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ABSTRACT 

This paper proposes alternative strategies to perform simu-
lation within a simulation optimization algorithm based on 
tabu search. These strategies are  tested empirically on a 
stochastic knapsack problem.  Results have shown that the 
way simulation is implemented and the number of simula-
tion replications have a profound effect on the performance 
of  tabu search.   

1 INTRODUCTION 

The term “simulation optimization” is usually used in the 
literature with regard to the following problem setting. A 
system or function has a set of input variables and a single 
(or multiple) output(s).  The relationship between the input 
variables and the system output is so complex that simula-
tion is used to estimate the output for a given setting of the 
input variables.  The underlying optimization problem is to 
find a feasible setting of the input variables in order to 
minimize (or maximize) the system output.  Simulation op-
timization approaches are among the most frequently used 
tools to solve many real-world problems.  Today, many 
commercial simulation software packages include simula-
tion optimization toolboxes allowing users to search for a 
good system design in an automated fashion.  Andradottir 
(1998) and Fu (2002) surveyed common approaches to 
simulation optimization.  April et al. (2003), Law and 
McComas (2000, 2002), Ling, Liang and Da-zhong (2003), 
Olafsson and Kim (2002), Swisher et al. (2000) also dis-
cussed latest advancements in simulation optimization. 

The research in this paper focuses on a class of combi-
natorial optimization problems where the objective func-
tion is evaluated using simulation since its exact computa-
tion is analytically impossible and/or computationally 
infeasible.  Examples of such problems include network 
design, facilities planning, scheduling, reliable system de-
sign, supply chain, and financial systems.  Traditional 
simulation optimization approaches such as response sur-
face and stochastic approximation are not usually applica-
ble in the case of combinatorial optimization problems due 
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to non-convexity and discontinuity of the solution space.  
Most simulation optimization approaches to combinatorial 
optimization use meta-heuristic techniques such as genetic 
algorithms (GA), tabu search (TS), simulated annealing 
(SA), or ant colony (AC), that are based on ranking or 
comparison of candidate solutions visited during the 
search.  When simulation is used to evaluate the objective 
function, however, ranking and comparison of candidate 
solutions involves an error due to the randomness in simu-
lation outputs.  Therefore, the performance of a heuristic 
search algorithm may depend on the level of noise in the 
objective function.  Clearly, the magnitude of this noise 
can be reduced by increasing the number of simulation rep-
lications to evaluate solutions.  However, this approach 
may not be practical if good solutions are sought in a lim-
ited time, or it will be inefficient if a rigorous evaluation is 
unnecessary.  It is usually difficult to determine the mini-
mum number of simulation replications that will reduce the 
effect of the randomness on the performance of a search 
algorithm at a negligible level.   

Several researchers studied the impact of noise on the 
performance of meta-heuristic approaches and proposed 
strategies to maximize it for a given CPU time limit.  The 
majority of these studies focus primarily on GA.  
Fitzpatrick and Grefenstette (1988) explored the tradeoffs 
between the number of simulation replications to evaluate 
each solution and the number of solutions evaluated in 
each generation (population size) under a given CPU time 
limit.  They showed empirically that there exists an optimal 
number of replications that provides the best GA perform-
ance.  Harik et al. (1999) reported that GA performance 
highly depends on population size at the presence of noise, 
and the higher the noise level is, the bigger the population 
size should be.   

Aizawa and Wah (1993) proposed using a dynamic 
number of simulation replications as opposed to a static 
one.  In this approach, the number of replications varies 
from generation to generation as being lower at the begin-
ning and higher toward the end.  The justification for this 
approach is that a GA population usually includes very dif-
ferent solutions at the beginning and similar ones toward 
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the end of the search, and more simulation replications are 
required to accurately rank solutions similar to each other.  
Miller and Goldberg (1995) studied how selection methods 
and parameters of a GA can be tuned to improve the per-
formance in noisy objective functions.  Arnold and Beyer 
(2003) studied the performance of different evolutionary 
strategies at the presence of noise.  

Boesel, Nelson and Ishii (2003) developed a GA based 
simulation-optimization software system where the number 
of replications to evaluate each solution is adjusted based 
on the variance of the simulation output.  In addition, this 
system features error control during and at the end of the 
search to minimize computational effort.  The error control 
during the research uses a group ranking concept where the 
solutions in a group are statistically equals and have the 
same rank.  Groups are formed based on the expected 
value and variance of solutions.  For the error control at the 
end of the search, instead of only a single best solution, a 
set of solutions which are not statistically superior to each 
others are kept during the search, and at the termination 
these solutions are compared to each other using additional 
simulation replications to identify the best solution from 
this set within a statistical error margin.  

