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ABSTRACT 

This article introduces a novel methodology for automatic simulation model generation. The methodology 
is based on the usage of XML stylesheet transformations for generating the actual source code of the tar-
get simulation system. It is therefore especially well-suited for all language-based simulation systems. 
The prerequisite for using the methodology is an appropriate representation of the system under investiga-
tion in the Core Manufacturing Simulation Data (CSMD) format. The applicability of our methodology is 
demonstrated for the simulation language SLX as well as for the visualization system Proof Animation. 

1 INTRODUCTION 

Discrete-event simulation is used within many different disciplines and application areas. In the area of 
production and logistics, it is a well-accepted tool for the planning, evaluation, and monitoring of relevant 
processes (VDI 3633-1). Fowler and Rose (2004) have discussed future challenges for modeling and sim-
ulation of complex production systems. Among others, they identified the reduction of the time and effort 
for simulation studies as well as the integration of simulation with the real production system as future re-
search areas.  

As discussed in previous work, an approach for a reduction of the time and effort in simulation stud-
ies is the idea of automatic model generation and initialization (Bergmann and Strassburger 2010; Berg-
mann, Fiedler, and Straßburger 2010; Bergmann, Stelzer, and Strassburger 2011). So far, these approach-
es have focused on component-based simulators like Plant Simulation (Siemens 2012). The common idea 
for generating models in such tools is to dynamically create the required model elements based on an ex-
ternal data format describing the model structure. A suitable data format for manufacturing systems is the 
Core Manufacturing Simulation Data (CMSD) standard (see Section 2). It is important to note that the 
model generation here is performed from within the simulator itself, i.e., a suitable model generation 
script is executed in the simulator, reads the CMSD input data file, and accordingly generates the appro-
priate model elements. The basic types of model elements must be predefined in the component libraries 
of the simulation system.  

In this paper we present a completely novel methodology for automatic model generation which is 
applicable for language-oriented simulation tools, such as SLX (Henriksen 1999) or Desmo-J (Desmo-J 
2012). 

For these tools we suggest an approach which generates the actual code of the simulation model 
based on eXtensible Markup Language (XML) stylesheet transformations. The advantage of this ap-
proach is increased flexibility and easy adaptability to other simulation languages. 
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The remainder of this paper is structured as follows: In Section 2 we introduce the CMSD standard 

and discuss its current application. In Section 3, we introduce the XML stylesheet transformation lan-
guage named eXtensible Stylesheet Language (XSL) Transformation (XSLT) which is used for the model 
generation. In Section 4, we first introduce the simulation and visualization tools used for demonstrating 
our methodology, namely, SLX and Proof Animation. We then present a prototypical implementation of a 
CMSD-based XSLT model generator for both tools. Section 5 critically reviews the achievements and 
documents possible areas of future work. 

2 CORE MANUFACTURING SIMULATION DATA INFORMATION MODEL 

The CMSD information model is an open standard developed within the simulation interoperability 
standards organization (SISO). The primary objective of the CMSD information model is to facilitate in-
teroperability between simulation systems and other manufacturing applications. Towards this objective it 
provides a data specification for the efficient exchange of manufacturing data in a simulation environment 
(SISO 2010).  

The CMSD standard consist of two parts. The first part uses the Unified Modeling Language (UML) 
representation. The UML representation has been organized using packages shown in Figure 1. The se-
cond part implements the data format in an XML schema description and is based on RelaxNG and 
Schematron as schema languages. For more detailed information about CMSD, see SISO (2010), SISO 
(2011) and Johansson et al. (2007). 

 

Figure 1: The packages of the CMSD Information Model (SISO 2010) 

The CMSD standard provides data structures and an information model for the exchange of modeling 
information and includes classes describing jobs, parts, resources including machines and workers, pro-
cess plans, shifts, etc. as well as basic layout information.  

