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ABSTRACT 

This paper addresses the problem of batch scheduling in an 
unrelated parallel machine environment with sequence de-
pendent setup times and an objective of minimizing the 
weighted mean completion time.  Identical jobs are 
batched together and are available at time zero.  Processing 
time of each job of a batch is determined according to both 
the machine it will be assigned to and the batch group to 
which the job belongs.  The jobs’ processing times and 
setup times are stochastic for better depiction of the real 
world.  This is a NP-hard problem and in this paper, a solu-
tion heuristic is developed and compared to existing ones 
using simulation.  The results and analysis obtained from 
the computational experiments proved the superiority of 
the proposed algorithm PMWP over the other algorithms 
presented. 

1 INTRODUCTION 

In this paper we compare different heuristics for the prob-
lem of scheduling a set of independent batches (each batch 
is a group of identical jobs) on a set of unrelated parallel 
machines. 

For several years now, there has been significant re-
search involving scheduling in batches, as it may be 
cheaper and faster to process jobs in batches than to proc-
ess them individually (Potts and Kovalyov 2000).  One of 
the main benefits gained by batch scheduling is revealed in 
the case of setup times, where the machines incur setup 
times associated with processing different jobs; a lot of 
time can be saved by scheduling identical jobs in batches, 
as setup will only be performed when switching batches 
instead of individual jobs. 

There are two possible scenarios in batch scheduling 
environments: the first is job availability, where a job be-
comes available immediately after the processing of its 
predecessor is completed. The second is batch availability, 
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in which a job will not be available until the complete pre-
vious batch has been processed. In this paper we address 
the concept of batch availability. 

The literature defines unrelated parallel machines as 
machines having different processing times for the same 
job (Liaw et al. 2003).  They are unrelated in the sense that 
the processing speed depends on the job being executed 
and not the machine; each job will have different process-
ing times for each of the available machines.  The jobs are 
simultaneously available at the beginning of the scheduling 
horizon (at time zero).  Further more, each job can be 
processed on any of the machines but needs to be proc-
essed by one machine only, and each machine is capable of 
processing only one job at a time.  Job preemption is not 
allowed and there is no processing precedence on any of 
the machines.  Each job will be assigned an input weight wi 
indicating its importance, and each batch of jobs has the 
same processing time and input weight.  The machine 
setup times are dependent only on job sequences and are 
machine independent. 

The scheduling objective is to minimize the total 
weighted mean completion time, which is at least a NP-
hard problem as the simplified problem of two identical 
machines with no setup times is NP-hard in the ordinary 
sense (Bruno, Downey, and Frederickson 1981).  More-
over, what differentiates this paper from most of the previ-
ous literature is the use of stochastic processing and setup 
times, ensuring a better depiction of the real world.  Dis-
crete event simulation will be used to model and test the 
problem addressed in this paper.  Different heuristics will 
be compared using the mean weighted completion time ob-
jective; the heuristic with the lower objective function 
value will be the superior heuristic in this specific problem. 

The rest of this paper is organized as follows. In sec-
tion 2 the related research is summarized. In section 3 the 
problem statement and objective function are presented. 
Section 4 contains description of the heuristics developed 
and used.  The simulation model verification is presented 
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in section 5, the computational results and output analysis 
are respectively described in sections 6 and 7.  Finally, we 
conclude our results in section 8. 

2 RELATED RESEARCH 

There is a lot of literature on parallel machine scheduling. 
The common objectives studied in this area include mini-
mization of completion time, tardiness, and makespan. 
Previous research indicated that even the identical parallel 
machine problem with minimization of total tardiness was 
NP-hard (Karp 1972). Due to this difficulty, it became a 
common and acceptable practice to find suitable heuristics 
instead of optimal solutions for these complex scheduling 
problems.  

