-
fied, they can be evaluated. In the next subsection, we fo-
cus on how to estimate the completion time of the projects 
once the resource multipliers are known. 

5.3 Evaluation of Resource Multipliers 

Once the resource multipliers are known we use simulation 
to evaluate the performance resulting from that resource 
allocation policy. The performance measure considered to 
determine the quality of the solution is the expected 
makespan of the collection of the projects. Each replication 
of the simulation creates a feasible schedule using sampled 
task durations.  The information collected from the simula-
tion is used to update the resource multipliers and generate 
a neighboring solution to the current one. 

Assume that the resource multipliers are known. The 
mean and the variance of duration for all of the tasks and 
their resource requirements can be calculated from equa-
tions (1) to (3).  The scheduling is done using the parallel 
scheduling scheme (PSS). It is a priority rule based 
method. A task can be put on the schedule if its precedence 
and resource requirements are met. To adapt the determi-
nistic notion of the traditional PSS method and the avail-
able classic priority rules, the following is done. After the 
initial dummy task is put on the schedule, the decision set 
is identified.  The decision set is the collection of tasks that 
are as yet unscheduled and are precedence and resource 
feasible.  The priority value for each of the tasks is calcu-
lated and the task that has the best priority value is selected 
to be put on the schedule. 

To evaluate the task priorities, it is assumed that the 
durations of the tasks already on the schedule are known. 
For as-yet-unscheduled tasks, the duration is stochastic. 
Hence, to evaluate priority rules like latest finish time 
(LFT) or minimum slack (MSLK), an embedded simulation 
has been constructed within the parallel scheduling scheme 
to accommodate this uncertainty.  The simulation allows 
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estimation of the expectations for latest finish time for task 
j, E[LFTj], or slack relative to the current time tn:  E[LSTj]-
tn.  LSTj is the latest start time for task j. For Greatest Rank 
Positional Weight (GRPW) and Most Total Successors 
(MTS) there is no need to use embedded simulation be-
cause the priority rule definitions are static. Table 1 shows 
different rules that are used, where jS  is the set of succes-
sors for task j, and v(j) denotes the priority value computed 
for each task j. 

The PSS was chosen over the Serial Scheduling 
Scheme (SSS) because the SSS considers tasks for place-
ment on the schedule based on precedence constraints 
only.  Hence the order in which tasks are placed on the 
schedule is not in the order of their start times.  As the pro-
ject, in reality, unfolds this cannot occur.  Using the SSS 
would therefore bias our estimates of project duration. 

We have also experimented with single pass biased 
random sampling using the MTS priority rule. This method 
is exactly like parallel scheduling with a deterministic pri-
ority rule for all steps except for the actual selection of the 
task in the decision set to put on the schedule. In the de-
terministic case, the task in the decision set that has the 
best value for the priority rule will be chosen to be sched-
uled. In biased random sampling, each task in the decision 
set has a chance to be selected, with a probability propor-
tional to its value of the selected rule. 

 
Table 1: Priority Rules Used in Conjunction with PSS 

Priority Rule Extremum v(j) 
Most Total Successors 

(MTS) Max jS  

Greatest Rank Positional 
Weight (GRPW) Max 

 
[ ]

j

j i
i S

d E d
∈

+ ∑
 

Latest Finish Time (LFT) Min [ ]jE LFT  

Minimum Slack (MSLK) Min [ ]j nE LST t−  

 
When a task is selected for placement on the schedule, 

its duration is sampled from the appropriate probability 
distribution (given the current values of the resource multi-
pliers), and this duration remains fixed for the remainder of 
the schedule construction in the current simulation trial. 
When all tasks have been scheduled, we record the 
makespan for the collection of projects. 

This simulation of the PSS with uncertain task dura-
tions is replicated n times. From these n replications, we 
can estimate the mean makespan and its standard devia-
tion. These estimates are used in the SA algorithm to de-
termine whether to accept or reject the current set of re-
source multipliers. It is possible to reduce the 
computational burden of the comparison between sets of 
1
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resource multipliers significantly by using sequential sam-
pling. This is discussed briefly in Section 5.5.  

5.4 Updating the Resource Multipliers 

Based on the simulation evaluation of the current resource 
allocation policy, we want to make changes that are likely 
to reduce the expected makespan of the collection of pro-
jects. The key idea is to increase the resources for the tasks 
that are on the critical path most of the time by releasing 
resources from those tasks that are not on the critical path. 
Calculating the percentage of the time that task i has been a 
member of the critical path is quite straightforward.  
 In this discussion we consider the critical path for the 
entire collection of projects. This is motivated by the ex-
ample in the following section. This can be easily extended 
to consider each individual project critical path if appropri-
ate. Let CPi be the percent of the time that task i has been 
on the critical path.  If task i has been on the critical path 
for at least one of the n replications of the scheduling algo-
rithm, then we increase the resource multiplier of that task 
randomly between zero and CPi(1-uk)(1-rilk

/Rk) where uk is 
the average utilization of resource k in the current solution 
and rilk

/Rk is the proportion of resource k consumed by task 
il. If the availability of resource k varies over the planning 
horizon then we use the maximum resource availability 
across all the periods in which the task was active in any 
replicate. 

