
Proceedings of the 2012 Winter Simulation Conference 
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds 

 
 

A SIMULATION-BASED ITERATIVE METHOD FOR A TRAUMA CENTER – AIR 
AMBULANCE LOCATION PROBLEM 

 
 

Taesik Lee Hoon Jang 
  

KAIST KAIST 
335 Gwahangno, Yuseong-gu 335 Gwahangno, Yuseong-gu 

Daejeon, 305-701, REPUBLIC OF KOREA Daejeon, 305-701, REPUBLIC OF KOREA 
  
  

Soo-Haeng Cho John G. Turner 
  

Tepper School of Business, Carnegie Mellon Univ. The Paul Merage School of Business, UC Irvine 
5000 Forbes Avenue, Pittsburgh SB 338, Irvine 

PA, 15213, USA CA, 92697-3125, USA 
  
  

 
ABSTRACT 

Timely transport of a patient to a capable medical facility is a key factor in providing quality care for 
trauma patients. This paper presents a mathematical model and a related solution method to search for op-
timal locations of trauma centers and air ambulances. The complicatedness of this problem stems from the 
characteristic that optimal locations for the two resources are coupled with each other. Specifically, this 
coupling makes it difficult to develop a priori estimates for the air ambulance’s busy fraction, which are 
required to construct a probabilistic location model. We propose a method that uses integer programming 
and simulation to iteratively update busy fraction parameters in the model. Experimental results show that 
the proposed method is valid and improves the solution quality compared to alternative methods. We use 
real data on Korean trauma cases, and apply the method to the design of a trauma care system in Korea. 

1 INTRODUCTION 

Trauma refers to major injury that can lead to a loss of life if the appropriate level of care is not adminis-
tered in a timely fashion. Trauma care requires highly skilled medical workers and expensive resources 
that are often beyond the capability of a regular ER. Many countries have accordingly developed systems 
dedicated to treating trauma patients, referred to as trauma care systems. In designing a trauma care sys-
tem it is necessary to address a variety of aspects including facilities (trauma centers), patient transport, 
governance, human resources, financing, and quality control. This paper addresses a location problem 
where optimal locations of trauma centers and helicopter ambulances are sought. 
 Timely transport to appropriate medical facilities is one of the critical performance measures for a 
trauma care system. Delays in providing clinical intervention affect the survivability of trauma patients.  
In medicine, it is generally accepted that a patient should be given appropriate medical care within an 
hour from the moment of an incident. From this timeliness requirement arises the need to optimally locate 
trauma centers and transport systems across the country. 

