
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

MODEL GENERATION IN SLX USING CMSD AND XML STYLESHEET
TRANSFORMATIONS

Sören Bergmann
Sören Stelzer

Sascha Wüstemann
Steffen Strassburger

Ilmenau University of Technology

Helmholtzplatz 3
98684 Ilmenau, GERMANY

ABSTRACT

This article introduces a novel methodology for automatic simulation model generation. The methodology
is based on the usage of XML stylesheet transformations for generating the actual source code of the tar-
get simulation system. It is therefore especially well-suited for all language-based simulation systems.
The prerequisite for using the methodology is an appropriate representation of the system under investiga-
tion in the Core Manufacturing Simulation Data (CSMD) format. The applicability of our methodology is
demonstrated for the simulation language SLX as well as for the visualization system Proof Animation.

1 INTRODUCTION

Discrete-event simulation is used within many different disciplines and application areas. In the area of
production and logistics, it is a well-accepted tool for the planning, evaluation, and monitoring of relevant
processes (VDI 3633-1). Fowler and Rose (2004) have discussed future challenges for modeling and sim-
ulation of complex production systems. Among others, they identified the reduction of the time and effort
for simulation studies as well as the integration of simulation with the real production system as future re-
search areas.

As discussed in previous work, an approach for a reduction of the time and effort in simulation stud-
ies is the idea of automatic model generation and initialization (Bergmann and Strassburger 2010; Berg-
mann, Fiedler, and Straßburger 2010; Bergmann, Stelzer, and Strassburger 2011). So far, these approach-
es have focused on component-based simulators like Plant Simulation (Siemens 2012). The common idea
for generating models in such tools is to dynamically create the required model elements based on an ex-
ternal data format describing the model structure. A suitable data format for manufacturing systems is the
Core Manufacturing Simulation Data (CMSD) standard (see Section 2). It is important to note that the
model generation here is performed from within the simulator itself, i.e., a suitable model generation
script is executed in the simulator, reads the CMSD input data file, and accordingly generates the appro-
priate model elements. The basic types of model elements must be predefined in the component libraries
of the simulation system.

In this paper we present a completely novel methodology for automatic model generation which is
applicable for language-oriented simulation tools, such as SLX (Henriksen 1999) or Desmo-J (Desmo-J
2012).

For these tools we suggest an approach which generates the actual code of the simulation model
based on eXtensible Markup Language (XML) stylesheet transformations. The advantage of this ap-
proach is increased flexibility and easy adaptability to other simulation languages.

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 3046978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Bergmann, Stelzer, Wüstemann, and Strassburger

The remainder of this paper is structured as follows: In Section 2 we introduce the CMSD standard

and discuss its current application. In Section 3, we introduce the XML stylesheet transformation lan-
guage named eXtensible Stylesheet Language (XSL) Transformation (XSLT) which is used for the model
generation. In Section 4, we first introduce the simulation and visualization tools used for demonstrating
our methodology, namely, SLX and Proof Animation. We then present a prototypical implementation of a
CMSD-based XSLT model generator for both tools. Section 5 critically reviews the achievements and
documents possible areas of future work.

2 CORE MANUFACTURING SIMULATION DATA INFORMATION MODEL

The CMSD information model is an open standard developed within the simulation interoperability
standards organization (SISO). The primary objective of the CMSD information model is to facilitate in-
teroperability between simulation systems and other manufacturing applications. Towards this objective it
provides a data specification for the efficient exchange of manufacturing data in a simulation environment
(SISO 2010).

The CMSD standard consist of two parts. The first part uses the Unified Modeling Language (UML)
representation. The UML representation has been organized using packages shown in Figure 1. The se-
cond part implements the data format in an XML schema description and is based on RelaxNG and
Schematron as schema languages. For more detailed information about CMSD, see SISO (2010), SISO
(2011) and Johansson et al. (2007).

