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ABSTRACT 

The deployment of unmanned aerial vehicles (UAV) is increasingly commonplace.  UAVs support 
military forces by flying over dangerous zones mainly for surveillance missions. Route planning for 
UAVs is therefore a critical problem.  With many side constraints such as visitation time require-
ments, mission priorities, and vehicle capabilities, route planning is a hard problem.  Heuristic ap-
proaches have therefore been developed to construct near optimal routes.  Given the hostile operating 
conditions, however, robustness of these plans is emerging as a more significant concern than opti-
mality. This paper thus investigates the robustness of constructed UAV routes.  To this end, a greedy 
assignment algorithm that takes into consideration physical constraints and operational risks is used to 
construct UAV tours.  The sensitivity of these tours to various operational parameters such as mission 
threat level, weather risk, and crash rates as well as their interactions is assessed in a simulation study 
through a set of designed experiments. 

1 INTRODUCTION 

Introduced in 1950s, unmanned aerial vehicles (UAVs) were mostly used for surveillance missions 
during the early years of operation. With the rapid evolution of technology and the fast growth in de-
mand, UAVs are replacing manned vehicles for an increasingly broad portfolio of missions. In partic-
ular, UAVs are deployed for intelligence gathering purposes with significant advantages over tradi-
tional aircraft.  First, UAVs eliminate direct risk to human life. Second, UAVs are cost effective (in 
terms of operating and maintenance costs) compared to manned aerial vehicles. Finally, the vehicle is 
not bound by human limitations (Geer and Bolkcon 2005). For example, most of the fighter aircrafts 
are limited to a certain gravitational force or g level because of pilots’ physical endurance. Further-
more, it is unimaginable for a fighter aircraft to fly continuously for 50 hours. However, g limits or 
endurance is not an issue for a UAV. Given these significant advantages, the need for the UAVs will 
most likely increase in a more rapid pace in the near future. It may even be safe to predict that nearly 
all the future combat systems would require the involvement of a large number of UAVs in every 
stage of combat, starting from the pre-combat intelligence to post-combat Battle Damage Assessment 
missions  (Entous, Barnes, and Gorman 2012).    

The growing reliance on UAVs necessitates their effective deployment to outstanding missions 
such as border patrols or search and tracking.  As the list of missions or the Air Tasking Orders 
(ATO) are created prior to the operations, it is necessary for the UAVs to be assigned effectively to 
ensure that the mission goals are fulfilled. Different operational requirements of these missions along 
with the heterogeneous operating characteristics of the UAVs make the assignment of UAVs to pend-
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ing missions a hard problem.  Combinatorial in nature, route planning necessitates an approach that 
satisfies both operational, technical, and computational constraints.  There exists a significant litera-
ture on UAV route construction that is anchored in the traveling salesman problem (TSP) and the ve-
hicle routing problem (VRP).  TSP requires visiting a set of customers once using one or more vehi-
cles.  VRP enriches this setting by adding vehicle capacities and customer requirements.  Laporte et 
al. (2000) provides a comprehensive review of heuristic approaches to VRP.   

The solution process is further complicated by the risks associated with the missions.  Such risks 
range from aborting a take-off due to a malfunction on the vehicle to abandoning a mission due to 
poor weather conditions or from crashing during take-off to being shot down by hostile fire. As noted 
by Ahner et al. (2006), “military operations are dynamic complex set of events.  The problems associ-
ated with military operations are naturally also dynamic and complex.”  It is therefore crucial to assess 
the robustness of the planned routes (i.e., UAV assignments to missions) through rigorous sensitivity 
analysis.  In particular, Shetty et al. (2008) “recommend developing a simulation-based approach and 
rigorous performance evaluation for validating this (or a variant) model and solution approach.  
Simulation can allow study of many more realistic battlefield considerations such as sensor network-
ing, line of sight, and weather conditions that are too detailed to be considered in a single mathemati-
cal formulation.  Design of experiment studies and analysis of variance can provide the military 
commander with significant and interacting factors, and provide practical insights.” 

