Future Directions In
Simulation Modeling

C. Dennis Pegden

Outline

= A half century of progress.
= \Where do we need to go from here?
= How do we get there?

Simulation:
A Compelling Technology

m See the future
= Visualize dynamic processes
= Understand the impact of change

= Experiment without risk
= Make mistakes early — and in the model
= Improve performance

The Application Gap

m Simulation Is widely = Simulation is applied in a
accepted as a valuable small fraction of the
tool for predicting the cases where it can bring
performance of complex significant value.
systems.

Challenges

= Models are time consuming
and expensive to build.

= A simulation project requires
significant skills in model
building, experimentation, and

analysis.

If we want to close the
application gap we need to
make significant improvements
In the model building process
to support the fast-paced
decision making environment
of the future.

)

ﬂ I know: we should\

be using|simulation
howeverwe don't
have the time and

resources to allocate

10 the project.”

% g

Application Trends

= The world Is going flat — competition from
everywhere — rapid pace of change — need
answers guickly.

= A revolution in computing and communication
IS driving rapid changes in system design.

m Large integrated systems from suppliers to
manufacturing to customers.

Model Building ﬁ‘
4.)

The process of mapping the real world to a model that executes and
changes state over time.

This mapping from real world to model is based on a world view:
= Event
m Process

= Object (Agent)
= Continuous (System Dynamics)

The world view provides a framework for defining the components of the
system in sufficient detail to allow the model to execute and simulate the
system.

The framework includes the system state, and mechanisms for changing
that state.

We seek a simple and natural model view that is also flexible and efficient.

' @ O
Event View \@f

= The most elemental view of a discrete system.

= Models the points in time (events) when the
state of the system may change.

m Event logic defines the state changes that occur
at each event.

= [Ime advances from event to event.
m Efficient and flexible — highly abstract.
m Used extensively during the 60’s/70’s.

Process View

.

= Models the flow of entities (transactions)
through a series of process steps.

m Discrete state changes happen automatically as
Steps are executed (steps trigger event

sequences).
m Process steps can take place over time.

m As flexible and efficient as event modeling — less
abstract.

m Used extensively for current day models.

= Models the physical objects in the system.

= Objects combine data and functionality into self-
contained units.

m Objects serve as a model of an abstract "actor" that can

perform work, report on and change its state, and
‘communicate™ with other objects.

m Object constructs form the basis of modern
programming languages.

m ODbjects provide a natural method for describing a
system.

Agent-Based View

m A special case of Object View.

m Macro system behavior emerges as a result of
the Interaction of a large number of active

objects callec

Agents.

m Agents are ty

pically autonomous, may interact

with each other, and are goal directed.

= An alternative approach to aggregated System
Dynamics models.

Continuous View &

>

m State of the system changes continuously over
time (not just at events).

m Can be used to model continuous systems (e.g.

entity movement, fluid flows) or aggregated
models of discrete systems (e.g. markets, supply
chains, populations).

m Systems of differential equations — key modeling
components are feedback loops.

The Path of Progress

Early Years

Renaissance |1

Renaissance

The Early Years (60’s) _ /&

= Birth of modeling concepts
= Event Modeling (Simscript)
= Process Modeling (GPSS)
= Object Modeling (Simula)
= Systems Dynamics (Dynamo)

= Low application success rate
= Event programming / Inefficient process modeling
= No debug tools
= Tabular outputs / no analysis tools
= Slow batch computers

The Renaissance (80’s)

= An explosion of advances in modeling,
animation, and analysis.

m PC based simulation tools.

m Shift from event to flexible and efficient
process modeling.

m Graphical model building — advanced GUI.
m 2D (3D) Animation.
= Hierarchical modeling.

The Key to Progress

= [he paradigm shift from event to process
= Efficient next event processing logic
= Flexible process modeling constructs
= Graphical model building - improved GUIs

m 2D (3D) Animation
= Brings the model to life
= Verification/validation
= Communication from shop floor to top floor

Post Renaissance (90’s, 00’s)

m Wider acceptance of simulation.

m Tools have become feature rich — but the
fundamental modeling paradigm has not
changed.

= [he application growth created by the first
Renaissance has stagnated.

= The important applications are becoming bigger
and more complicated.

ooking Ahead: Renaissance ||

= The goal Is a fundamental shift in ease of use that will
expand the application of simulation.

® In Renaissance | the shift was created by moving from

an event view to a
animation.

m In Renaissance Il t

process view and adding 2D

ne shift will come by moving from a

process view to a 3D animated facility (object) view.
m Success will require innovative ideas in next generation

tools.

= \What are the challenges and solutions?

Measuring Success

= Practitioners are the judges E
= Can a new/existing user 8. E

= Quickly learn the tool?

= Model the system of interest?

= Get meaningful results in a timely fashion?

= Make better decisions with the tool?