Studies on healthcare facility location problems have a long history in operations research. Among 
many types of location problems, our problem falls under the category of a covering problem. In a cover-
ing problem, one tries to find a set of optimal locations of facilities, e.g. ambulances, that can cover all or 
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a maximum number of demands, where coverage of a facility is commonly defined by the distance or 
time from the facility location.   
 Covering problems are classified into two groups.  One is to minimize the number of facilities to cov-
er all demand points. Toregas et al. (1971) first introduced this type of problem for ambulance locations, 
calling it the Location Set Covering Problem (LSCP). Alternatively, one might be interested in locating a 
limited number of resources that maximize the number of covered demand points. This type of problem is 
referred to as the Maximal Covering Location Problem (MCLP), and was initially proposed by Church 
and ReVelle (1974). Since the introduction of these two basic model formulations, a number of exten-
sions and modifications have been proposed with more realistic features being considered. 
 Two extensions of the basic models are particularly relevant to our study. One is a capacitated cover-
ing problem incorporating capacity constraints for each facility (Chung et al. 1983; Current and Storbeck 
1988; Pirkul and Schilling 1991; Haghani 1996). A trauma center cannot serve an infinite number of pa-
tients, and each center has a limit for the number of patients it can cover. A capacitated covering problem 
is computationally much harder to solve than an uncapacitated version. 
 The other extension is to consider probabilistic availability of resources such as ambulances. A pa-
tient at demand location i, even when it is within the coverage of an ambulance at location j, may not re-
ceive the service if the ambulance is busy serving another patient. Many probabilistic models have been 
developed to incorporate ambulances’ probabilistic availability (Daskin 1983; ReVelle and Hogan 1989; 
Ball and Lin 1993; Borras and Pastor 2002). These models typically use an approximate estimate for the 
probability of a vehicle being unavailable, which is known as the busy fraction. The busy fraction is often 
defined for a patient i as the ratio of the total workload of nearby ambulances to the operating hours of 
those vehicles. One problem with this simplifying approximation is that the servers are assumed to be in-
dependent. In an attempt to obtain a more accurate estimate, Larson (1974) proposed a hypercube queuing 
model where the dependency among ambulances is considered, and later developed an approximate hy-
percube queuing model to reduce computational loads of the original model (Larson 1975). Larson’s 
work was followed by many studies aimed at incorporating more realistic model features and integrating 
them into a probabilistic location model (Jarvis 1975; Ingolfsson et al. 2008).  
 Apart from the mathematical programming approaches, simulations have been used as an important 
tool for dealing with such problems. Simulations offer advantages over mathematical models in their 
modeling flexibility. They allow easier incorporation of the details and the stochastic nature of real world 
operations than mathematical models. The most common mode of using simulations in the context of 
medical facility/resource location problems is to use a simulation model to evaluate the performance of 
solutions obtained by a mathematical model (Goldberg et al. 1990; Henderson et al. 2004; Gunes et al. 
2005; Aringhieri et al. 2007). Some of the rather recent simulation studies in this area use simulations as a 
major part of optimization (Silva et al. 2010). These simulation optimization approaches are largely based 
on meta-heuristic methods to find near-optimal solutions. However, there are many practical challenges in 
simulation optimization approaches, including the difficulty of assessing optimality of obtained solutions 
and possibly long computation time. 

In this study, we address a problem of simultaneously locating a limited number of trauma centers 
and helicopter ambulances to maximize service coverage. A similar problem has been studied by Branas 
and ReVelle (2001), but their model is simpler in that it does not consider probabilistic availability or ca-
pacity constraints. Our problem presents an interesting challenge: locating two different types of re-
sources – trauma centers and helicopter ambulances – that are coupled with each other. This means that 
location decisions for these resources mutually affect demands for each other. This coupling is particular-
ly problematic when we build a probabilistic location problem formulation. Solving a probabilistic loca-
tion problem generally requires that a parameter, called a busy fraction, be known. However, for our 
problem, the coupling makes it difficult to derive a reasonable estimate of the busy fraction a priori. To 
tackle this difficulty, we develop a scheme that uses a mathematical program model and discrete event 
simulation iteratively. Experimental results suggest that the proposed iterative method is valid and effec-
tive. 
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This paper is organized as follows. In section 2, we describe the problem in detail, and present a 

probabilistic covering model. A proposed iterative approach using a simulation model to overcome the 
difficulties in estimating the busy fraction parameter is discussed in Section 3. Section 4 describes exper-
imental settings. Results of the experiments are discussed in section 5, followed by concluding remarks in 
section 6. 

2 PROBLEM DESCRIPTION 

2.1 Problem Description 

We consider a location problem for trauma centers in conjunction with helicopter ambulances. The objec-
tive is to maximize the expected number of trauma patients that can be transported to a trauma center 
within 60 minutes from the moment of an incident. Our model includes a capacity constraint for each 
trauma center: each center has a capacity limit for the maximum permissible number of patients per given 
time period. For the helicopter ambulance component of the model, the availability of helicopter ambu-
lances is modeled by incorporating a busy fraction. The following is a list of additional operational fea-
tures and modeling assumptions: 