The objective of this paper is therefore to investigate the robustness of the solutions for the route 
planning (i.e., mission assignment) problem for different types of UAVs and to determine those pa-
rameters (and their interactions) that affect mission success. To this end, we first deploy a time-
oriented nearest neighbor heuristic (Solomon 1987) to solve the UAV route construction problem 
within a plausible computing time. We then construct a valid discrete event simulation model to test 
the robustness of the proposed solution under various operational risks.  Finally, we investigate the 
sensitivity of system performance, defined as the ability to complete all assigned missions, to various 
operating parameters through carefully designed experiments.  This analysis would help policymakers 
in planning the procurement and deployment of different UAVs with different operational capabilities 
as well as logistics specialists in constructing effective maintenance policies.  The analysis would also 
help military planners in making the final go/no-go decision before flying a mission (for instance, 
given the prevailing weather conditions), and in identifying and analyzing out-of-the-ordinary occur-
rences such as unexpectedly high attrition rates after the missions. 

The remainder of the paper is organized as follows. Section 2 introduces the modeling and analy-
sis framework as well as the details of the experimental design. Section 3 discusses the results and, in 
particular, the effects of the input factors on performance. The last section summarizes the results and 
points out possible future work. 

2 MODELING AND ANALYSIS FRAMEWORK 

Mirroring the increasing deployment of UAVs in field operations, research on their scheduling and 
routing is also expanding rapidly.  Given the inherent complexity of the problem, researchers have 
been proposing tour-building heuristics that are anchored on the VRP framework.  More recently, 
such algorithms have been coupled with metaheuristics such as tabu search to obtain significant im-
provements in route planning.  For example, Shetty et al. (2008) introduce an innovative approach for 
allocating targets to unmanned combat aerial vehicles and sequencing them to maximize service to 
targets based on their criticality. One should note, however, that these “procedures are usually context 
dependent and require finely tuned parameters which may make their extension to other situations 
difficult” (Laporte et al. 2000). While these approaches have been relatively successful in static tour 
building, a dynamic approach is needed to reflect the changing combat conditions (Ahner et al. 2006).  
There has been recent work in incorporating emerging targets or missions dynamically during mission 
execution.  For example, Harder et al. (2004) describe a general architecture along with a Java imple-
mentation of heuristics for automating both route planning and modification.  An alternative approach 
to route planning and modification is to use dynamic programming; however, this approach suffers 
from the curse of dimensionality.  Flint et al. (2009) try to overcome this challenge through approxi-
mate dynamic programming and simulation.  They also provide guidelines for modeling inherent ran-
domness in such systems. Ahner et al. (2006) propose a heuristic approach that combines discrete-
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event simulation with optimization. Kamrani and Ayani (2007) propose a static simulation-aided path 
planning approach to discover and track a ground target.  Corner and Lamont (2004) introduce a par-
allel simulation test bed to depict the swarm behavior of UAVs.  Hamilton et al. (2007) emphasize the 
importance of building valid simulation models; they also propose a test bed for UAV simulations.    
A recent stream of research focuses on the cooperative behavior of a swarm of UAVs in mission exe-
cution (for example, Lian and Deshmukh (2006) and the references therein).  Pohl and Lamont (2008) 
address the swarm routing problem by optimizing paths for both cost and risk. 

There exist, however, a multitude of risks awaiting the UAVs, ranging from vehicle malfunction to 
hostile fire.  It is therefore crucial to assess the robustness of the planned route through rigorous sensi-
tivity analysis.  This is indeed the focus of our work.  More specifically, we first deploy a route build-
ing heuristic based on the framework of vehicle routing and scheduling problem with time windows 
(VRSPTW) for solving the assignment problem of different types of UAVs to missions with different 
attributes and constraints. We then assess the solution’s robustness through designed simulation ex-
periments. To this end, in the first (planning) phase, we create an Air Tasking Order (ATO) list for the 
following day’s missions assuming the availability of a fixed number of resources (e.g., UAVs, sensor 
packages, maintenance workers, etc.). We then solve the assignment problem to find a solution that 
deploys the vehicles effectively. In the second phase, we simulate the execution of the assigned mis-
sions to assess the robustness of the routes in the presence of uncertainty and disruptions.  We then 
investigate the sensitivity of performance metrics to various operational parameters.  We should note 
that the unpublished dissertation of Nannini (2006) is the closest work to our paper.  While Nannini 
investigates various scheduling policies, he stops short of investigating operational parameters that 
impact the success of the proposed UAV schedules. 