Several studies discussed the unrelated parallel ma-
chine problem.  Ghirardi and Potts (2004) considered the 
problem of scheduling jobs on unrelated parallel machines 
to minimize the makespan.  The heuristic they used was an 
application of the recovering beam search. Weng, Lu and 
Ren (2001) addressed the problem of scheduling a set of 
independent jobs on unrelated parallel machines with se-
quence dependent setup times so as to minimize the 
weighted mean completion time. They presented in their 
paper seven heuristic algorithms and tested them. In their 
algorithms, they either assigned a job to the machine with 
the least cost contribution, or to the machine on which the 
job has the shortest processing time.  They also introduced 
an algorithm where they first assigned the job with the 
smallest ratio of processing time plus setup time to weight; 
this strategy outperformed the rest significantly. The au-
thors claimed that their algorithms are extremely fast and 
can find solutions for up to 120 jobs and 12 machines in a 
small fraction of a second. Low (2004) solved a multi-
stage flow shop scheduling problem with unrelated parallel 
machines and an objective of minimizing total flow time in 
the system.  A simulated annealing (SA)-based heuristic 
was proposed to solve the addressed problem in a reason-
able running time.  Mosheiov and Sidney (2003) addressed 
the case of job-dependent learning curves and applied it to 
the problem of unrelated parallel machines with the objec-
tive of minimizing total flow time.  

Stochastic machine scheduling problems have been 
considered, among others, by Glazebrook (1979), Weiss 
and Pinedo (1980), Bruno et al. (1981), Weber et al. 
(1986), Weiss (1992), and Mohring, Schulz, and Uetz 
(1999). 

In this paper, our objective is to develop a heuristic for 
the unrelated parallel machine problem with the objective 
of minimizing the total mean weighted completion time.  
Previous literature have tackled this problem but hardly 
with stochastic inputs. 
2

3 PROBLEM STATEMENT 

The scheduling problem considered in this paper can be 
described as follows. There are M unrelated parallel ma-
chines and B batches, where a batch refers to a lot contain-
ing n identical jobs, and different batches have different 
job types. In the case where there are not enough identical 
jobs to form a full batch, a partial one will be produced.  
As we are assuming the concept of batch availability, all 
jobs in a specific batch should be processed on the same 
machine to which the batch was assigned. Each machine is 
assumed to be available at time 0  and can process one job 
at a time. Each job has a weight (wi) indicating its impor-
tance, where wi has values between 1 and 5 with 1 being 
less urgent than 5. The machine setup times are dependent 
on jobs’ sequence and are machine independent. In other 
words, setup times depend on both the batch just com-
pleted and the next batch to be processed, but there is no 
setup between jobs belonging to the same batch. ski is the 
setup time required on a machine if batch i is scheduled af-
ter batch k; k refers to the previous batch processed on the 
machine.  
 The batches processing times are dependent on the 
machine they were assigned to; job Ji has a processing time 
pij when it is assigned to machine Mj. For example, the 
processing time of J1 on machine M2 is equal to p12. 
However, jobs in the same batch are assumed to have the 
same processing times when processed on the same ma-
chine.  For a given schedule, job Ji completion time is rep-
resented by Cij, and our objective is to find a near optimal 
schedule that can minimize the total mean weighted com-
pletion time. This is represented as follows: 

 

 Minimize Z ( ) ∑=
=

η

η 1

1
i

ijiCw ,  

 
where η is the total number of jobs, and the completion 
time of job Ji on machine Mj is given by:  
  
 Cij = Ckj + pij + ski. 

4 HEURISTIC ALGORITHMS 

The basic and easiest method to obtain a solution for the 
parallel machine problem is by randomly scheduling the 
jobs to the machines (Kim, Na, and Chen 2003). The dis-
advantage of such a method is manifested in low quality 
solutions and extensive computational time. From here 
came the need to invest more time in developing appropri-
ate heuristics. In the following sections, different heuristics 
are presented and compared in order to determine the most 
appropriate one for our problem. Recall that the jobs’ proc-
essing and setup times are stochastic and drawn from dif-
ferent uniform distributions. Whenever a job is called by 
any algorithm to be sorted with the other jobs or sent to a 
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machine, it will be assigned a processing time and setup 
time following some uniform distribution; this is discussed 
more in section 6.  

4.1 Heuristic 1 (WSPT) 

In the weighted shortest processing time first (WSPT) rule, 
batches (containing identical jobs) will be sorted from the 
smallest [ iij wp ] to the largest, and then they will be as-
signed to the different machines according to the smallest 
[ ( ) ikiij wsp + ]. WSPT has been used by a great number of 
papers, especially in parallel machines’ environment. This 
rule was proven to obtain optimal results in the single ma-
chine weighted completion time problem and very good 
results in the same problem but on parallel machines 
(Pinedo 1995). 