Figure 1: The packages of the CMSD Information Model (SISO 2010)

The CMSD standard provides data structures and an information model for the exchange of modeling
information and includes classes describing jobs, parts, resources including machines and workers, pro-
cess plans, shifts, etc. as well as basic layout information.

The capabilities of CMSD were first demonstrated in a research project (FACT), which focused on
developing new and modified production systems (Johansson et al. 2007). Furthermore it was demon-
strated that CMSD is useful for the model generation (Bergmann, Fiedler, and Straßburger 2010) and ini-
tialization (Bergmann, Stelzer, and Strassburger 2011) when component-based simulation tools are used,
e.g., Plant Simulation.

In this paper we focus on how to use CSMD in the context of language-based simulation tools like
SLX. As the suggested method is based on using XML stylesheet transformation to transform CMSD data
into SLX source code, the next section gives a brief overview about the basics of XML and XML
stylesheet transformation.

3 XML STYLESHEET TRANSFORMATION

XML is the state-of-the-art standard for representing data and information in many different application
areas. XML is a proven technology where data from different applications must be stored, retrieved,
shared or processed. It is “playing an increasingly important role in the exchange of a wide variety of data
on the Web and elsewhere” (W3C 2012).

Layout Part
Information Support Resource

Information
Production
Operations

Production
Planning

CMSD

3047

Bergmann, Stelzer, Wüstemann, and Strassburger

In the last few years, hundreds of XML-based languages and data formats have been developed in-
cluding CMSD, RSS, SOAP, and XHTML. In addition many schema languages, related specifications
and programming interfaces have been implemented, e.g., XML Schema, RelaxNG, XSLT, XSL-FO,
SAX.

A common requirement in many practical applications is the transmutation of one or more XML doc-
uments into one or more target documents. The target format of these documents may be a different XML
encoding or a non-XML format. This conversion process is called XML transformation and is typically
described using the XSL. XSL is actually an entire family of languages for describing the transformation
and rendering of XML documents. The XML transformation process has two aspects. It consists of "first,
constructing a result tree from the XML source tree and second, interpreting the result tree to produce
formatted results suitable for presentation on a display, on paper, in speech, or onto other media. The first
aspect is called tree transformation and the second is called formatting." (W3C 2006). An example lan-
guage for specifying the visual formatting of an XML document is XSL Formatting Objects (XSL-FO).
For the scope of this paper, we are only concerned with a language for the tree transformation, in our case
we chose XSLT. XSLT 2.0 represents a significant increase in the capability of the language compared to
XSLT 1.0; for details see W3C (2007).

XSLT is a declarative, XML-based language for the transformation of XML documents. In this trans-
formation, new documents are created based on the content of existing XML documents and a set of
XSLT rules. The basic idea of this process is shown in Figure 2. It is interesting to note that the original
document is not changed and that the result documents can be serialized in XML syntax (with their own
schema) or in arbitrary other formats, e.g., HTML or plain text. Further principles are that:

 XSLT is based on the logical tree structure of an XML document,
 the transformation rules are defined as XSLT stylesheet (also defined as XML),
 the addressing of individual subtrees for the transformation uses XPath (W3C 2010), and
 an XSLT processor (e.g., SAXON (SAXON 2012)) is used as the XSLT template processing en-

gine.

Figure 2: Process flow of eXtensible Stylesheet Language Transformations

The XSLT transformation rules, called the template, have an XPath-based pattern describing the re-
quired nodes and a content part that determines the result tree (Figure 3).

XSLT-
Stylesheet

XSLT-
Processor,

e.g., SAXON

XML-
Documents

Result
documents

3048

Bergmann, Stelzer, Wüstemann, and Strassburger

Figure 3: Snapshot of a simple XSLT file

In the content part, the multitude of allowed elements ranges from simple text outputs to powerful
features for analyzing and transforming the elements of the source document. It also includes control
structures (e.g., repetitions, conditions) and allows the execution of external function calls (e.g., JAVA
methods). In the following section, we describe a prototype which uses XSLT for both the generation of
SLX and Proof Animation source code and its execution in the respective tools.