2.1 The Route Planning Problem 

Our approach to route planning is based on the time-oriented nearest neighbor heuristic, which was 
originally proposed to solve VRSPTW (Solomon 1987).  Before describing our heuristic, let us recall 
the key characteristics of the problem. First, a UAV can be assigned to more than one mission. How-
ever, a UAV can only be assigned to a limited number of missions since there are constraints for both 
the missions and the UAVs. The most important constraint on the missions is their target opportunity 
window (TOW). The missions must therefore start and finish within that time window. For the UAVs, 
the most important constraint is their endurance. The UAVs will fly only for a specific number of 
hours due to fuel availability. Within these constraints, one might consider various objective func-
tions. For example, one may wish to maximize the number of assigned missions. Alternatively, it may 
be more important to use the limited resources to complete critical missions rather than completing a 
larger number, but not necessarily critical, missions. To reinforce this perspective, we assign to each 
mission in the ATO list bonus points or mission values that reflect its criticality. Ahner et al. (2006) 
also use mission values in determining mission assignments.  Our objective can then be reformulated 
as assigning missions to the squadron of UAVs to maximize the total bonus points earned by the pro-
posed schedule. 

Given the combinatorial nature of the problem, it is impossible to enumerate and compare the 
scores of all the possible assignments when the number of missions and/or the number of UAVs are 
large. Instead, we construct the routes on the fly in a greedy but myopic fashion, which is similar to 
the time-oriented nearest neighbor heuristic. We start with the earliest mission on the ATO list. We 
check a series of constraints to determine whether a UAV can be assigned to that mission. These con-
straints include: 
 The maximum operational range of the UAV has to be longer than the distance between the 

location of the mission and the squadron base. 
 The UAV has to perform the mission within the given time period. It has to be in the mission 

area after TOW start time and has to accomplish the mission before TOW end time. 
 The UAV has to be able to return to base after executing the mission.  
 The UAV has to have reserve fuel for another 60 minutes after returning to base. This reserve 

fuel is required for emergencies (e.g., if a runway is closed, the UAV has to divert to an alter-
nate airfield). 
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If a UAV satisfies all these constraints, the first mission on the ATO list is added to the mission 

list of that UAV, the location of the UAV is updated to reflect the mission location along with the re-
maining fuel of the UAV, and the current time is recalculated. 

Based on the updated time, the location and the remaining fuel of the UAV, the algorithm checks 
whether the UAV can accomplish the second mission on the ATO list. If the UAV satisfies the above 
constraints, the second mission becomes a feasible candidate that can be added to the mission list of 
the UAV. Since the algorithm aims at finding the next feasible mission that earns the largest bonus 
(i.e., the largest sum of mission values), it keeps evaluating the feasibility of all subsequent missions, 
which can be accomplished with higher bonus points. For example, if the UAV can be assigned to the 
second, fifth, and ninth missions after accomplishing the first mission, only the mission with the high-
est bonus points is added to the mission list of the UAV. After determining the next mission with the 
highest bonus, the location and the remaining endurance of the UAV as well as the current time are 
updated. 

This process is repeated until all the missions on the ATO list are evaluated. At the end of this 
process, a feasible flight schedule (route) with the highest total bonus points is constructed. The total 
bonus that the UAV can earn by accomplishing these missions is calculated by adding the bonus 
points of each mission in the UAV’s route. The process is repeated as long as there are both unas-
signed missions on the ATO list and available UAVs. Figure 1 depicts an example, where there are 
two possible routes, one starting from M1 and the other from M9. The total bonus earned for the first 
route is equal to 200 while the second route earns 195 points. The algorithm therefore selects the first 
route and assigns M1, M5, and M6 to the UAV. More specifically, the tree is searched in a breadth-
first fashion. 