As seen in the literature cited above, the majority of 
work on simulation optimization using heuristic ap-
proaches were mainly studied and developed for GA.  Al-
though TS is frequently used to solve combinatorial opti-
mization problems, similar work has not been conducted 
for TS.  In this paper, we investigate the performance of 
TS in simulation optimization on a test problem.  In addi-
tion, we devise and empirically test several strategies to 
maximize the performance of TS in simulation optimiza-
tion.    

2 TABU SEARCH 

TS, which was first developed by Glover (1989, 1990), is 
used in this study.  Since its first introduction, TS has be-
come an effective heuristic method for many combinatorial 
optimization problems with large and complex search 
spaces in scheduling, telecommunications, transportation, 
routing, network design, graph theory, manufacturing, fi-
nancial analysis, and constraint satisfaction.  Excellent ma-
terial about TS can be found in Glover, Taillard and de 
Werra (1993) and Glover and Laguna (1997). 
 TS guides a local (neighborhood) search procedure to 
find a global optimum.  Therefore, TS with its local search 
property is an appropriate optimization tool to search 
neighborhoods efficiently.  A TS heuristic has two impor-
tant features:  the move operator and the tabu list.  A new 
solution (i.e., candidate solution) is produced by a move 
operator with small perturbations to a current solution.  
The set of all solutions produced by the move operator is 
called the neighborhood of the current solution.  All solu-
tions in the neighborhood are evaluated according to their 
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objective function values, and the best objective function 
value defines the best candidate solution.  However, not 
necessarily all moves improve the objective function; 
therefore, it is possible to re-visit a solution, which is 
called cycling.  To avoid cycling, recently performed 
moves are stored on a tabu list for a certain number of it-
erations.  In basic TS, moves on the tabu list are prohib-
ited; therefore, at each iteration the algorithm is forced to 
select the best candidate from not recently selected moves 
(i.e., ones not on the tabu list).  In some cases, however, a 
tabu move may improve upon the best feasible so far, then 
it can be accepted as the best candidate, which is called an 
aspiration criterion.  Moreover, another rationale behind 
using an aspiration criterion is that tabu conditions may 
also forbid moves directing the search towards unvisited 
yet attractive solutions.  After all neighborhoods of the cur-
rent solution are investigated and the best candidate is de-
termined, the tabu list is updated, the best candidate is as-
signed to the current solution, and the entire process starts 
again until the stopping condition is met. 

3 PROBLEM DESCRIPTION 

In this paper, the stochastic knapsack problem (SKP) is 
used as the test problem.  The SKP is formulated as fol-
lows:  
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where wi and ai are the weight and the return of item i.  In 
the formulation, the weights are deterministic, but returns 
ai, ..., an are independent random variables with known 
density functions.  The objective is to maximize the prob-
ability that the total return will exceed a threshold value C.  
Additional information on the SKP and its application ar-
eas can be found in Kleywegt and Papastavrou (1998).  

Note that the distribution of 
1

n
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a x
=
∑  can be analytically de-

rived for some cases (e.g., ai are normally distributed) and 
the objective function, z(x), can be exactly calculated for a 
given decision variable vector x={xi}.  However, the objec-
tive of the research herein is not solving the SKP, rather it 
is used as a test problem to understand the relationship be-
tween TS performance and the level of noise in the  
objective function.  Therefore, we assume that ai, ..., an  
are independent general random variables and 
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follows: 
 
Select a sample size K, and set s=0   
For k=1, ..., K do { 
 sum=0 
 For i=1,...,n do { 

If xi=1, then { 
  Generate random variable ai 
  sum=sum+ ai 
  } 

} 
 If sum ≥ C, then set 1s s= +  
} 
Return an estimation of z(x) as ˆ( ) /z s K=x . 
 We consider a generic TS with algorithmic features 
that are frequently applied in the literature.  The TS algo-
rithm starts with a random feasible solution x(0).  At itera-
tion t, swap moves create a neighborhood N(x(t)) of the 
current solution x(t) as follows:  For i<j≤n, swap move     
(i, j) exchanges the values of decision variables ix  and jx , 
and swap move (i, i) flips the value of decision variable ix  
only.  Note that if i jx x= , swap move (i, j) does not gen-
erate a new solution from x(t); therefore, such moves are 
not applied.  The neighborhood N(x(t)) may include infea-
sible solutions due to the weight constraint.  Several ap-
proaches exist to deal with infeasibility constraints in TS 
Kulturel-Konak et al. (2004).  One of the most widely used 
constraint handling approaches is penalty functions.  An 
infeasible solution x is penalized using an adaptive penalty 
approach as follows: 

ˆ( ) ( ) ( ) max( ( ) ,0) / ( )f z t w W wθ= − −x x x x  
where ( )tθ  is the adaptive penalty factor at iteration t, and 
w(x) is the weight of solution x.  Initially (0) 1θ = , and in 
the following iterations its value is updated as follows. 