If task i has never been part of the critical path in n 
replications, the resource multiplier of that task for all of 
the resources will be decreased by a random number be-
tween zero and ((E[LFTi]-E[ESTi])/E[TD])(1-uk)(1-rilk

/Rk) 
where EST and LFT represent the earliest start time and 
latest finish time of task i. E[TD] is the expected total du-
ration for the projects. All changes in the resource multi-
pliers occur subject to the availability of the resources dur-
ing the range of time periods that the task is found to be 
active across all replicates. We also ensure that the new re-
source multipliers are consistent with the minimum and 
maximum given in equation (7). 

5.5 The Overall Simulated Annealing Algorithm 

The SA algorithm starts from an initial point (set of re-
source multipliers) as described in Section 5.2. Using these 
multipliers, the projects are scheduled using the PSS-
simulation procedure described in Section 5.3. This pro-
vides an evaluation of that resource allocation policy. A 
neighboring solution is then generated using the update 
mechanism described in Section 5.4, and this new solution 
is evaluated by scheduling the projects. If the neighboring 
solution improves the performance measure, it will replace 
the current solution. If the performance measure is not im-
proved, there is some probability that the new solution will 
21
be accepted anyway. SA stops when a maximum number 
of solution evaluations have been accomplished. 

The overall procedure is summarized in the pseudo-
code shown in Figure 3. 
 

Figure 3.  Pseudo Code for the Algorithm  
 
The comparison between the current solution and the 

new neighboring solution can be made more efficient by 
using sequential sampling. The new solution is only sam-
pled enough to conclude whether the new or current solu-
tions is better. In the case that the new solution is better 
than the current, it is immediately accepted. If current solu-
tion is equal to or better than new solution, the new solu-
tion is still accepted with probability p = exp(-Δ/T). The 
parameter Δ is the difference between the expected total 
duration of the current solution and the new solution. The 
value of T is the temperature for that iteration which is 
controlled by the user defined parameter α. To compare the 
two solutions, we use the Wilcoxon rank-sum test because 
the underlying distributions of the new and the current so-
lutions’ samples are unknown and the sample size for the 
new and the current solution may differ. 

[SA] 
Initialization:  
Input 2

0 0 0, , , , ,
l l l l li k i i i k i kr μ σ λ γ α , MaxIteration ; 

Generate random initial resource multipliers that agree 
with equation (7); 
Calculate 2, ,

l l li k i ir μ σ  , ,li k l∀  from equations (1) to (3); 
denote this as the Current solution. 
Evaluate this resource policy using PSS-simulation.  
WHILE Iteration<=MaxIteration; 

BEGIN; 
Create a neighboring solution by updating resource 
multipliers; Denote this as the New solution.  
Evaluate New.  
Δ:= Expected Makespan of New Solution -  Expected 
Makespan of Current Solution 
p:=exp(-Δ/T) 
Rank-sum test: 
 

IF New is better than Current, THEN accept New 
to replace Current; 
ELSE IF Current is equal to or better than New, 
THEN accept New with probability p and keep 
Current with probability 1-p 
ELSE IF samples are not enough to draw conclu-
sion, sample more; GO TO Rank-sum test; 

 
Iteration:= Iteration+1; 
T:= αT; 
END; 

Perform justification of final solution. 
Stop 
32
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Once we have identified the “best” resource multipli-
ers, we attempt to improve our estimate of the probability 
distribution of the duration of the projects by using the no-
tion of justification based on the forward/backward sched-
uling proposed by Li and Willis (1992). In this method, the 
finish times of the tasks in the forward pass, become the 
priority rules for a backward pass. Valls et al. (2004) 
showed that justification can reduce the makespan. 

 

6 ILLUSTRATIVE EXAMPLE 

To illustrate the concepts, consider the following example 
first described by Yamin and Harmelink (2001) and ex-
tended in Nozick et al. (2004). Three identical projects in-
volve constructing a concrete bridge as illustrated in Figure 
4. For each bridge there are 8 tasks. The precedence con-
straints between these tasks are given in Figure 5. The ob-
jective function is to minimize the total time required to 
complete all three bridges. 

 

 
Figure 4: Concrete Bridge  

 

 
Figure 5: Network Diagram of the Concrete Bridge 
 
Table 2 shows the description, the nominal mean and 

variance of duration and the nominal resource requirement 
of each of the tasks. We assume that the distributions for 
the task durations are Normal.  There is only one resource, 
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crew, of which 16 are available. We also assume that for 
all the tasks, the elasticity of the mean duration with re-
spect to the resource crew is -0.8 and elasticity of the vari-
ance is -0.4. The resource multipliers can be between 0.2 
and 2. 

For the simulated annealing algorithm, the initial and 
final probabilities of accepting uphill moves were set to 
95% and 1% respectively. The maximum number of itera-
tions is set to 1000.  Also if for 200 consecutive iterations 
no improvement occurs, the algorithm stops. 