4 PROTOTYPE OF A CMSD-BASED MODEL GENERATOR FOR SLX AND PROOF
ANIMATION USING XML STYLESHEET TRANSFORMATION

Simulation Language with eXtensibilities (SLX) is a discrete-event simulation tool for Windows (Henrik-
sen 1999). SLX is a language based on a layered, inverted pyramidal software architecture. The SLX lan-
guage has a C-like syntax and is an object-based language, i.e., it uses classes and objects. SLX allows
simulation modeling with a process-oriented world view. Objects can be active and passive, offering the
user the full flexibility to model resources, parts, jobs, etc.

The process-oriented world view is supported by simulation-specific statements, like instructions for
modeling concurrency, coordination, and synchronization of processes (Schulze and Henriksen 2002).
Most notably, SLX offers a generalized “wait until” statement with which processes can be logically de-
layed until an arbitrary boolean expression becomes true (Henriksen 2009). With SLX 2.0, the object ori-
entation in SLX has been greatly enhanced and now includes features like inheritance, information hiding,
and polymorphism.

Proof Animation on the other hand is a family of software for post-processed or concurrent visualiza-
tion of simulation models (Henriksen 1997). Proof Animation uses two kinds of input files: a layout file
and an animation trace file or animation trace stream. Typically, SLX and Proof Animation are used in
conjunction, as SLX offers comprehensive functionalities for creating trace files or streams during a
simulation run, but offers no visualization itself. The Proof Animation layout file contains information
about

 the geometry/appearance of the modeled system,
 classes (mainly used for dynamic elements moving through the animation),
 paths (on which objects created in the animation will move),
 bar charts, plots, and messages (further dynamic elements of a layout which can be changed dur-

ing a visualization), and
 views (which define sections of the layout to be displayed).
The automatic model generation for SLX and Proof Animation is based on the assumption that all in-

formation which is required to describe the system under investigation (and optionally its initial state) is
captured in a CMSD XML file. In a practical setting, this data would be extracted from planning systems

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/rootNode">
 <xsl:for-each select="//subNode">
 <xsl:value-of select="subSubNode"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Required nodes (XPath Pattern)

Content part

3049

Bergmann, Stelzer, Wüstemann, and Strassburger

and/or manufacturing IT systems like ERP or MES. In our test scenario, the CMSD files are generated by
a web-based front end. CMSD and the web front end were also used in previous work, e.g., for the initial-
ization of automatically generated simulation models (Bergmann, Stelzer, and Strassburger 2011). An ex-
cerpt from one of the CMSD XML files used can be seen in Figure 4. It details basic information about a
resource, its location in the layout, and its current setup state.

Figure 4: Snapshot of an example CMSD.xml file

As a prerequisite for the model generation, a generic SLX implementation for the CSMD classes had
to be created. This implementation is contained in the CMSD.slx source file. It implements a mapping of
the CMSD classes into SLX 2.0 classes, including the class hierarchy and the attributes specified in the
CMSD standard. The generation of these classes was also partially automated, as it is derived from the
CMSD schema document. This is only done once, however, and does not need to be changed as long as
the CMSD standard remains unmodified. For each class a generic dynamic behavior was modeled manu-
ally according to certain conventions regarding a CMSD-compatible modeling philosophy. It is important
to note that this CMSD.slx file can be used repeatedly and only has to be modified when essential chang-
es to the CMSD standard occur. The code generated by the XSLT-based model generation process will
make uses of the classes defined in CMSD.slx (e.g., by instantiating classes according to the data from the
supplied CMSD file).

The workflow for the CMSD-based model generation using XSLT for SLX and Proof Animation is
shown in Figure 5. Only the blue parts of the figure are discussed in this paper; the rest is included only
for reasons of completeness. The process of simulation model generation can be divided into four steps,
as marked in the figure.