( 1) 2 ( )t tθ θ+ =  if the best candidate solution was infeasi-
ble in iterations t, t-1, ..., t-ρ; ( 1) 0.5 ( )t tθ θ+ =  if the best 
candidate solution was feasible in iterations t, t-1, ..., t-ρ; 
and otherwise, ( 1) ( )t tθ θ+ = .  This penalty approach was 
first proposed by Gendreau, Hertz and Laporte (1994) and 
shown to be robust on various problems by Kulturel-Konak 
et al. (2004). 

The tabu list is a recency-based memory where an n×n 
matrix r={rij} stores swap moves that have been applied to 
create current solutions in most recent iterations.  If a new 
current solution x(t+1) is created from solution x(t) using a 
swap move (i, j), then rij is set to a random positive number 
between tsmin and tsmax, and every other entity of r is re-
duced by one.  A swap move (i, j) is said to be tabu and not 
allowed if rij≥0.  However, a simple aspiration criterion is 
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used by allowing a tabu move that will result in a solution 
improving upon the best feasible solution (x**).  Note that 
the majority of TS implementations also use a similar aspi-
ration criterion.  A subset ( ( ))N tx  of ( ( ))N tx  which in-
cludes non-tabu solutions, and the set of solutions allowed 
by the aspiration criterion is called admissible neighbor-
hood.  Solution x∈ ( ( ))N tx  with the maximum fitness 
value ( )f x  is selected as the current solution x(t+1) in the 
next iteration.  The overall algorithm of the TS is given as 
follows: 
 
Set t=0, generate a random solution x(t) 
Do { 

Generate ( ( ))N tx  from x(t) 

Evaluate ( )f x  for each ( ( ))N t∈x x , and update 
**x  and *x .  

Set x(t+1)= *x , update r and ( )tθ ,  
set t=t+1 
} While (the stopping criterion is not satisfied) 

Estimate **( )z x  with a very high number of replications  
Return **x .   

4 EXPERIMENTAL STUDY AND DISCUSSIONS 

The main objective of computational experiments in this 
section is to compare alternative strategies to evaluate new 
solutions and update the best candidate x* and the best fea-
sible solution x**.  The test problem used in experiments is 
a 100-item binary SKP.  For each item i, the return coeffi-
cient ai is exponentially distributed with a mean of μi which 
is randomly generated in a way that it is positively corre-
lated with weight wi.  Since the overall objective is to de-
vise a strategy for implementing simulation within the TS 
procedure that will maximize its performance for a given 
CPU time, a stopping criterion of 60-second CPU time 
limit was used.  At the termination of the TS procedure, the 
best feasible solution found **x  is estimated using 106 
simulation replications to minimize error while comparing 
alternatives strategies.  The other parameters of the TS 
procedure are as follows:  (0) 1θ = , tsmin=10, tsmax=20, and 
ρ=5.  
  
 
Strategy 1: 
Evaluate x by using K1 simulation replications 
If *( ) ( )f f≥x x , then set * =x x  
If **ˆ ˆ( ) ( )z z≥x x  and ( )w W≤x , then set ** =x x  

 
This strategy is a naive approach which mimics a TS with 
a deterministic objective function.  Nonetheless, it is fre-
quently used in practice.  The TS algorithm was run for 
8
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different values of K1 from 50 to 6,400 as shown in Figure 
1.  Note that since the CPU time is fixed, the less the effort 
to evaluate each solution, the higher the number of solu-
tions searched.  For each value of K1, the algorithm was 
run 20 times by starting with a different random initial so-
lution in each run.  Figure 1 gives a box-plot of the results, 
which clearly shows a trade-off between the effort to 
evaluate solutions and the total number of solutions evalu-
ated.  These results suggest that an optimum level of K1 ex-
ists.  When K1 is increased above a certain level, the per-
formance deteriorates since an adequate number of 
solutions cannot be searched with the CPU time limit; and 
when K1 is less than a certain level, the performance also 
deteriorates since the objective function is too noisy and 
the search becomes almost random.  
 