Since there are two different types of UAVs in our study (namely Heron and Gnat), the same 
process is repeated for the other type of UAV. Therefore, at the end of a full run of the route planning 
phase, there will be two lists: one containing the missions with the most points for Herons and one 
containing the missions with the most points for Gnats. Finally, the algorithm selects the UAV and the 
route combination that has the highest bonus points. The assignment process terminates when either 
all the missions in the ATO list are exhausted or there are no more UAVs left to be scheduled. 
 
 

 
Figure 1: Time Oriented Nearest Neighbor algorithm for the Mission Assignment Problem 
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2.2 Simulation Model Description 

Once a route for the UAVs is created (typically one day prior to the execution phase), the robustness 
of the flight schedules is assessed through a simulation model that takes into account various opera-
tional risks.  The simulation model, implemented in Simkit (Buss 2001), is depicted in Figure 2.  

The execution phase starts with the first UAV’s preflight inspection. If the UAV fails the inspec-
tion, all the missions in its mission list are aborted (to be subsequently re-assigned) while the UAV is 
immediately sent to maintenance.  If the UAV passes inspection, a launch event is scheduled.  There 
is a small probability that the UAV would crash at take-off.  If a crash occurs, all the missions on that 
UAV’s ATO list have to be aborted and reassigned. If the launch is successful, an ingress event is 
scheduled to depict the travel time to the mission area.  Due to a technical malfunction, it is possible 
to have an air abort.  If this is not the case, the UAV performs its mission.  At mission end, the UAV 
may travel to its next mission, may loiter in a safe area while waiting for the TOW of the next mission 
or may simply return to base. At the base, following a successful landing, the UAV proceeds to 
maintenance. There is a small but positive probability that the UAV may crash at landing.  In that 
case, all remaining missions are aborted to be subsequently re-assigned. The execution phase ends 
when the last UAV lands at the base and its maintenance is complete. Since the missions can start 
within a 24-hour period, the execution phase may take more than 24 hours, including the time for the 
last UAV to return to base and the time for its maintenance to be completed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Event graph model implementation in Simkit 
 

 
The input factors of the model that reflect the operational parameters are depicted in Table 1.  Ta-

ble 2 shows the performance measures, which focus on mission effectiveness, and efficient use of air-
craft and maintenance resources. 

2.3 Design of Experiments 

Valid modeling must be coupled with efficient experimental design for effective analysis of robust-
ness through simulation.  There are many experimental design methods in literature. For most meth-
ods, however, the required experimental effort grows significantly with the number of factors.  In this 
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paper, we adopt Nearly Orthogonal Latin Hypercube (NOLH) designs, which are space-filling designs 
that provide increased efficiency and flexibility (Cioppa and Lucas 2007).   As depicted in Table 1, 
for our 12 input factors, we use 129 design points in our NOLH design to collect a sufficient amount 
of data that would enable accurate sensitivity analysis of the simulation experiments.  Note that 100 
independent replications have been conducted at each design point. 
 

Table 1:  Input Parameters 

Coordinates of the UAV squadrons 
Coordinates of the mission area 
Total number of UAVs: 6 – 14 
Total number of missions: 20 – 50 
Mission duration: triangular(30, 120, 480) minutes 
Ground abort rates: 0.03 – 0.2 
Air abort rates: 0.01 – 0.10 
Crash rates: 0.01 – 0.09 
Total no of maintenance servers: 1 – 3
Malfunction maintenance time: triangular(15, 60, 120) minutes 
Mission area threat level:  uniform(0,1) 
Mission area weather risk:  0 – 1 

 
 

Table 2:  Performance Measures 

Average number of accomplished missions 
Average number of crashed Gnats and Herons 
Average number of aborted Gnats and Herons 
Total number of assigned UAVs 
Mean delay time in the maintenance queue 

 
 

3 RESULTS AND OUTPUT ANALYSIS 

This section summarizes the results obtained from our simulation experiments. We first focus on the 
main factors for each performance measure and then analyze in detail their interactions.   