In the first step, an XSLT 2.0 processor, e.g., Saxon, transforms the CMSD XML file into two result
files, namely, the SLX source code of the model and a Proof Animation layout. This transformation pro-
cess is based on two XSLT templates, describing the transformation of the CMSD input into source code
of an SLX model and a layout file for Proof Animation, respectively. The XSLT templates are named
CMSD_to_SLX.xsl and CMSD_to_P5.xsl.

<Placement>
 <LayoutElementIdentifier>Layout_Ma3</LayoutElementIdentifier>
 <Location> <X>338</X> <Y>350</Y> </Location>
</Placement>
…
<LayoutObject>
 <Identifier>Layout_Ma3</Identifier>
 …
 <AssociatedResource> <ResourceIdentifier>Ma3</ResourceIdentifier>
 </AssociatedResource>
 ...
</LayoutObject>
…
<Resource>
 <Identifier>Ma3</Identifier>
 <Description>drilling</Description>
 <ResourceType>machine</ResourceType>
 …
 <Name>drill</Name>
 <CurrentStatus>idle</CurrentStatus>
 <CurrentSetup>
 <SetupDefinitionIdentifier>SD_3_A</SetupDefinitionIdentifier>
 </CurrentSetup>
 …
</Resource>

3050

Bergmann, Stelzer, Wüstemann, and Strassburger

Figure 5: Schematic architecture and workflow of the model generator

At the end of the XSLT processing, two external functions are called by the XSLT processor with the
purpose of executing both SLX and Proof Animations. These functions (“ExecuteSLXModell” and
“ExecuteProofAnimation”) are implemented in a JAVA library named SLXStarter.jar. These functions
are executed sequentlially, i.e., first the simulator SLX is started and runs the created model (denoted as
step 2 in Figure 5). In this step the predefined class library CMSD.slx is used by the generated SLX code.
The run of the simulation model also automatically creates the trace file for Proof Animation. After the
simulation run is completed, Proof Animation is started to visualize the simulation results (denoted as
step 3 in Figure 5).

CMSD data source (e.g., Web frontend for CMSD generation)

CMSD.xml
(CMSD XML)

XSLT-Processor,
e.g., SAXON

1

CMSD_To_SLX.xsl
(XSLT Stylesheet)

CMSD_To_P5.xsl
(XSLT Stylesheet)

P
ar

am
et

er

1
1

SimResult.xml
(CMSD XML)

SLX_Model.slx
(SLX file)

P5_Model.lay
(layout file)

SLX simulation envi-
ronment

2

SLX_Result.xml
(CMSD XML)

2

CMSD.slx
(SLX file) 2

P5_Model.atf
(animation trace file)

Proof Animation

3

3

11

2

3051

Bergmann, Stelzer, Wüstemann, and Strassburger

Figure 6: Excerpts from CMSD_To_SLX.xsl, CMSD.SLX, and a SLX_Model.slx file

 To further illustrate the automatic model generation process, let us take a closer look at Figures 6 and
7. Figure 6 illustrates how a class (here: a resource of type machine) from a concrete CMSD.xml file (not
part of Figure 6, but shown in Figure 4) is transformed into the appropriate SLX code. The upper part of
Figure 6 shows a section from the XSL template describing the transformation rules (here: the transfor-
mation of a resource class) from CMSD into SLX code. The middle part shows the generic SLX imple-
mentation for resources of type machine. The lower part shows the generated SLX code which is the re-
sult of the XSLT transformation.
 The execution of the generated SLX model produces two result files. SLX_Result.xml contains statis-
tical key figures and trace data for further statistical analysis (not discussed in this paper). Second, an an-
imation trace file for processing in Proof Animation named P5_Model.atf is created.