 
1. {Sort the batches in the increasing order accord-

ing to their processing time over weight} 
(a) Obtain the minimum processing time ρi for 

each batch: MIN(pi1), MIN(pi2),…, MIN(piM). 
where i is the batches’ index, and M is the to-
tal number of machines. 

(b) Reorder the batches in the following way: 
ρ1/w1 ≤ ρ2/w2 ≤ … ≤ ρB/wB. 

2. After sorting the batches, send them one by one to 
the machines. Assign each batch to the machine 
that has the smallest [ ( ) ikiij wsp + ].  

3. Before a batch gets processed, separate its jobs so 
they can be processed one by one on the assigned 
machine. 

4. STOP once all the jobs are assigned. 
 
As one can see, WSPT neglects the setup time when 

sorting the batches, which could lead to low quality solu-
tions if the setup times mount to a considerable portion of 
the processing times. 
 

4.2 Heuristic 2 (MWP) 

 
Heuristic 2 works similar to WSPT, except that in Step 1, 
the batches are sorted according to the smallest 
[ ( )kiij sp + ×  attuned weight component]. 

In the total tardiness minimization problems, the earli-
est weighted due date (EWDD) rule has been used quite 
often. The weighted due date is calculated by multiplying 
the due date by an attuned weight component which we 
will refer to as γ in this paper. Kim, Na, and Chen (2003) 
noted that the weight component γ is represented as the fol-
lowing:  
 

21
          γ = [1 – (weight control parameter)× (wi)],            (1) 
 
where the weight control parameter α ∈ (0, 0.2); the selec-
tion of this range is explained in section 4.4.  Due to its 
high-quality results, we decided to manipulate the EWDD 
rule so it can be used in our problem. α value was deter-
mined to be 0.1 for the total tardiness minimization prob-
lem (Kim, Na, and Chen 2003); empirical tests showed that 
this value is also the best when used in this  heuristic for 
the problem in hand. The updated rule that we will refer to 
as minimum weighted processing time (MWP) is calcu-
lated by multiplying the minimum processing time ρi of 
each batch by the attuned weight parameter. 
 

1. {sorting the batches} 
(a) Obtain the minimum processing time ρi for 

each batch. 
(b) Calculate for each job its MWP:  

 
  MWPi = ρi ×  [1.0 – (0.1)× (wi)]. 
 

(c) Reorder the batches from the smallest MWP 
to the largest. 

2. Step 2, 3 and 4 are exactly like in Heuristic 1. 
 

4.3 Heuristic 3 (Weng’s Algorithm) 

Weng et al. (2001) studied the problem of unrelated paral-
lel machine scheduling with setup consideration and a total 
weighted mean completion time objective. They presented 
in their paper seven heuristics, and showed through exten-
sive computational experiments that their heuristic algo-
rithm 7 significantly outperformed the other seven heuris-
tics presented. Algorithm 7 does not sort the jobs according 
to a predetermined order; instead, among the unscheduled 
jobs, it next assigns the job with the smallest ratio of proc-
essing time plus setup time to weight. So every time a job 
needs assignment, the algorithm looks at all the unsched-
uled jobs, determines which one has the smallest 
[ ( ) ikiij wsp + ]) on which machine, and it assigns this job 
to the associated machine. 

Weng’s Algorithm was modeled through simulation 
and compared with the proposed heuristics in this paper.  

4.4 Heuristic 4 (PMWP) 

The Pick Minimum Weighted Processing Time (PMWP) 
algorithm introduced in this paper is similar to Weng’s Al-
gorithm in a sense that it will not sort the batches accord-
ing to a predetermined order. However, it will pick up from 
the unscheduled batches the one having the smallest 
[ γ×+ )( kiij sp ] and assign it to the machine where this 
minimum exists. 
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Let S be a set containing the unscheduled batches. 
 
1. Find batch i and machine j where the Equation (2) 

is at its minimum: 
 
 [Ckj + (pij + ski)× (1 – (α * wi))],  (2) 
 
2. where i є S (index of unscheduled batches), j is 

the machine index, and k is the previous batch on 
that specific machine j. 

3. In Equation (2) above, Ckj refers to the comple-
tion time of the last batch on machine j, and the 
control parameter α value was determined from 
Figure 1 below. 