= \We succeed If we
= Increase the number of practitioners

= Increase the number and size of applications
= Improve the success rate

Benefits of the Facility (Object) View

m The Facility View Is a very natural way to
describe a system.

m Objects correspond directly to the facility —
they support a one-step model build and 3D
animation.

m A single object definition can be instantiated
(not copied) multiple times — all sharing a
common definition.

m ODbjects can be multifaceted.

The Next Generation Tool

m Unified framework with object, process, event,

and continuous modeli

= 3D (2D) animated obj

ing.

ects/models.

m Graphical model/object build.
m Domain neutral framework — application

focused objects.
m Lightwelght objects —

fast execution.

= Distributed application using Web services.

Rethinking the O-O Paradigm

The O-O paradigm was invented in the simulation world (Simula) and then
adopted by the programming world.

Most modern languages (C++, Java, C#,) are based on the O-O
paradigm.
m Abstraction: focus on the essential.
= Encapsulation: only the object can change its state.
Polymorphism: messages trigger object-specific actions.
Inheritance (is-a): specialized objects derived from existing objects.
Composition (has-a): new objects built by combining existing objects.

We can code simulation objects in an O-O programming language — however
this does not achieve our objective of making simulation dramatically easier to
use.

A better alternative is to build a graphical simulation modeling system around
the O-O concepts.

How do we do this?

A Model is an Object

= Make the terms model and object interchangeable.
Model builders are object builders.

m A model can be instantiated into other models. A

model can be a single

machine or an entire factory or

supply chain. A model can have multiple instances.
m A model has a 3D(2D) state-driven animated view.

= A model instance has

properties that specify input

parameters for the model.

m A model can be built

rom processes, sub-classed from

another model, or created by combining existing

models.

Base Objects

Built from processes.
Processes are analogous to

methods in O-O
programming — but span

across time.
Events trigger processes that

are executed by tokens.

These processes change the
state of the parent object.

Events include time, change,
threshold, and logic events.

Derived Objects

= Built by inheriting and
modifying/extending the
behavior of a parent
object.

m Parent processes may be
overridden.

= New processes may be
added.

Hierarchical Objects

= Built by combining
Instances of existing
objects into a facility
model (object hierarchy).

Entity arrivals to an
object spawn new
entities that move
through a facility model
of the object.

Some Key Design Challenges

= Making models objects

= Lightweight objects

m Complex movements

m Flexible object interactions
m Shareable objects

m Fast execution

3-Tier Object Structure

3-Tiered Objects:

m Definition; ml
m Instance:

m Realization: @

Instances hold properties, realizations hold states.

= A definition may have multiple instances, each instance has

properties that specify parameters of the object.

An instance may have multiple realizations, each realization
holds the state of the object.

Object realizations are only created and used during execution.

This 3-tier structure facilitates light weight objects, “Change and
Go” execution, and parallel execution of replications.

Hierarchical Example

Model Structure State Realizations

—
A

Object Movements: ODbject Classes

Objects
= A fixed location in the model
m Entities arrive and depart from the object at transfer stations
= Objects have intelligence defined by processes that are triggered by events
Entities
m Objects that move across networks of links from object to object.
= An entity (object) may have intelligence
Links
= Objects that provide a pathway for entity movements
m Start and end at intersections/stations
= A link (object) may have intelligence
Transporters
= Entities that pick up, carry, and drop off other entities
= A transporter (entity) may have intelligence and move across links

Object Interaction

m ODbjects must co-exist and interact with each
other.
= Transferring an entity between objects.
= Messaging an object to perform an action.
= Detecting other objects.

m Polymorphic — object specific responses to
messages.

Shareable Objects

m Object Fidelity

= Conventional wisdom — purpose built model — designed to
answer specific questions.

= With reusable objects — the model purpose is hot known in
advance.

= Objects must be able to simulate at multiple levels of fidelity.

= Encapsulation

= Objects do not know details about other objects in the
system.

= Objects do not know the details of entities that arrive to the
object.

Execution Speed

Computers are getting faster — but problems are getting
larger.

Managed code (Java, .NET) executes slower than
conventional code.

Fast
resu

Para
Imp

execution Is necessary to enhance the analysis of
tS.

lel execution of replications Is highly desirable.

ementation details are critical.

= Time and threshold event management
m Process steps
= Continuous state variables

ooking Beyond Renaissance ||

= Unified Analysis Tool - Multifaceted Objects
= Layout
= Kinematics
= Simulation
= Emulation

= Vendor Supplied Objects

summary

m 60’s and 80’s were periods of great progress — the past
decade has been one of refinements.

= Future growth depends on making simulation
dramatically easier to use.

m [he next renaissance will be built around a unified
facility — process — event view.

m Success Is In the detalls of design and implementation.
= Two key insights: model == object, 3-tier object
= Practitioners judge our work.