The capabilities of CMSD were first demonstrated in a research project (FACT), which focused on 
developing new and modified production systems (Johansson et al. 2007). Furthermore it was demon-
strated that CMSD is useful for the model generation (Bergmann, Fiedler, and Straßburger 2010) and ini-
tialization (Bergmann, Stelzer, and Strassburger 2011) when component-based simulation tools are used, 
e.g., Plant Simulation. 

In this paper we focus on how to use CSMD in the context of language-based simulation tools like 
SLX. As the suggested method is based on using XML stylesheet transformation to transform CMSD data 
into SLX source code, the next section gives a brief overview about the basics of XML and XML 
stylesheet transformation. 

3 XML STYLESHEET TRANSFORMATION 

XML is the state-of-the-art standard for representing data and information in many different application 
areas. XML is a proven technology where data from different applications must be stored, retrieved, 
shared or processed. It is “playing an increasingly important role in the exchange of a wide variety of data 
on the Web and elsewhere” (W3C 2012).  

Layout Part  
Information Support Resource 

Information 
Production 
Operations 

Production 
Planning 

CMSD 

3047



Bergmann, Stelzer, Wüstemann, and Strassburger 
 

In the last few years, hundreds of XML-based languages and data formats have been developed in-
cluding CMSD, RSS, SOAP, and XHTML. In addition many schema languages, related specifications 
and programming interfaces have been implemented, e.g., XML Schema, RelaxNG, XSLT, XSL-FO, 
SAX. 

A common requirement in many practical applications is the transmutation of one or more XML doc-
uments into one or more target documents. The target format of these documents may be a different XML 
encoding or a non-XML format. This conversion process is called XML transformation and is typically 
described using the XSL. XSL is actually an entire family of languages for describing the transformation 
and rendering of XML documents. The XML transformation process has two aspects. It consists of "first, 
constructing a result tree from the XML source tree and second, interpreting the result tree to produce 
formatted results suitable for presentation on a display, on paper, in speech, or onto other media. The first 
aspect is called tree transformation and the second is called formatting." (W3C 2006). An example lan-
guage for specifying the visual formatting of an XML document is XSL Formatting Objects (XSL-FO). 
For the scope of this paper, we are only concerned with a language for the tree transformation, in our case 
we chose XSLT.  XSLT 2.0 represents a significant increase in the capability of the language compared to 
XSLT 1.0; for details see W3C (2007).  

XSLT is a declarative, XML-based language for the transformation of XML documents. In this trans-
formation, new documents are created based on the content of existing XML documents and a set of 
XSLT rules. The basic idea of this process is shown in Figure 2. It is interesting to note that the original 
document is not changed and that the result documents can be serialized in XML syntax (with their own 
schema) or in arbitrary other formats, e.g., HTML or plain text. Further principles are that:  

 XSLT is based on the logical tree structure of an XML document, 
 the transformation rules are defined as XSLT stylesheet (also defined as XML), 
 the addressing of individual subtrees for the transformation uses XPath (W3C 2010), and 
 an XSLT processor (e.g., SAXON  (SAXON 2012)) is used as the XSLT template processing en-

gine. 
 

 

Figure 2: Process flow of eXtensible Stylesheet Language Transformations 

The XSLT transformation rules, called the template, have an XPath-based pattern describing the re-
quired nodes and a content part that determines the result tree (Figure 3).  
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Figure 3: Snapshot of a simple XSLT file 

In the content part, the multitude of allowed elements ranges from simple text outputs to powerful 
features for analyzing and transforming the elements of the source document. It also includes control 
structures (e.g., repetitions, conditions) and allows the execution of external function calls (e.g., JAVA 
methods). In the following section, we describe a prototype which uses XSLT for both the generation of 
SLX and Proof Animation source code and its execution in the respective tools. 