3.1 Main Factors 

We use regression analysis to explain the relationship between the input factors and the performance 
measures. To ensure the validity of the analysis, we first observe that the residual-by-predicted plot 
exhibits a random distribution of points. Once the absence of a discernible pattern is established, we 
compute the R2 value to see how much of the variance in the data is explained by the model. Finally, 
by using the sorted parameter estimates, we analyze the effect of each factor on the performance 
measures. For the regression models, we also form 95% confidence intervals.  

3.1.1 Average Number of Total Accomplished Missions 

The factor with the highest impact on accomplished missions is the total number of missions. As the 
total number of missions increases, the total number of accomplished missions increases as well. Area 
threat level has a negative effect on the accomplished missions. As the initial number of UAVs in-
creases, the total number of accomplished missions increases. The increase in mission durations of the 
UAVs leads to a decrease in the total number of accomplished missions since the UAVs can only be 
assigned to fewer missions. There is a slight difference between the effects of different types of 
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UAVs; this is due to a modeling convention, whereby we tend to select a Heron if the bonus points 
collected for the missions is the same for both aircrafts. In addition, air abort rates of both UAVs and 
the crash rate of Herons have a negative effect on the number of accomplished missions. The regres-
sion model yields an R2 value of 0.93. 

3.1.2 Average Number of Crashed Herons 

Increased threat levels in an operational area leads to larger number of crashed Herons.  Another im-
portant factor is the initial number of Herons. Average number of crashed Herons increases, as the to-
tal number of Herons increases since each Heron has a non-zero probability of crashing or being shot 
down. Mission duration of Herons and Gnats are also important factors that affect the average number 
of crashed Herons. A decrease in mission duration of Herons results in an increase in the average 
number of crashed Herons. This might seem counter-intuitive at first. However, a decrease in mission 
duration for Herons leads to an increased number of mission assignments for Herons. Since every 
mission has its specific risk level, more missions translate into higher risk. Another factor is the total 
number of missions. As the total number of missions increases, the average number of crashed Herons 
also increases. Mission duration of Gnats also affects the mean number of crashed Herons. If the mis-
sion duration of Gnats increases, Gnats will be capable of accomplishing fewer missions, increasing 
our reliance on Herons. Finally, a larger number of launched Herons will result in more crashes. It is 
obvious that crash rate of Herons has a direct effect on the average number of crashed Herons. Initial 
number of Gnats has a negative effect on the average number of crashed Herons. As the initial num-
ber of Gnats decreases, the mean number of crashed Herons increases. This is because if there are 
fewer Gnats, more Herons will be assigned to missions, which may lead to an increase in the average 
number of crashed Herons. The last factor that affects the average number of crashed Herons is the air 
abort rate of Gnats. As the air abort rate of Gnats increases, the average number of crashed Herons in-
creases. Since we have a limited number of Gnats in our setting, if Gnats abort in the air frequently, 
there will be a shortage of Gnats. Herons will therefore be called upon to carry out those missions, 
which once again may lead to a higher number of crashed Herons.  The regression model yields an R2 
value of 0.915. 

3.1.3 Average Number of Aborted Herons 

Ground and air abort rates of Herons and the initial number of Herons directly affect the average 
number of aborted Herons. It is obvious that, as the value of these parameters increases, the average 
number of aborted Herons also increases. As the mission duration of Herons or the initial number of 
Gnats decrease, the average number of aborted Herons increases. When the mission duration of Her-
ons decreases, Herons will be able to accomplish more missions in one sortie. More missions in one 
sortie implies increased probability of aborting for UAVs. When the initial number of Gnats decreas-
es, more Herons will be assigned to missions, which will increase the probability of Heron aborts. Fi-
nally, the average number of Herons that are aborted increases as the total number of missions and 
mission durations of Gnats increase since Herons will be required to carry out a larger number of mis-
sions.  