[CMSD_To_SLX.xsl]
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="java:SLX_Starter?path=jar:file:///C:…\SLX_Starter.jar!/">
…
<xsl:for-each select="CMSDDocument/DataSection/Resource">
 <xsl:variable name="ResourceType">
 <xsl:value-of select="ResourceType"/>
 </xsl:variable>
 <xsl:text>pointer(</xsl:text>
 <xsl:value-of select="$ResourceType"/>
 <xsl:text>) </xsl:text>
 <xsl:value-of select="Identifier"/>
 <xsl:text> = new </xsl:text>
 <xsl:value-of select="$ResourceType"/>
 <xsl:text>("</xsl:text>
 <xsl:value-of select="Identifier"/>
 <xsl:text>");</xsl:text>
 <xsl:value-of select="$newline"/>
 <xsl:value-of select="Identifier"/>
 <xsl:text>->m_Description = "</xsl:text>
 <xsl:value-of select="Description"/>
 <xsl:text>";</xsl:text>
…

<xsl:value-of select="java:ExecuteSLXModell($SLXExecutionPath, …)"/>
…
[CMSD.slx]
…
public class Machine(string(*) identifier) subclass(Resource(identifier, machine){
 public double m_LocationX;
 public double m_LocationY;
 private pointer(Job) m_CurrentJob;
 …
 actions {
 pointer(Event) event;
 PA_Write "MachineIdentifier"(m_Identifier) m_Identifier;
 PA_Write "MachineStatus"(m_Identifier) m_CurrentStatus;
 while(TRUE) {
…
[SLX_Model.slx]
…
pointer(Machine) Ma3 = new Machine("Ma3");
Ma3->m_Description = "drilling";
Ma3->m_Name = "drill";
…

3052

Bergmann, Stelzer, Wüstemann, and Strassburger

Figure 7: Excerpts from CMSD_To_P5.xsl, a P5_Modell.lay file and a P5_Model.atf file

Figure 7 illustrates the interplay between a concrete CMSD description of a system and a Proof Ani-
mation visualizing its simulation. The example is again based on the CMSD class from Figure 4. The up-
per part of Figure 7 shows the XSL transformation rule for transforming resources of type machine into
Proof Layout objects. It should be noted that the position of layout objects must be contained in the
CMSD source file. The creation of layouts for CMSD files not containing such information may be an ar-
ea for future extensions. The middle part in Figure 7 shows the part of the automatically generated Proof
layout file defining the machine layout class and placing it into the layout at the appropriate coordinates.

Also note that CMSD is not a graphic exchange format, i.e., it does not contain a detailed vector
graphic representation of entities. We therefore assume and create a very simplistic graphic representation
in Proof Animation automatically (shown in Figure 8).

Finally, the lower part of Figure 7 shows a part of the Proof Animation trace file concerned with state
changes of the layout object. This file is produced during the execution of the previously generated SLX
code. It uses the same naming conventions for layout classes and can therefore be directly used in Proof
Animation for visualization of the simulation run.

[CMSD_To_P5.xsl]
…
<xsl:call-template name="CreateLayoutObject">
 <xsl:with-param name="Identifier" select="$ResourceIdentifier"/>
 <xsl:with-param name="StartX" select="$LocationX"/>
 <xsl:with-param name="StartY" select="$LocationY"/>
 <xsl:with-param name="Type" select="string('Machine')"/>
</xsl:call-template>
…
<xsl:template name="CreateMachineClass">
 <xsl:text>Color L4</xsl:text><xsl:value-of select="$newline"/>
 <xsl:text>Define Class Machine</xsl:text><xsl:value-of select="$newline"/>
…
[P5_Model.lay]
…
Color L4
Define Class Machine
…
Fill 2.1516 -0.3169
Line -5 -5 -5 5
Line 5 -5 -5 -5
Line 5 5 5 -5
Line -5 5 5 5
…
Message MachineStatus 1 2 LJ -15 -13.5 BG Backdrop disassemble
Message MachineIdentifier 1 2 LJ -15 11.5 BG Backdrop Machine Name
…
CPO Buffer Ma3_E 298 350
CPO Machine Ma3 338 350
CPO Buffer Ma3_A 378 350
…
[P5_Model.atf]
…
write MachineIdentifier(Ma3) Ma3
write MachineStatus(Ma3) idle
…
place Part3 at 308.000 350.000
write MachineStatus(Ma3) busy
…