4 PROTOTYPE OF A CMSD-BASED MODEL GENERATOR FOR SLX AND PROOF 
ANIMATION USING XML STYLESHEET TRANSFORMATION 

Simulation Language with eXtensibilities (SLX) is a discrete-event simulation tool for Windows (Henrik-
sen 1999). SLX is a language based on a layered, inverted pyramidal software architecture. The SLX lan-
guage has a C-like syntax and is an object-based language, i.e., it uses classes and objects. SLX allows 
simulation modeling with a process-oriented world view. Objects can be active and passive, offering the 
user the full flexibility to model resources, parts, jobs, etc. 

The process-oriented world view is supported by simulation-specific statements, like instructions for 
modeling concurrency, coordination, and synchronization of processes (Schulze and Henriksen 2002). 
Most notably, SLX offers a generalized “wait until” statement with which processes can be logically de-
layed until an arbitrary boolean expression becomes true (Henriksen 2009). With SLX 2.0, the object ori-
entation in SLX has been greatly enhanced and now includes features like inheritance, information hiding, 
and polymorphism. 

Proof Animation on the other hand is a family of software for post-processed or concurrent visualiza-
tion of simulation models (Henriksen 1997). Proof Animation uses two kinds of input files: a layout file 
and an animation trace file or animation trace stream. Typically, SLX and Proof Animation are used in 
conjunction, as SLX offers comprehensive functionalities for creating trace files or streams during a 
simulation run, but offers no visualization itself. The Proof Animation layout file contains information 
about  

 the geometry/appearance of the modeled system, 
 classes (mainly used for dynamic elements moving through the animation), 
 paths (on which objects created in the animation will move), 
 bar charts, plots, and messages (further dynamic elements of a layout which can be changed dur-

ing a visualization), and 
 views (which define sections of the layout to be displayed). 
The automatic model generation for SLX and Proof Animation is based on the assumption that all in-

formation which is required to describe the system under investigation (and optionally its initial state) is 
captured in a CMSD XML file. In a practical setting, this data would be extracted from planning systems 

<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="2.0"  
   xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  
   xmlns:xs="http://www.w3.org/2001/XMLSchema"  
   xmlns:fn="http://www.w3.org/2005/xpath-functions"> 

 
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/> 

 
 <xsl:template match="/rootNode"> 
  <xsl:for-each select="//subNode"> 
    <xsl:value-of select="subSubNode"/> 
  </xsl:for-each> 
 </xsl:template> 

 
</xsl:stylesheet> 

Required nodes (XPath Pattern) 

Content part 
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and/or manufacturing IT systems like ERP or MES. In our test scenario, the CMSD files are generated by 
a web-based front end. CMSD and the web front end were also used in previous work, e.g., for the initial-
ization of automatically generated simulation models (Bergmann, Stelzer, and Strassburger 2011). An ex-
cerpt from one of the CMSD XML files used can be seen in Figure 4. It details basic information about a 
resource, its location in the layout, and its current setup state. 

 

 

Figure 4: Snapshot of an example CMSD.xml file 

As a prerequisite for the model generation, a generic SLX implementation for the CSMD classes had 
to be created. This implementation is contained in the CMSD.slx source file. It implements a mapping of 
the CMSD classes into SLX 2.0 classes, including the class hierarchy and the attributes specified in the 
CMSD standard. The generation of these classes was also partially automated, as it is derived from the 
CMSD schema document. This is only done once, however, and does not need to be changed as long as 
the CMSD standard remains unmodified. For each class a generic dynamic behavior was modeled manu-
ally according to certain conventions regarding a CMSD-compatible modeling philosophy. It is important 
to note that this CMSD.slx file can be used repeatedly and only has to be modified when essential chang-
es to the CMSD standard occur. The code generated by the XSLT-based model generation process will 
make uses of the classes defined in CMSD.slx (e.g., by instantiating classes according to the data from the 
supplied CMSD file). 