4. After finding both i and j, assign batch i to ma-
chine j, and remove batch i from list S. 

5. If S = Ø, STOP; else go to Step 1. 
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Figure 1: Control Parameter α 

 
In Figure 1, we included a chart describing how the com-
pletion times of batches were fluctuating when α was 
changed while applying PMWP to the problem at hand.  
Recall that the values of α are between 0 and 0.2; it cannot 
be 0 because Equation (1) will then be equal to (1 – (0 ×  
wi) = 1, meaning that the weight will not be considered in 
our decision. Also α cannot be 0.2 because wi could be 
anywhere from 1 to 5; so in the case wi = 5, Equation (1) 
will then be (1 – (0.2 ×  5)) = 0, which will lead to incor-
rect decisions, as the algorithm will assign the wrong jobs 
first assuming that they have the smallest [ γ×+ )( kiij sp ]. 
We can conclude from Figure 1 that the algorithm is giving 
the best solution when α = 0.02, and this will be the value 
to be used in the proposed heuristic PMWP.  It is worth 
reminding here that α was equal to 0.1 when used with the 
MWP heuristic, and it was not used with neither the WSPT 
heuristic nor Weng’s algorithm.  
21
5 MODEL VERIFICATION 

Verification is the process of ensuring that the simulation 
model behaves in the way it was intended according to the 
modeling assumptions made (Kelton et al. 2004).  
Different methods were applied in verifying the behavior 
of our models: 

 
1. We used first deterministic data instead of sto-

chastic data for both the processing and setup 
times; this allowed us to predict the system’s be-
havior. 

2. We let only a single entity enters the system, and 
then followed this entity through all the decisions 
nodes to ensure that the model’s logic is correct. 

3. We Monitored the model’s animation, which 
made it easier to detect any errors in our logic. 

4. Finally, we put several variable animations, which 
enabled us to determine which batch number is 
first scheduled, and which batch is separated. 

6 COMPUTATIONAL TESTS 

The above heuristics have been modeled and compared us-
ing the simulation software Arena.  The popularity of 
simulation has been increasing over the past decade mainly 
due to its ability to deal with very complicated models of 
correspondingly complicated systems (Kelton, Sadowski, 
and Sturrock 2004).  The reason stochastic data was used 
for the processing and setup times is to ensure a more real 
representation of a manufacturing scenario, where most of 
the time a job will not finish on a specific time, but on a 
range between two times. Simulation is considered to be 
one of the best approaches to deal with such source of ran-
domness.  Another advantage of stochastic simulation is its 
ability to provide the user with an assessment of the ro-
bustness of the model, due to the fact that randomness is 
taken into account; after all, the actual system is unlikely to 
work under ideal deterministic conditions, but rather in a 
stochastic uncertain environment (Reuter and Hulsmann 
2000). The jobs’ processing times and machines’ setup 
times are stochastic; the processing times can take any 
value of four different uniform distributions: U[55,75], 
U[35,65], U[45,70], and U[70,90], and the setup times can 
take any value of the following distributions: U[6,10], 
U[4,9], U[3,8], and U[1,7].  Recall that these values will 
not be known until the job is actually being processed on 
the machine; this is how the algorithms robustness is being 
tested. The reason uniform distributions were used is due 
to their high variances, ensuring that the presented heuris-
tics are being tested under unfavorable conditions (Weng et 
al. 2001).  The jobs input weights were discrete values that 
were randomly generated between 1 and 5. 

The above four heuristics have been tested under 4 un-
related parallel machines, and we considered respectively 
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40, 80, 120, and 160 jobs.  The number of replications for 
each of the above 4 combinations was equal to 50 replica-
tions.  The number of replications was obtained by follow-
ing the steps that Kelton, Sadowski, and Sturrock (2004) 
recommended in order to obtain good confidence intervals. 
We ran the simulation model for 10 replications; the half 
width obtained was fairly large. We decided on the toler-
able half width that we want and substituted the appropri-
ate values in the following equation:  

 

2

2
0

0 h
h

nn ≅ , 

 
where n0 and h0 refer respectively to the initial replication 
number (10) and its associated half width, h refers to the 
desired half width (tolerable), and n is the number of 
needed replications (n = 50). 
 