 
Figure 1: A box-plot of solutions found in 20 replications 
for different levels of K1 
 
Strategy 2: 
Evaluate x by using K1 simulation replications  
If *( ) ( )f f≥x x , then set * =x x  
If **ˆ ˆ( ) ( )z z≥x x  and ( )w W≤x , then { 
 Evaluate x with additional K2 simulation replications  
 Update ˆ( )z x  
 If **ˆ ˆ( ) ( )z z≥x x , then set ** =x x .  
 } 

 
The main objective of this strategy is to reduce level of er-
ror while updating **x .  The TS algorithm was run for dif-
ferent values of K1 from 50 to 1,000 and K2=2,000.  Re-
sults were compared to the ones found by Strategy 1 for 
the same levels of K1.  Figure 2 shows the average value of 

**ˆ( )z x  over 20 replications for both strategies.  Clearly, 
Strategy 2 is superior in all cases.  In addition, this strategy 
was proved to be more robust with respect to low values of 
parameter K1.  Notice that Strategy 2 is almost flat for low 
values of K1. 
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Strategy 3: 
Evaluate x by using K1 simulation replications  
If *( ) ( )f f≥x x , then { 
 Evaluate x with additional K3 replications 
 Update ( )f x   
 If *( ) ( )f f≥x x , then set * =x x . 

} 
If **ˆ ˆ( ) ( )z z≥x x  and ( )w W≤x , then { 
 Evaluate x with additional K2 replications  
 Update ˆ( )z x .  
 If **ˆ ˆ( ) ( )z z≥x x , then set ** =x x .  
 } 
The main objective of this strategy is to reduce level of er-
ror while updating the best candidate solution *x , thereby 
reducing the probability of taking a wrong turn during the 
search.  The TS algorithm was run for all combinations of 
K1=50, 100, 200 and K3=300, 400, 500 while keeping K2 
constant at 2,000.  Results were analyzed by the two-way 
ANOVA.  Both K1 and K3 turned out to be statistically sig-
nificant with p-values of 0.06 and 0.09, respectively.  The 
best combination was K1=50 and K3=500.  Figure 2 depicts 
the confidence intervals for K1 and K3.  The results indicate 
that the best approach to evaluate solutions might be a hi-
erarchical one which initially evaluates each solution 
roughly and then evaluates promising ones rigorously.  
This approach effectively allocates computational effort 
between evaluating and exploring new solutions.   
 

 
Figure 2: A compression of Strategies 1 and 2 

 

 
Figure 3: 95% confidence intervals for the factor levels 
used in the two-way ANOVA for Strategy 3 
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Strategy 4: 
This approach is an extension of Strategy 3 where the best 
candidate *x  and the best feasible solution found **x  are 
gradually evaluated on an as needed basis.  
 
Set K3=0 
For x∈ ( ( ))N tx  do { 
 Evaluate x by using K1 simulation replications 
 If *( ) ( )f f≥x x , then { 
  If K3 ≤ K3max, then { 
   Evaluate *x  using additional ΔK3 replications 

  Update *ˆ( )z x  
   set K3= K3+ΔK3 
   }  
  Evaluate x using additional K3 replications  

 Update ˆ( )z x . 
  If *( ) ( )f f≥x x , then set * =x x  
 } 
 If **ˆ ˆ( ) ( )z z≥x x  and ( )w W≤x  then { 
  If (K2 ≤ K2max), then { 
   set K2= K2+ΔK2 
   Evaluate **x  using additional ΔK2 replica-

tions 
  Update **ˆ( )z x . 