3053

Figure 8:
input and

The m
problems.
generator
the model
concernin
of develop
to job sho
al reflecti
elements
cal scenar

The a
gree of po
the techni
(“simulati
erated SL

5 CO

This artic
language-
simulated
CMSD m

The p
classes an
oriented f
specific C
activating
ualization

The a
ments as
pected to
of object o

Future
these scen
and conve
include th

Screenshot s
output buffer

model generat
. Simulation
implemented

ls from both
ng the versatil
pment the mo

op problems h
ons, but rathe
to both gener
rios (e.g., data
advantage of
ossible autom
ical basis for
ion as a servic
X models wh

NCLUSION

cle has introd
-based simula
d manufacturin

model descripti
prerequisite fo
nd data types
features of SL
CMSD implem
g their behavio
n system Proo
advantage of t
it is based on
be easily tran
orientation.
e work inclu
narios, additio
eyors, as wel

he validation o

Bergma

showing a gen
rs

tor for SLX h
results were

d in Plant Sim
generators yi
lity of the sup
odel generato
have been om
er attributed t
rators is certa
a exported fro
the model ge

mation. All co
the integrati

ce”). This als
hich clearly ou

N AND FUTU

duced a new m
ation environ
ng system. W
ion into the a
or the sugges
in the target

LX 2.0. The co
mentation, e.g
or. The article

of Animation.
the methodol

n well-establis
nsferrable to

udes testing t
onal functiona
ll as for exten
of the method

ann, Stelzer, W

nerated layou

has been teste
further valid

mulation (Ber
ields similar r
pported mode
rs do not sup

mitted (e.g., co
to the comple

ainly possible
om an ERP sy
eneration app
omponents ca
ion of simula
so holds true c
utperform equ

URE WORK

methodology
nment. The m

We suggest the
ctual source c
sted methodo
simulator. In
ode generated
g., by creating
e has further

logy is its fle
shed technolo
other languag

the methodol
ality will be a
nded collectio
dology by ada

Wüstemann, a

ut in Proof A

ed with severa
dated against
gmann, Fiedl
results. Both
ling construc

pport all CMS
onveyor system
exity of CMS
, but also stro

ystem) is map
roach present

an easily be e
ation as a plu
concerning th
uivalent mode

y for the auto
methodology
e usage of XM
code of the ch

ology is a gen
our prototyp

d by the XSLT
g instances of
discussed the

xibility and i
ogies from th
ge-based simu

logy with lar
added to the m
on of statistic
apting it to oth

and Strassbur

Animation. He

al scenarios im
results from

ler, and Straß
model gener

cts. It should b
SD object clas
ms). This is n

SD. The impl
ongly depend
pped onto the
ted in this pa

encapsulated i
ug-in into ERP
he extremely
els in Plant S

omatic genera
assumes a C

ML stylesheet
hosen simulat
neric implem
pe, this was ea
T transformat
f the generic c
e applicability

its suitability
his sector. The
ulation system

rger manufac
model generat
cal data. Ano
her simulation

rger

ere: a model

mplementing
m a second CM
ßburger 2010)
rators offer si
be noted that
sses. Some el
not a limitatio
lementation o
ds on how inf

CMSD stand
aper is its flex
into web serv

RP or MES sy
fast execution
imulation.