The workflow for the CMSD-based model generation using XSLT for SLX and Proof Animation is 
shown in Figure 5. Only the blue parts of the figure are discussed in this paper; the rest is included only 
for reasons of completeness. The process of simulation model generation can be divided into four steps, 
as marked in the figure.  

In the first step, an XSLT 2.0 processor, e.g., Saxon, transforms the CMSD XML file into two result 
files, namely, the SLX source code of the model and a Proof Animation layout. This transformation pro-
cess is based on two XSLT templates, describing the transformation of the CMSD input into source code 
of an SLX model and a layout file for Proof Animation, respectively. The XSLT templates are named 
CMSD_to_SLX.xsl and CMSD_to_P5.xsl. 

 

<Placement> 
 <LayoutElementIdentifier>Layout_Ma3</LayoutElementIdentifier> 
 <Location> <X>338</X>  <Y>350</Y> </Location> 
</Placement> 
… 
<LayoutObject> 
 <Identifier>Layout_Ma3</Identifier> 
 … 
 <AssociatedResource> <ResourceIdentifier>Ma3</ResourceIdentifier>  
 </AssociatedResource> 
 ... 
</LayoutObject> 
… 
<Resource> 
 <Identifier>Ma3</Identifier> 
 <Description>drilling</Description> 
 <ResourceType>machine</ResourceType> 
 … 
 <Name>drill</Name> 
 <CurrentStatus>idle</CurrentStatus> 
 <CurrentSetup> 
   <SetupDefinitionIdentifier>SD_3_A</SetupDefinitionIdentifier> 
 </CurrentSetup> 
  … 
</Resource> 
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Figure 5: Schematic architecture and workflow of the model generator 

At the end of the XSLT processing, two external functions are called by the XSLT processor with the 
purpose of executing both SLX and Proof Animations. These functions (“ExecuteSLXModell” and  
“ExecuteProofAnimation”) are implemented in a JAVA library named SLXStarter.jar. These functions 
are executed sequentlially, i.e., first the simulator SLX is started and runs the created model (denoted as 
step 2 in Figure 5). In this step the predefined class library CMSD.slx is used by the generated SLX code. 
The run of the simulation model also automatically creates the trace file for Proof Animation. After the 
simulation run is completed, Proof Animation is started to visualize the simulation results (denoted as 
step 3 in Figure 5). 
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Figure 6: Excerpts from CMSD_To_SLX.xsl, CMSD.SLX, and a SLX_Model.slx file 

 To further illustrate the automatic model generation process, let us take a closer look at Figures 6 and 
7. Figure 6 illustrates how a class (here: a resource of type machine) from a concrete CMSD.xml file (not 
part of Figure 6, but shown in Figure 4) is transformed into the appropriate SLX code. The upper part of 
Figure 6 shows a section from the XSL template describing the transformation rules (here: the transfor-
mation of a resource class) from CMSD into SLX code. The middle part shows the generic SLX imple-
mentation for resources of type machine. The lower part shows the generated SLX code which is the re-
sult of the XSLT transformation.   
 The execution of the generated SLX model produces two result files. SLX_Result.xml contains statis-
tical key figures and trace data for further statistical analysis (not discussed in this paper). Second, an an-
imation trace file for processing in Proof Animation named P5_Model.atf is created. 

[CMSD_To_SLX.xsl] 
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
 xmlns:java="java:SLX_Starter?path=jar:file:///C:…\SLX_Starter.jar!/">  
… 
<xsl:for-each select="CMSDDocument/DataSection/Resource"> 
 <xsl:variable name="ResourceType"> 
    <xsl:value-of select="ResourceType"/> 
 </xsl:variable> 
 <xsl:text>pointer(</xsl:text> 
 <xsl:value-of select="$ResourceType"/> 
 <xsl:text>) </xsl:text> 
 <xsl:value-of select="Identifier"/> 
 <xsl:text> = new </xsl:text> 
 <xsl:value-of select="$ResourceType"/> 
 <xsl:text>("</xsl:text> 
 <xsl:value-of select="Identifier"/> 
 <xsl:text>");</xsl:text> 
 <xsl:value-of select="$newline"/> 
 <xsl:value-of select="Identifier"/> 
 <xsl:text>-&gt;m_Description = "</xsl:text> 
 <xsl:value-of select="Description"/> 
 <xsl:text>";</xsl:text> 
… 