The number of trauma centers m and the number of helicopter ambulances q are finite and given. 
Each of the m trauma centers will be established in one of the |W| candidate locations (|W| � m). 
q helicopter ambulances will be allocated to heliport bases in ��; more than one helicopter ambu-
lance can be allocated to one heliport base. 
The total expected number of trauma patients who are transported within the 60-min requirement 
is the sum of patients transported by ground ambulances NG and those transported by helicopter 
ambulances NA. 
A patient whose location is within 30 km from an available trauma center will always be trans-
ported by a ground ambulance. 
A helicopter ambulance dispatched from heliport base h to serve a demand region i by bringing a 
patient to trauma center j performs the following sequence of events: 
− Take-off at heliport base h (6 min). 
− Travel h to patient i (at a constant velocity of 180km/h). 
− Field management at the scene (8 min). 
− Transport i to j (at a constant velocity of 180km/h). 
− Landing and hand-off the patient at j (6 min). 
− Return to base h from j (at a constant velocity of 180km/h). 
− Land and refuel at h (5 min). 
There are ample ground ambulances, and thus there is no shortage of ground ambulances for any 
service request. 
A patient whose location is outside the 30km boundary will be transported by the nearest availa-
ble helicopter ambulance. 
To transport a patient within 60-min, the sum of distances dhij from a heliport base h to the de-
mand region i and from the demand region i to trauma center j should be no greater than 120 km; 
that is, for patient i to be covered by a heliport base h and a trauma center j, dhij  � 120 km. 
Patients whose location is outside the 30 km boundary and is also outside of helicopter ambu-
lance coverage (dhij  > 120 km) are not covered; that is, these patients are discarded. 

2.2 Optimization Model 

We first define the indices i, j, and h to denote demand regions, trauma center sites, and heliport base sites.  
Unlike typical ambulance location problems where we work with a demand region and ambulance loca-
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tion pair (i, j) – j being an index for the ambulance location, our problem works with a triplet of heliport 
base, demand region, and trauma center, (h, i, j). Demands from region i can then be grouped by their des-
tination trauma center j, and we designate each subgroup as a demand pair (i, j). 

Let W and V represent the set of all candidate sites of trauma centers and all demand regions to be 
served, respectively.  For demand region i, Wi

G and Wi
A are defined. Wi

G is a set of trauma center candi-
date sites within the 30-km boundary from demand region i.  Wi

A is a set of trauma center candidate sites 
for which there exists a heliport base h with dhij  � 120 km.  In other words, if a trauma center is estab-
lished at one of Wi

G, patients from demand region i are transported by a ground ambulance within an hour 
to the center. Similarly, if a center is located at one of Wi

A, they can be transported by an helicopter ambu-
lance within an hour to the center. Vj

G and Vj
A are defined for trauma center j in the same manner. Vj

G is 
the set of demand regions within a 30km boundary from the center j, and Vj

A is the set of demand regions 
for which there exists a heliport base h with dhij  � 120 km. Hij is a set of heliport bases that can serve de-
mand pair (i, j) within an hour. A heliport base h belongs to Hij if dhij  � 120 km.  fi is the number of pa-
tients at demand region i, and cj denotes the capacity limit for trauma center j.  

In the optimization model, we use four main decision variables: 
xij

G is an integer variable to indicate the size – number of patients – of demand pair (i, j) served 
by ground ambulances. 
xij

A is an integer variable to indicate the size – number of patients – of demand pair (i, j) served 
by helicopter ambulances. 
zh is an integer variable to denote the number of helicopter ambulances allocated to heliport base 
h. 
yj is a binary variable, and is 1 if a trauma center is established at candidate site j, and 0 other-
wise. 

There are two auxiliary variables used in the model: 
 xij,k

A is an integer variable, and it takes the value of xij
A if served by k helicopter ambulances, and 

zero otherwise.   
uij,k

A is a binary variable, and is 1 if xij,k
A has a positive value, and 0 otherwise.  

A full formulation of the location problem for trauma centers and helicopter ambulances is provided 
below. The objective function (1) maximizes the expected number of successfully transported patients by 
ground ambulances or helicopters. 

maximize    (1) 

The first term is the number of patients transported by ground ambulances, and the second term represents 
the expected number of patients transported by helicopter ambulances. �ij,k in (1) is the average busy frac-
tion of k helicopter in Hij, and thus  is the probability that at least one of the k helicopters is 
available at the moment.  �ij,k is discussed in detail in the next section. 