For sequential sampling, the minimum number of 
samples is set to 10. For Wilcoxon rank-sum test, it is nec-
essary to have at least 8 observations to be able to use the 
normal approximation. 

Five different priority rules are examined: latest finish 
time (LFT), minimum slack (MSLK), most total successors 
(MTS), greatest rank positional weight (GRPW) and ran-
dom sampling biased towards most total successors (RS).  

The code is written in C and the computations are per-
formed on a 2.8 GHz Pentium 4. 

Table 3 gives the best result found with 30 independ-
ent runs. Each run starts from a set of randomly generated 
independent initial solutions for the resource multipliers.  
The initial solutions are the same across algorithms to al-
low for fair comparison. The first column shows the algo-
rithms that were used. The first five rows use different pri-
ority rules for the scheduling (GRPW, LFT, MTS and 
MSLK as described in Table 1). RSMTS represents biased 
random sampling based on MTS. The last row shows the 
results for the case where all of the resource multipliers are 
fixed at one and biased random sampling is used for 
scheduling. By fixing the resource multipliers, we obtain a 
benchmark solution. The second and third columns show 
the mean and standard deviation of the best solution found 
in 30 runs. The next two columns show the mean and stan-
dard deviation of the total resource use when these algo-
rithms are employed. The last column shows the computa-
tional time is seconds. 

 
Table 2: Task Descriptions and Nominal Parameters 

 Mean 
Duration 

Variance 
of  

Duration 

Resource 
Required 

Task 
ID Description (day) (day2) (crew/day) 

1 North Founda-
tion 14 5 3 

2 South Founda-
tion 14 4 3 

3 South Abutment 16 4 3 
4 North Abutment 16 6 3 
5 East Beams 4 1 4 
6 West Beams 4 1 2 
7 Prefab Slabs 6 1 4 

8 Paving 8 2 2 
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The results are sorted based on the expected total dura-
tion. It can be easily seen that all five algorithms present 
roughly the same quality of the solution if total duration of 
the collection of the projects is the only criterion consid-
ered. The total resources used (crew-days) in all of the op-
timized cases are higher than that of the nominal. In terms 
of the computational time, RSMTS, GRPW and MTS are 
substantially faster than LFT and MSLK because the prior-
ity rules of latest finish time and min slack are dynamic 
and must be calculated with simulation at each decision 
point. However, most total successors and greatest rank 
positional weight just depend on the structure of the net-
work and need to be calculated only once. 

Let’s focus on the RSMTS solution. Figure 6 and 
Figure 7 show that for only a 3.4% increase in the expected 
total crew-days used, a decrease of 13.6% in expected total 
duration is accomplished. The probability distribution of 
the total crew use is shifted slightly to the right of the 
nominal whereas the probability distribution of the total 
duration is shifted to the left of the nominal. 

This decrease in the total duration of the collection of 
bridge construction projects is accomplished through 
changes made in the duration of the individual tasks. Tasks 
1, 2, 3, 5, 7, 8 are often on the critical path. shows that for 
tasks that are on the critical path most of the time, the dura-
tion has decreased significantly. An example of such task 
is task 1. However, for cases where the tasks are not on the 
critical path, e.g., task 4, the duration has increased.  In fact 
the sum of the duration of tasks 2 and 3 have been set so 
that they are consistent with the duration of task 4. Figure 8 
shows the changes in the expected durations of the tasks 
after optimization. 

 
Table 3: Comparison of the Results 
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Algorithm (days) (days) (crew-
days) 

(crew-
days) (seconds) 

RSMTS 59.69 2.64 757.85 26.97 6.90 

GRPW 59.81 2.67 781.93 29.07 5.90 

LFT 61.01 2.76 776.13 31.56 1118.60 

MTS 61.15 3.03 793.42 34.00 6.30 

MSLK 62.22 3.03 865.49 41.26 1088.30 
Nominal 

(RS) 69.10 5.05 732.90 27.09 NA 

 
Figure 6 shows that the left-shift of the probability dis-

tribution for project duration, is achieved through allocat-
ing more resources to the project. 
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Figure 6: Comparison of the Distributions of Total Dura-
tion  
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Figure 7: Comparison of the Total Resources Used  
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Figure 8: Expected Durations of the Tasks after Optimiza-
tion 
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7 CONCLUSIONS 

This paper has developed a mathematical model to opti-
mize a plan for the assignment of resources to tasks when 
the assignment of resources to tasks effects the probability 
distribution for task duration. A solution procedure has 
been created based on combining simulation and optimiza-
tion.  Different priority rules in the PSS-simulation element 
of the solution approach produce very similar project dura-
tions in an example problem, but the computational times 
are much longer for the dynamic priority rules (LFT and 
MSLK). The computational results for an illustrative prob-
lem show that reallocating resources among tasks can be 
used effectively to reduce overall makespan on a set of 
projects (about 13% in this test case). 
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