3.1.4 Mean Wait Time in Maintenance Server for Heron 

A linear model for the total maintenance wait time for Herons turned out to be unsatisfactory; howev-
er, fitting a quadratic model increased the R2 value from 0.59 to 0.91.  

While the quadratic model seems to perform better than the linear one, they were both unable to 
capture the exponential increase in waiting time that is typical of a congestion phenomenon.  Since the 
variability in the arrival or in the service processes cannot be reduced, the wait time is directly driven 
by capacity utilization.  That is, if the total number of UAVs increases while the number of mainte-
nance servers remains constant or if the number of maintenance servers is reduced while the number 
of UAVs requiring service remains constant, we observe an exponential increase in the expected wait-
ing times of the UAVs at the maintenance shop. 
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3.2 Key Interactions 

There are different approaches for analyzing interactions such as multiple regression analysis, step-
wise regression analysis or partition trees (Schlotzhauer 2007). With a large number of factors, we 
find it more intuitive to conduct a stepwise regression analysis by first eliminating insignificant fac-
tors and interactions, and then building the regression model with the remaining significant ones.  

3.2.1 Average Number of Total Accomplished Missions 

A quadratic model that includes 21 two-way interactions has increased the R2 value to 0.99.   We ob-
serve that, as the total number of Gnats increases from three to seven, the number of accomplished 
missions also increases for both settings with three and seven Herons. However, there is a slight dif-
ference between the two settings. If there are three Herons, the number of accomplished missions will 
increase to around 20. On the other hand, if there are seven Herons, the number of accomplished mis-
sions increases to around 25. 

We observe another interesting result for the interaction between air abort rate of Herons and the 
number of Heron maintenance servers. When the number of maintenance servers is limited to one, the 
number of accomplished missions for both air abort rates of 0.1 and 0.01 are indistinguishable.  This 
observation implies that, in this setting, the maintenance server is a severe bottleneck. Nevertheless, 
as the number of maintenance servers increases to three, the air abort rate of Herons makes a differ-
ence on the number of accomplished missions. For an abort rate 0.1 (representing a higher load on the 
maintenance server), the number of accomplished missions decreases while, for 0.01 (representing a 
lower load on the maintenance server), the number of accomplished missions increases.   

3.2.2 Average Number of Crashed Herons 

A regression model with 37 inputs (main effects and two-way interactions) increased the R2 value to 
0.98.  When we analyze the interaction between the ground abort rate of Herons and the total number 
of Herons, we can see that when the initial number of Herons is low, the ground abort rate of Herons 
does not have an impact on the number of crashed Herons. As the total number of Herons is in-
creased, the ground abort rate starts to make a difference. If the ground abort rate is higher, the num-
ber of crashed Herons decreases. This is intuitive because, as the ground aborts increase, this causes 
fewer Herons to take off for missions –hence, fewer casualties occur.  This can be readily seen in the 
event graph model in Figure 2. 

Another important interaction is observed between the total number of Herons and that of mis-
sions. When there is a small number of missions, we observe a small difference in the number of 
crashed Herons. For three Herons, the average number of casualties is around one while, for seven 
Herons, the average number of casualties is around 1.5. However, as the number of missions increas-
es, the number of Herons has a higher impact on the number of casualties.  

The third interaction is between the total number of Herons and the air abort rate of Herons. 
When the initial number of Herons is high, the air abort rate of Herons has no effect on the number of 
crashed Herons. However, for a low initial number of Herons, as the air abort rate increases, the num-
ber of casualties decreases because higher air abort rates imply that fewer Herons continue their mis-
sions.  

The last interaction affecting the number of crashed Herons is between the total number of Her-
ons and the mission area threat level. Normally, area threat level is the most important factor on the 
number of casualties. Nevertheless, its effect also changes with the initial number of Herons. While 
there is less threat, the initial number of Herons does not have as big an impact as in the higher threat 
levels. In the high threat situation, as the initial number of Herons increases, the number of crashed 
Herons increases rapidly.   