The following set of constraints is applied: 
 

  for all i (2) 

  for all j (3) 

  for all (i, j) where Hij � (4) 

  for all (i, j) where Hij ��; k = 1 ,…, q (5) 

  for all (i, j) where Hij � (6) 
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  for all (i, j) where Hij � (7) 

  for all j (8) 

  for all h (9) 
 Constraint (2) requires that the number of patients from demand region i served by ground or helicop-
ter ambulances does not exceed the total number of patients at i. Constraint (3) limits the capacity for 
each trauma center. Constraints (4) – (6) relate xij,k

A to a dummy variable uij,k
A and the main decision vari-

able xij
A. Constraint (7) requires that at least k helicopters be allocated to heliport bases in Hij. Constraints 

(8) and (9) limit the number of trauma centers and helicopter ambulances at no more than m and q, re-
spectively. 

3 PROPOSED SOLUTION METHOD 

3.1 Iterative Method to Estimate Busy Fraction 

In probabilistic ambulance location models, the busy fraction �� for demand region i is defined as the du-
ration for which nearby ambulances are busy serving a patient as a fraction of the total operating hours of 
those ambulances (Daskin 1983). In our model, we use refined indices for the busy fraction, denoted as 
�ij,k.  Index ij is used to indicate that it is defined for a demand region and trauma center pair (i, j). It is al-
so indexed by the number of helicopter ambulances k located at heliport bases in Hij. �ij,k is written as  

 

 (9) 

 
where Lh is the amount of service time worked by all helicopters at heliport base h Hij. The constant, 24, 
in the denominator indicates that we assume 24-hr operation for helicopter ambulances.  
 Unlike the prior studies on probabilistic ambulance location models, it is not possible to presume a 
reasonable busy fraction value for our problem. This is due to the dependence of the total workload – nu-
merator in (9) –on the location solutions for trauma centers. That is, locations of trauma centers determine 
the demands for helicopter ambulances. This is referred to in this paper as coupling between the two re-
source locations. Thus, we have a dilemma where we need �ij,k to solve the optimization problem, but it 
can be properly estimated only after the optimization problem is solved. This dilemma is our motivation 
to use a simulation model as a means to iteratively update .  

The essence of the proposed method is to estimate  in (9) by iteratively using the integer 
program to obtain an optimal location solution for given and then running a simulation to re-
compute  for the obtained location solution. The procedure begins with solving the math model 
with an initial guess, �ij,k

	.  As an initial guess, we set �ij,k
	 = 0 for all (i, j) pairs. This is equivalent to solv-

ing a deterministic version of the location problem. With this initial guess, we obtain an initial solution 
for locations of trauma centers (yj

0) and helicopter ambulances (zh
0). This initial solution is fed into the 

simulation model, and we run a simulation. From the simulation runs, we collect information on the busy 
hours for each helicopter ambulance and summate them by each heliport base to compute Lh (h H). We 
can then update the estimate for . With the updated estimates, we solve the integer program for 
the next round of iteration. We repeat this process until the location solution at the (n+1)st step { yj

n+1: zh
 

n+1} is the same as the solution from the previous step { yj
n: zh

 n}.  

During the iteration, we may obtain a location solution where there is no helicopter allocated around 
some demand pair (i, j). That is, for all h Hij, zh = 0. When this happens, we have no data on Lh from the 
simulation run, and thereby no information on . If we arbitrarily choose to set �ij,k to be zero, 
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this would result in an illogical solution: locating one helicopter is equivalent to locating an infinite num-
ber of helicopters, leading to a static coverage solution for that region. To avoid this situation, we exclude 
the demand pair (i,j) for the next iteration. This rule leads to fast convergence in the proposed algorithm, 
because it reduces the set of demand points to be covered as the iteration proceeds. 

The proposed procedure described above is summarized in Algorithm 1 below. 

Algorithm 1  
Step 0. Set n = 0; Set the initial value of the busy fraction to zero, i.e. �ij,k

n = 0 for all i, j, k. 
Step 1. Solve the IP (Integer Program) to obtain the location solution {yj

0: zh
 0}. 