ation of simu
CMSD-based
t transformati
tor.
entation of th
asily achieve
tion makes us
classes and, i
y of the metho

to work in w
e suggested m
ms which con

cturing system
tor, e.g., for s

other venue o
n languages,

of a machine

g different job
MSD-based m
). The executi
milar functio
in the current
lements not ty
on of our conc
of additional m
formation in p
dard.
xibility and i
vices and can
ystem architec
n speed of the

ulation model
description o

ions to conve

he relevant C
d using the o
se of this sim
in the case of
odology to th

web-based env
methodology
ntain basic fea

ms. Dependin
supporting wo
f future work
like Desmo-J

e with

b shop
model
ion of

onality
t state
ypical
ceptu-
model
practi-

its de-
n form
ctures
e gen-

s in a
of the

ert this

CMSD
object-

mulator
f SLX,
he vis-

viron-
is ex-
atures

ng on
orkers
k may
J.

3054

Bergmann, Stelzer, Wüstemann, and Strassburger

REFERENCES

Bergmann, S., Fiedler, A., Straßburger, S. 2010. ”Generierung und Integration von Simulationsmodellen
unter Verwendung des Core Manufacturing Simulation Data (CMSD) Information Model” (Genera-
tion and integration of simulation models using the Core Manufacturing Simulation Data (CMSD) in-
formation model (in German)). In Proceedings of the 14th ASIM Dedicated Conference on Simulation
in Production and Logistics - integration aspects of simulation referring to equipment, organization
and personnel, Edited by G. Zülich and P. Stock, Karlsruhe Institute of Technology (KIT): 461-468.

Bergmann, S., Strassburger, S. 2010. “Challenges for the Automatic Generation of Simulation Models for
Production Systems.” In Proceedings of the 2010 Summer Simulation Multiconference, July 11-14,
2010. Ottawa, Canada: 545-549.

Bergmann, S., Stelzer, S., Strassburger, S. 2011. ”Initialization of Simulation Models using CMSD”. In
Proceedings of the 2011 Winter Simulation Conference, Edited by S. Jain, R.R. Creasey, J. Himmel-
spach, K.P. White, and M. Fu, December 11-14, 2011. Phoenix, AZ: 2228-2239.

Desmo-J 2012. ”Desmo-J - A Framework for Discrete-Event Modelling and Simulation”. University of
Hamburg - Department of Computer Science. Accessed February 28, 2012.
http://desmoj.sourceforge.net/home.html.

Fowler, J. W., Rose, O. 2004. “Grand Challenges in Modeling and Simulation of Complex Manufacturing
Systems”. In SIMULATION: The Society for Modeling and Simulation International, 80(9): 469–476,
September 2004.

Henriksen, J. O. 1997. “The Power and Performance of Proof Animation”. In Proceedings of the 1997
Winter Simulation Conference, Edited by S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nel-
son, December 7-10, 1997. Atlanta, GA: 574-580.

Henriksen, J. O. 1999. “SLX - The X is for eXtensibility”. In Proceedings of the 1999 Winter Simulation
Conference, Edited by P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, Decem-
ber 5-8, 1999. Phoenix, AZ: 167-175.

Henriksen, J.O. 2009. “Efficient Modeling of Delays in Discrete-Event Simulation”. In Advancing the
Frontiers of Simulation: A Festschrift in Honor of George Samuel Fishman, Edited by C. Alexopou-
los, D. Goldsman, and J. R. Wilson, 105-141. Springer 2009.

Johansson, M., Leong, S., Lee, Y. T., Riddick, F., Shao, G., Johansson, B., Skoogh, A., and Klingstam, P.
2007. “A Test Implementation of the Core Manufacturing Simulation Data Specification”. In Pro-
ceedings of the 2007 Winter Simulation Conference, Edited by S. G. Henderson, B. Biller, M.-H
Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 1673-1681. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers, Inc.

Schulze, T. and Henriksen J. O. 2002. ”Simulation Needs SLX”. Last modified April 2002.
http://isgwww.cs.uni-magdeburg.de/pelo/sa/SimulationNeedsSLX.pdf.