3.2.3 Average Number of Aborted Herons 

The addition of 22 two-way interactions has pushed the R2 value to 0.98.   Let us specifically focus on 
four key interactions. First, consider the interaction of ground abort rate of Herons and the total num-
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ber of Herons. When there is a low number of Herons, the ground abort rate does not have as big an 
impact as when there is a high number of Herons. As the number of Herons increases, low abort rates 
do not necessarily affect the number of total aborts, while higher abort rates increase the total number 
of aborts more sharply. 

There is a similar observation for the interaction between the initial number of Herons and the air 
abort rate of Herons. For smaller air abort rates, the number of aborted Herons is nearly the same for 
low and high initial number of Herons. As the air abort rate increases, a significant difference emerges 
between the numbers of initial Herons on the aborted ones. For low rates, the number of aborted Her-
ons is around one for both situations. As the air abort rate increases, the number of aborted herons for 
two situations appears to increase differently. However, the increase in ratio remains nearly the same. 

Another important interaction is observed for air abort rate and mission durations for Herons. For 
low air abort rates, the number of aborted Herons is the same for low and high mission durations. Low 
mission durations leads to more total aborts as the air abort rate increases. This is because aborts oc-
cur while the UAVs ingress from one mission area to another. The shorter times that the UAV spends 
on a mission area implies that it spends more time to ingress, hence more vulnerable to abort.  

Finally, consider the interaction between the crash rate and the ground abort rate of Herons. For 
low ground abort rates, the crash rate does not make a big difference on the total number of aborts. 
However, as the abort rate increases, the crash rate and the number of total aborts change inversely. 
As more Herons crash, there are fewer Herons susceptible to be aborted during mission. 

3.2.4 Mean Wait Time in Maintenance Server for Heron 

As indicated earlier, neither linear nor quadratic regression models satisfactorily captured the expo-
nential explosion in congestion systems such as the maintenance shop.  We therefore used a partition 
tree (Schlotzhauer 2007) to confirm our intuition on the important factors affecting the waiting time of 
Herons in the maintenance queue. Figure 3 depicts the partition tree for three splits, showing the most 
important factors affecting the total maintenance waiting times for Herons. 
 
 

Figure 3: Partition tree for maintenance waiting time of Herons 
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In the first split, we can see a large difference between the mean wait times on the right and the 

left branches of the tree. The most important factor influencing the wait time is the number of mainte-
nance servers –hence, maintenance shop capacity. If we have two or three servers, the wait time drops 
to 1.82 minutes and the standard deviation is 2.42 minutes. If we have only one server, then the mean 
wait time is 37.07 minutes and the standard deviation is 21.26 minutes.  

In the third split, we can see that if we have two servers, the important factor is whether we have 
six or more Herons –hence, the load on the system. If we have less than six Herons while having two 
maintenance servers, the mean wait time is 1.55 minutes and the standard deviation is 1.4 minutes. If 
we have more than six Herons then the mean wait time jumps up to 5.04 minutes with a standard de-
viation of 3.05 minutes. 

4 CONCLUSIONS 

In this paper, we have deployed a greedy, but myopic, approach for assigning UAVs to a list of mis-
sions that must be executed on the following day.  The assignment takes into consideration the capa-
bilities of the aircraft as well as the geographical requirements and inherent risks of the missions.  The 
main objective of our study, however, was to assess the robustness of the proposed schedule in the 
presence of unexpected hostilities.  We also investigated the sensitivity of the assignments to various 
operating parameters through a rigorous experimental design.  This analysis would help policymakers 
in planning the procurement and deployment of different UAVs with different operational capabilities 
as well as logistics specialists in constructing effective maintenance policies. 

There are many more constraints in actual operations where UAVs are deployed. The number of 
ground control stations, their abilities to control UAVs or the personnel constraints may have an in-
fluence on the success of each mission; hence, these issues can be incorporated into the model to ana-
lyze their impact. Logistics is another important issue for all military operations; for example, the lack 
of a part in the logistics flow would create maintenance issues and could affect the whole operation’s 
success. Therefore, ground logistics capabilities represent another important area of investigation.  
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