Step 2. Set n = n+1; Simulate with {yj
n-1: zh

 n-1}; update using the simulation results. 
Step 3. Solve the IP with �ij,k

n  with to obtain {yj
n: zh

 n} 
Step 4. IF {yj

n: zh
 n} = { yj

n-1: zh
 n-1} OR n = nmax 

              – {yj
*: zh

 *} = {yj
n: zh

 n}; Stop 
            ELSE 
              – Go to Step 2 

  
 It should be noted that we can in fact make estimates without using a simulation in Algorithm 1. This 
can be done by replacing Step 2 in Algorithm 1 with a reverse-counting procedure. Given a location solu-
tion (from the previous iteration step), we can identify coverage by a heliport h and trauma center j. This 
coverage is an elliptical region with h and j as foci (Figure 1). We can then simply count the number of 
helicopter transports at each demand region i (xij

A) in the coverage. This gives an estimate for Lh. While 
this reverse-counting procedure is simple and we do not need to construct a simulation model, it involves 
some arbitrariness in allocating demands to heliport bases. This is discussed further in the results section. 
 

 

Figure 1: Workload of a heliport, Lh, is estimated by counting the number of patients at each demand re-
gion (xij

A) within the coverage of heliport base h and trauma center j (h, j), indicated as an elliptical area.  

3.2 Simulation Model 

We build a discrete event simulation model to assess the workload of each helicopter so that we can make 
estimates for . Operational logic of the simulation model is carefully designed to reflect what 
has been modeled in the math program formulation. The model is implemented in C# programming lan-
guage.  Simulation logic implemented in the model is briefly described here. 
 Upon an arrival of an ambulance request from demand region i, a ground ambulance or helicopter 
ambulance is dispatched. Dispatch decision determines 1) which trauma center the patient is sent to, and 2) 
which ambulance transports the patient. This decision is made based on a nearest-available resource pro-
tocol – i.e. a patient is transported to the nearest trauma center j that has not yet reached its capacity limit, 
and the nearest ambulance among currently available ones is dispatched.  If dij � 30km, a ground ambu-
lance is dispatched. If dij > 30km and dhij � 120km, a helicopter ambulance is dispatched. This means that 
a helicopter ambulance does not fly to a patient if the route h-i-j is too long to transport the patient within 
the 60-min threshold. Though rather unrealistic, this last assumption is implemented to align the simula-
tion model behavior to the math model.  
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 Number of patients currently present in the trauma center is monitored throughout a given day, and if 
it reaches the daily capacity limit, no more patients can be transported to the center unless all other trauma 
centers in the region are also fully occupied.  At the beginning of each day, trauma centers are assumed to 
operate with a zero census level. 
 In addition to estimating  for the iterative solution approach, we also use the simulation 
model to evaluate the performance metric for location solutions. We use the fraction of successful 
transport r as the performance metric: r =  where N is the total number of trauma cases, and NG and 
NA are the number of successfully transported patient by ground and helicopter ambulances, respectively.  
At the end of each transport, we determine whether the transport was successful. We measure the time of 
arrival at a trauma center to compare with the 60-min threshold. We also check the census of the trauma 
center. A transport is considered a success if a patient arrives at a trauma center within 60-min and the 
trauma center is under its capacity limit. Note that all ground transports are successful by definition. Also 
note that, for a given location solution, {yj: zh

 }, there can be demand regions that are so remotely located 
that they are outside of geographic coverage. Patients at these demand regions are discarded and consid-
ered failed transport cases.  

4 EXPERIMENTAL SETTINGS 

4.1 Data Collection & Analysis 

This research was conducted as part of a preliminary feasibility study for Korea’s national trauma care 
system design initiative. In the study, we draw trauma patient data from the following national trauma da-
tabases: the National Health Insurance database, National Emergency Department Information System 
(NEDIS), and EMS database. All data have been anonymized to protect patient privacy. The total number 
of trauma cases is approximately 190,000 for the year 2008. We use the time of EMS calls and their loca-
tions. There are 38 candidate sites for trauma centers, most of which are general and university hospitals. 
The number of candidate sites for heliport bases is 16 in total. Location information has been geo-coded 
to generate their coordinates using a commercial GIS software, ArcGIS™. 