7 OUTPUT ANALYSIS 

 
The results obtained from running 50 replications of 95% 
confidence interval are shown in Table 1.  The relative per-
formance was calculated as follows:  
 

Relative Performance =
minZ
Zl , for l = 1, 2, 3, and 4, 

 
where Zl refers to the mean weighted completion time ob-
tained when using heuristic l, and Zmin refers to the mini-
mum mean weighted completion time between all 4 heuris-
tics. 

As can be seen from Table 1, PMWP significantly 
outperformed the other algorithms for all experiments. 
Even when the number of jobs per batch is one, which 
changes the problem from batch scheduling to job schedul-
ing (because every job is a batch now), PMWP still 
reached the lowest mean weighted completion time. 
Weng’s Algorithm was the second best and it outperformed 
the other two algorithms. These results imply that schedul-
ing the jobs directly to the machines without arranging 
them in a predetermined order would lead to better results; 
this is a valid reasoning because when we sort the jobs 
ahead of time, it is very difficult to predict the setup times 
as we do not know the jobs’ sequences on each machine. 
On the other hand, when we are assigning jobs from the 
unscheduled ones directly before they are processed, we 
know which jobs already exist on the machines; hence we 
214
know the jobs’ sequences on each machine and their asso-
ciated setup times.  
 As we are comparing different models or logics for the 
same problem, output analysis becomes crucial to ensure 
the soundness of the results obtained.  Even though the re-
sults stated in Table 1 clearly show the superiority of  
PMWP, we will conduct simulation output analysis to 
compare between PMWP and Weng’s Algorithm as it was 
the second best. The appropriate statistical methods will be 
applied to ensure that valid conclusions are drawn. This 
comparison will be done under 40 jobs (each batch has one 
job only) and 4 machines.  The reason we chose 40 jobs is 
to be as fair as possible to Weng’s Algorithm, which was 
developed for job scheduling and not batch scheduling. We 
ran both models for 100 replications each, and the outputs 
were studied through Arena Output Analyzer; a screenshot 
of the output is shown in Figure 2. The output analyzer 
calculates the mean difference between the two algorithms 
as follows:  
 

H0: MeanPMWP –  MeanWeng’s Algorithm = 0 
 

As can be seen in Figure 2, the difference is negative be-
cause PMWP leads to smaller completion time than 
Weng’s Algorithm.  To see if the obtained difference is sta-
tistically significant (because of the stochastic input, we 
need to ensure that the difference is far from zero in order 
to draw sound conclusions), the output analyzer gives 95% 
confidence interval on the expected difference.  From Fig-
ure 2, you can see that this interval misses zero, and  H0 is 
rejected, concluding that PMWP performs better than 
Weng’s Algorithm.  

8 CONCLUSIONS 

In this paper, we have introduced an effective heuristic al-
gorithm, PMWP, for minimizing the total mean weighted 
completion time on unrelated parallel machines with se-
quence dependent setup times.  PMWP was compared to 
three other algorithms, including Weng’s Algorithm 7 in 
Weng et al (2001).  All four algorithms were modeled and 
tested through simulation, and our conclusions were drawn 
using a large number of replications and several statistical 
tests.  Computational experiments showed that PMWP sig-
nificantly outperformed the other algorithms, especially as 
the number of jobs increased.  Moreover, we were able to 
draw the conclusion that in problems dealing with unre-
lated parallel machines with setup times and the objective 
of minimizing the total mean weighted completion time, it 
is better to schedule the jobs directly to the machines ac-
cording to some rule rather than sorting them in a prede-
termined order.   
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Table 1: Relative Performance Obtained from Computational Experiments 

 
 
 
 
 
 
 
 

 
 

 
Figure 2: Arena Output Analysis 

Number 
of jobs 

Number of 
jobs per batch WSPT MWP Weng's  

Algorithm PMWP 

40 1 1.1021146 1.054535 1.0072343 1 
80 2 1.0907348 1.048003 1.0117412 1 

120 3 1.1166439 1.079203 1.0143247 1 
160 4 1.120799 1.083521 1.0166956 1 
 
 It is worth noting here that the four heuristics pre-
sented in this paper were also tested in a deterministic en-
vironment, and the results obtained were similar to the sto-
chastic environment in the sense that PMWP significantly 
outperformed the other algorithms, and Weng’s algorithm 
was the second best. 
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