  } 
  Evaluate x using additional K2 replications  

 Update ˆ( )z x . 
  If **ˆ ˆ( ) ( )z z≥x x , then set ** =x x . 
  } 
} 
In this approach, the best candidate *x  is reevaluated each 
time a solution x contests its best candidacy.  Therefore, if 
a solution x is highly superior in its neighborhood, it could 
be identified as the best candidate without requiring a large 
number of simulation replications.  On the contrary, if so-
lutions in a neighborhood have similar fitness values, then 
this procedure will increase the number of simulation rep-
lications to reduce the error while comparing solutions.  To 
test this approach, the TS algorithm was run for K1=50, 
100, 200, ΔK3 =100, 200 with ΔK3max=600, and ΔK2= 500 
with K2max=2,000.  Results were analyzed by the two-way 
ANOVA using K1 and ΔK3 as the factors, which turned out 
to be statistically significant with p-values of 0.02 and 
0.06, respectively.  Figure 4  depicts the confidence inter-
vals for factor K1 and ΔK3 (D-K3 in the figure).  The results 
are similar to Strategy 3.  Basically, the best strategy seems 
to evaluate each solution roughly first, then to evaluate 
promising ones with a higher number of replications.  
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Strategy 5: 
This is an extension of Strategy 3 where a solution x is re-
evaluated with additional K3 replications if *ˆ ˆ( ) ( )z z≥x x  
and ( )w W≤x .  The main idea of this strategy is not to 
waste simulation time by rigorously evaluating infeasible 
solutions.  The TS algorithm was run using this strategy 
and Strategy 3 with K1=50, 100, 200, K3 =300, 400, 500, 
and K2=2,000, 3000.  Then, the results obtained by both 
strategies were compared using a paired-t test.  As a result 
of this comparison, Strategy 3 was proved to be more ef-
fective than Strategy 5 with a p-value of almost zero de-
spite the fact that Strategy 5 was able to search 19% more 
solutions than Strategy 3 on the average.  This result was 
unexpected since we had assumed that the penalty of an 
infeasible solution would have a higher weight than its ob-
jective function value in the fitness of the solutions.  How-
ever, this relationship turned out to be very complex when 
an adaptive penalty function such as the one used herein. 
When neighborhoods including both feasible and infeasible 
solutions were closely analyzed, it turned out that a rigor-
ous estimation of z(x) is also important for infeasible solu-
tions since an infeasible solution was frequently selected as 
the best candidate. 
 

 
Figure 4: 95% confidence intervals for the factor levels 
used in the two-way ANOVA for Strategy 4 
 
Strategy 6:  
The strategies described above do not consider the standard 
deviation of simulation estimation ˆ( )z x  while comparing 
solutions.  Strategy 6 is an extension of Strategy 4 where 
standard deviation of the estimation is used while compar-
ing a solution x with the best feasible solution x**.  Strat-
egy 4 is modified such that a new solution x is reevaluated 
if **

**
ˆ ˆ( ) ( )

ˆ ˆ( ) ( )
z z

z z kσ
−

− ≤
x x

x x  where **ˆ ˆ( ) ( )z z
σ

−x x
 is the stan-

dard deviation of the difference between estimations 
**ˆ( )z x  and ˆ( )z x .  Therefore, this strategy reduces the 

probability of cases where **( ) ( )z z≥x x  and **ˆ ˆ( ) ( )z z<x x  
compared to the other strategies.  However, its main disad-
vantage is that more solutions are expected to be evaluated 
rigorously.  The runs were performed with the same pa-
rameter settings used in Strategy 4 and k=1.  When the re-
sults were compared to Strategy 4 using a paired-t test, no 
significant difference was observed between these two 
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strategies in terms of solution quality (p-value=0.222).  
However, when results were analyzed by a two-way 
ANOVA using K1 and ΔK3 as the factors, which were both 
statistically significant in Strategy 4, ΔK3 turned out to be 
not significant with a p-value of 0.85.  In other words, this 
strategy performed equality well for both levels of ΔK3 (see 
Figure 5).  Considering the standard deviation while com-
paring new solutions with the best feasible solution pro-
vides a cushion against the error of rejecting a true new 
best feasible solution at the first comparison, reducing the 
probability of this error.  Therefore, this feature may un-
dermine the function of ΔK3 at some degree.   
 Figure 6 shows a box plot of the results over 20 repli-
cations for the best case of each strategy.  The best strategy 
seems to be strategy 4.  Although it is difficult to draw 
general conclusion based on a single problem, it seems that 
evaluating solutions in a hierarchical manner is a promis-
ing approach.   

 

 
Figure 5: 95% confidence intervals for the factor levels 
used in the two-way ANOVA for Strategy 6 
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Figure 6: A box plot of  the results over 20 replications for 
the best case of each strategy 

5 CONCLUSIONS 

The research in this paper introduced alternative strategies 
in simulation optimization using TS.  These strategies are 
demonstrated and empirically compared using a SKP test 
instance.  Experimental results have demonstrated that the 
269
performance of a simulation optimization using TS may 
highly depend on how the simulation is conducted during 
the search and how its output is used to guide search. 

Although it is difficult to generalize the results found 
in this paper since they depend on a single problem in-
stance, it is clear that TS performance can be improved by 
simple adjustments in a TS procedure instead of increasing 
the number of simulation replications to reduce the noise.  
It would be an interesting further research to experiment 
similar ideas on different problems in order to draw gen-
eral conclusions. 
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