For simplicity, Euclidean distance is used for measuring distance between patient location, trauma 
center candidate site, and the heliport base candidate site. Certainly, this is not the correct representation 
of true distances, especially for ground ambulance cases, as Euclidean distance tends to underestimate the 
real distance travelled by ground vehicles. However, given the size of the geographic areas and the total 
number of cases, this simplifying approximation should not present a major concern. 

4.2 Experimental Settings 

We test these solution methods for four problem instances. We arbitrarily choose trauma patient data of 
single days from year 2008 data – Jan. 1, Jan. 9, Feb. 14, Jul. 8, and Nov. 17, and we use half year data 
from Jan. 1 to June 30. The number of trauma cases in each instance is 361, 370, 395, 412, 551, and 
90,265. For the half year data case, we aggregate the original data into 25km x 25km grids to make it 
computationally tractable.  We locate 10 trauma centers and 15 helicopter ambulances.  
 We compare the quality of the solution obtained from the proposed approach to the solutions yielded 
by other alternatives. As a reference for comparison, we develop solution approaches using well-known 
location problem formulations. Both approaches deploy a two-step procedure that decouples the trauma 
center location problem and helicopter ambulance allocation problem. In the first step, we assume that the 
number of helicopter ambulances is infinite so that the availability of helicopter ambulances is always 
guaranteed. This simplifying assumption renders the original problem as a capacitated maximal covering 
location problem, known as cMCLP (Chung et al. 1983). The optimal locations of trauma centers from 
the first step are then used as inputs to the second step to locate helicopter ambulances. This part is formu-
lated in two ways, using the maximal covering location problem (MCLP), which does not account for 
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probabilistic availability of helicopter ambulances, and employing a standard maximal expected covering 
location model, called MEXCLP (Daskin 1983), a probabilistic version of MCLP. 

5 RESULTS & DISCUSSION 

We first examine how solutions evolve through the iteration steps. Figure 2 shows plots of the fraction of 
successful transports r as a function of the iteration step n for the six test instances. Note that r is an indi-
rect indicator of the convergence of a location solution. In all test instances, the location solution con-
verges within a few iterations. The iteration step at which the location solution converges – that is,  
{yj

n: zh
 n} = { yj

n-1: zh
 n-1} – is indicated by a circle in each plot. This can be interpreted as the point that the 

prior estimates on the busy fraction from the previous iteration step match the posterior estimates. In our 
test, not only does the location solution converge to { yj

*: zh
 *}, the fraction of successful transports r 

monotonically increases as well. Recall in Algorithm 1 that we begin the iteration by setting the initial 
guess, �ij,k

0 = 0. This gives a deterministic coverage solution, and its performance (r) is the first data point 
in the plots.  As the iteration proceeds toward the converging point, r increases monotonically to the max-
imum value. While we do not have a guarantee that { yj

*: zh
 *} is the optimal solution, at least within the 

solution space explored through the iterations, the method does find the best solution. 
 

 
Figure 2: Using Algorithm 1, the location solution converges within a few iterations in all four tested 
problem instances. Circles in each plot indicate that the location solutions have converged. 
 

 
Figure 3: Using the reverse-counting procedure, the location solution converges within a few iterations in 
all four tested problem instances. Circles in each plot indicate that the location solutions have converged. 
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We observe the same behavior when we use the reverse-counting procedure in place of simulation. 

Figure 3 shows the same plot, but the objective function’s value instead of r from simulation is used as 
the y-axis.  This is because the solution we obtain from this procedure is not directly relevant to the simu-
lation as it only works with the mathematical model. The results show an almost identical pattern in 
which the location solution converges within a few iteration steps and the objective function’s value in-
creases toward the maximum. The high objective value at the first iteration in Figure 3 is due to the fact 
that the initial guess �ij,k

0 = 0 makes the second term in (1) artificially small, and thus irrelevant to the 
procedure. Results from both with- and without-simulation iteration appear to support the use of an itera-
tive method to estimate the busy fraction for our problem. 