<xsl:value-of select="java:ExecuteSLXModell($SLXExecutionPath, … )"/> 
…  
[CMSD.slx] 
… 
public class Machine(string(*) identifier) subclass(Resource(identifier, machine){ 
 public double m_LocationX; 
 public double m_LocationY; 
 private pointer(Job) m_CurrentJob; 
 … 
 actions { 
  pointer(Event) event; 
  PA_Write "MachineIdentifier"(m_Identifier) m_Identifier; 
  PA_Write "MachineStatus"(m_Identifier) m_CurrentStatus; 
  while(TRUE) { 
… 
[SLX_Model.slx] 
… 
pointer(Machine) Ma3 = new Machine("Ma3"); 
Ma3->m_Description = "drilling"; 
Ma3->m_Name = "drill"; 
… 
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Figure 7: Excerpts from CMSD_To_P5.xsl, a P5_Modell.lay file and a P5_Model.atf file 

Figure 7 illustrates the interplay between a concrete CMSD description of a system and a Proof Ani-
mation visualizing its simulation. The example is again based on the CMSD class from Figure 4. The up-
per part of Figure 7 shows the XSL transformation rule for transforming resources of type machine into 
Proof Layout objects. It should be noted that the position of layout objects must be contained in the 
CMSD source file. The creation of layouts for CMSD files not containing such information may be an ar-
ea for future extensions. The middle part in Figure 7 shows the part of the automatically generated Proof 
layout file defining the machine layout class and placing it into the layout at the appropriate coordinates. 

Also note that CMSD is not a graphic exchange format, i.e., it does not contain a detailed vector 
graphic representation of entities. We therefore assume and create a very simplistic graphic representation 
in Proof Animation automatically (shown in Figure 8). 

Finally, the lower part of Figure 7 shows a part of the Proof Animation trace file concerned with state 
changes of the layout object. This file is produced during the execution of the previously generated SLX 
code. It uses the same naming conventions for layout classes and can therefore be directly used in Proof 
Animation for visualization of the simulation run.  

[CMSD_To_P5.xsl] 
… 
<xsl:call-template name="CreateLayoutObject"> 
 <xsl:with-param name="Identifier" select="$ResourceIdentifier"/> 
 <xsl:with-param name="StartX" select="$LocationX"/> 
 <xsl:with-param name="StartY" select="$LocationY"/> 
 <xsl:with-param name="Type" select="string('Machine')"/> 
</xsl:call-template> 
… 
<xsl:template name="CreateMachineClass"> 
 <xsl:text>Color L4</xsl:text><xsl:value-of select="$newline"/> 
 <xsl:text>Define Class Machine</xsl:text><xsl:value-of select="$newline"/>  
… 
[P5_Model.lay] 
… 
Color L4 
Define Class Machine 
… 
Fill 2.1516 -0.3169 
Line -5 -5 -5 5 
Line 5 -5 -5 -5 
Line 5 5 5 -5 
Line -5 5 5 5 
… 
Message MachineStatus 1 2 LJ -15 -13.5 BG Backdrop disassemble 
Message MachineIdentifier 1 2 LJ -15 11.5 BG Backdrop Machine Name 
… 
CPO Buffer Ma3_E 298 350 
CPO Machine Ma3 338 350 
CPO Buffer Ma3_A 378 350 
… 
[P5_Model.atf] 
… 
write MachineIdentifier(Ma3) Ma3 
write MachineStatus(Ma3) idle 
… 
place Part3 at 308.000 350.000 
write MachineStatus(Ma3) busy 
… 
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