SAXON 2012. ”SAXON - The XSLT and XQuery Processor”. Accessed February 29, 2012.
http://saxon.sourceforge.net/.

Siemens 2012. “Plant Simulation”. Product Lifecycle Management Software Inc. Accessed March 28,
2012. http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/

 plant_simulation.shtml.
SISO 2010. “Standard for: Core Manufacturing Simulation Data – UML Model”. Core Manufacturing

Simulation Data Product Development Group. Accessed February 14, 2012.
 http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=31457.

SISO 2012. “Standard for: Core Manufacturing Simulation Data – XML Representation”. Core Manufac-
turing Simulation Data Product Development Group. Accessed February 14, 2012.
http://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Dow
nload&EntryId=32733&PortalId=0&TabId=105.

VDI 3633-1. “Simulation of systems in materials handling, logistics and production - Fundamentals”.
VDI-Society Production and Logistics. Beuth Verlag, Berlin.

3055

Bergmann, Stelzer, Wüstemann, and Strassburger

W3C (World Wide Web Consortium) 2006. “Extensible Stylesheet Language (XSL) Version 1.1” Last
modified 05 December, 2006. http://www.w3.org/TR/xsl/.

W3C (World Wide Web Consortium) 2007. “XSL Transformations (XSLT) Version 2.0” Last modified 23
January, 2007. http://www.w3.org/TR/xslt20/.

W3C (World Wide Web Consortium) 2010. “XML Path Language (XPath) 2.0 (Second Edition)” Last
modified 14 December, 2010. http://www.w3.org/TR/xpath20/4.

W3C (World Wide Web Consortium) 2012. “Extensible Markup Language (XML)” Accessed February
21, 2012. http://www.w3.org/XML/.

AUTHOR BIOGRAPHIES

SÖREN BERGMANN is a Ph.D. student at the Ilmenau University of Technology. He is a member of
the scientific staff at the Department for Industrial Information Systems. He received his diploma degree
in Information Systems from Ilmenau University of Technology. Previously he worked as corporate con-
sultant in various projects. His research interests include generation of simulation models and automated
validation of simulation models within the digital factory context. His email is soeren.bergmann@tu-
ilmenau.de.

SÖREN STELZER is a Ph.D. student at the Ilmenau University of Technology. He is a member of the
scientific staff at the Department for Industrial Information Systems. He received his diploma degree in
Computer Science from the Ilmenau University of Technology. During his study he worked in the Neuro-
informatics and Cognitive Robotics Lab of the Ilmenau University of Technology. After his study he
worked in optimization of power plants in several projects. His research interests are simulation-based op-
timization, model predictive control, artificial learning and discrete-event simulation. His email is
soeren.stelzer@tu-ilmenau.de.

SASCHA WÜSTEMANN holds a Bachelor degree in Information Systems from the Ilmenau University
of Technology. He is currently completing his studies to achieve a Master degree at the Department of In-
dustrial Information Systems of the same university. His interests include simulation of manufacturing
systems and production control, especially using the simulation system SLX. His email is
sascha.wuestemann@tu-ilmenau.de.

STEFFEN STRASSBURGER is a professor at the Ilmenau University of Technology in the School of
Economic Sciences and is head of the Department for Industrial Information Systems. Previously he was
head of the “Virtual Development” department at the Fraunhofer Institute in Magdeburg, Germany and a
researcher at the DaimlerChrysler Research Center in Ulm, Germany. He holds a Ph.D. and a Diploma
degree in Computer Science from the University of Magdeburg, Germany. He is a member of the editorial
board of the Journal of Simulation. His research interests include distributed simulation as well as general
interoperability topics within the digital factory context. He is also the Vice Chair of SISO’s COTS Simu-
lation Package Interoperability Product Development Group. His web page can be found via www.tu-
ilmenau.de/wi1. His email is steffen.strassburger@tu-ilmenau.de.

3056