Now we examine the degree of improvement in solution quality that is obtained when we solve the 
coupled problem as a whole, by comparing to the alternative, two-step approaches: cMCLP-MCLP and 
cMCLP-MEXCLP. For a metric of comparison, we measure r from the simulation by inputting location 
solutions from each solution method. Figure 4 shows that solving the problem as a whole by using the it-
erative method (shaded bars) clearly outperforms the two-step approaches (hashed bars). This can be ex-
plained by the assumption made in the first step of the two-step approaches.  In decomposing the original 
problem into two steps, we assume that there is an unlimited number of helicopter ambulances available 
at every heliport base. This assumption was introduced to eliminate the probabilistic factor in the first step, 
cMCLP, thereby avoiding the difficulty of estimating the busy fraction. However, a consequence of this 
assumption is that optimizing the cMCLP may yield a trauma center location solution that is possibly sub-
optimal for the overall problem. The iterative method approach removes this arbitrary assumption and at-
tempts to find the location solution for both types of resources simultaneously. The large gap in r between 
the two approaches suggests the importance of finding a way to work out the busy fraction estimation for 
our coupled location problem. 
 

 

Figure 4: The simulation based iterative method outperforms the three alternatives. 

Between the two iterative methods, Algorithm 1 vs. reverse-counting, Algorithm 1 produces a slightly 
better outcome. This seems to derive from two factors. First, there is some arbitrariness in the reverse-
counting procedure. When a demand region i and trauma center j, (i, j), can be served by more than one 
heliport base, it is arbitrarily assigned to one of those heliport bases.  This affects the time for helicopter 
route h – i – j – h. This is the service time used for the numerator in (9). Second, it ignores the temporal 
dimension in the demands. Even when there are only a few service requests in a day, there can be a short-
age in helicopter resources if those requests are concentrated in a small time window. In the mathematical 
model and the reverse counting procedure, the total number of demands are looked at in a unit time, 
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whereas the simulation takes the actual temporal pattern of call arrivals from the historical data. Thus, the 
busy fraction estimated by the simulation model can be said to be more relevant. 

6 CONCLUDING REMARKS 

In this paper, we discuss a location problem where trauma centers and helicopter ambulances are located 
simultaneously. These two location problems cannot be decoupled due to their interdependency. From a 
facility location problem perspective, this leads to an interesting and challenging problem in a few aspects.  
Two different types of resources must be considered simultaneously as they mutually affect the overall 
coverage and workload. In particular, this causes difficulty when we formulate the problem as a probabil-
istic coverage model. The busy fraction, �ij,k  needs to be estimated to solve the coupled problem, but the 
interdependency between trauma centers and helicopter ambulance locations renders this estimation unat-
tainable.  

We propose an iterative method where we use an optimization model and a discrete event simulation 
in an iterative fashion. Location solutions obtained from the optimization model at the first step, with an 
estimated value of the busy fraction for individual heliport bases, are fed to the simulation model, which 
in turn provides updated estimates for the busy fraction to be used in the next step of optimization. Our 
experimental results suggest that the proposed method is a viable solution approach. The location solution 
converges through the iterations, and also results in the best performance value of the measure.  The pro-
posed method outperforms the other alternatives including two-step heuristic approaches. 

There are a few potential areas of improvement for our work. One shortcoming of the proposed meth-
od is that there exists a better rule for updating optimization results. In this study, we exclude demand 
points that have no reachable helicopters. This rule leads to quick convergence, but it may produce a poor 
solution. Considering that the updating optimization results rule has an important role in the proposed 
method, finding a better updating rule is an attractive research direction to improve the solution quality. 
The other area where there is room for improvement is in the initial solution for starting the proposed 
method. Related to the updating optimization results rule, the solution quality from the proposed method 
depends on the initial solution. Thus, developing a strategy to choose a better initial solution for obtaining 
a better final solution is also a worthwhile direction for study. 
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