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ABSTRACT 

Emergency Medical Service (EMS) consists of a chain of processes that encompass the on-scene man-
agement, patient transport, and care provision at an ED. Much research has been conducted in order to 
improve EMS design, and simulations are commonly used to evaluate EMS design. In many cases, a spe-
cific component of an EMS system is selected to model aspects relevant to the analysis, while the other 
EMS components are treated as model inputs and assumptions. This could lead to a fragmentary assess-
ment because it does not capture the complexity of real EMS operations. Ideally, EMS designs should be 
evaluated by a model that represents the entire chain of EMS operations. In this paper, a wide spectrum of 
operation design problems of EMS systems and simulation models used in previous studies are examined. 
Then, a set of modeling requirements are defined and a model framework is proposed for EMS system 
design evaluator.  

1 INTRODUCTION 

The Emergency Medical Service (EMS) system is a major element of the healthcare delivery system: it is 
responsible for providing patient care and transport for the duration prior to the provision of definitive 
care. The quality of care provided during the pre-hospital phase is significant in patients’ health outcomes. 
The quality of the EMS consists of two primary components: timeliness in its response and quality in the 
out-of-hospital clinical intervention. While the design of an EMS system for clinical quality resides in the 
domain of emergency medicine, there are many engineering design issues when addressing the timeliness 
aspect of the EMS system design.  

The EMS process is triggered by a service request from a patient and ends with the delivery of the pa-
tient to the point of definitive care. Taking a simplified view of a single instance of the EMS process, it 
can be depicted as a series of events as shown in Figure 1. The patient transportation phases depicted in 
the figure are based on the EMS interval model presented by Spaite et al. (1995). Once an EMS request is 
received, one or more EMS vehicles are dispatched to the scene. Upon arrival, the EMS crew administers 
the necessary and feasible first responses. Then, it takes the patient to a point of definitive care, which is 
typically an emergency department (ED) in a hospital. After handing the patient over to the hospital, the 
EMS vehicle returns to its base to wait for the next service request. 
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Figure 1: An example of an EMS process 
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The goals of EMS system design research are to plan the EMS’s underlying logistics system and to 

design operational policies and protocols that support seamless execution of the service process. An ex-
ample of an EMS logistics system design is determining the locations of the EMS vehicles that maximize 
service coverage. Optimizing the dispatch decisions for incoming service requests is an example of an 
operational policy design problem.  

In much EMS system design research, some form of computer simulation is used as a means to eval-
uate the performance of the EMS system. Design alternatives have been proposed using various means, 
and the proposed solution’s effectiveness is assessed using a simulation model. The simulation models 
enable virtual experiments to test the design solutions prior to real world implementation. This is particu-
larly relevant and useful for EMS design because experiments in real EMS environments are generally re-
stricted due to health and safety issues for patients. 

These simulation models are typically developed in the specific context of the problem being ad-
dressed, which tends to focus on a specific component or phase of the EMS process. In such individual 
simulation models, the other components are often considered by simplifying assumptions or are external 
to the model scope. For example, in a simulation that evaluates ambulance location solutions, congestion 
at nearby emergency departments may not be modeled and it is always assumed that an ambulance is al-
lowed to take a patient to the nearest ED. While this certainly simplifies the model building and enables 
the experiments focus on the specific aspect of the EMS system, it may lead to some problems.  

A critical problem of such simplifications is the possibility of missing important interactions among 
the components of the overall EMS process. When an ambulance arrives at the nearest ED and finds it 
unable to accept the patient due to overcrowding, the ambulance must either wait for a bed at the ED or 
travel to another ED. This increases the ambulance’s service time from what was assumed based only on 
the distance measure. Another problem is that, in many cases, changes in the system states, which are of-
ten caused by decisions made earlier in the process, may not be appropriately captured. As ambulance op-
erations involve sequential decision-making processes, the decisions in previous stages have impacts on 
the decisions and operations for the next steps. For example, if a dispatcher orders redeployment for a re-
turning ambulance to move to another site, the dispatch decision for the next request can be changed from 
what it would have been without the redeployment. Thus, a simplified EMS simulation model could lead 
to fragmentary performance assessment of an EMS system design solution. A stronger approach is to 
build a model that represents the entire chain of EMS operations in order to properly capture interactions 
among the various components and decisions throughout the process.  

In this paper, a generic model framework for an EMS system design evaluator is developed. The pri-
mary goal is to provide a set of modeling requirements and guidelines for developing an EMS simulation 
model. First, the existing literature is reviewed in order to identify the commonly studied problems in 
EMS system design and also to understand the simulation models used in those studies. This provides a 
basis for defining the ranges of problems to scope the model framework. Next, a generic process model is 
developed for EMS system operations by integrating various features from numerous simulation models. 
Lastly, the key modeling issues are described related to each element in the general process model.  

2 DESIGN PROBLEMS FOR EMS SYSTEMS 

In this section, a summary of the literature on EMS system design is presented. In a broad sense, some 
prior research considers the planning issues of EMS systems, e.g. determining locations for ambulances; 
other research focuses on the problem of EMS system operations such as designing a dispatch policy 
where the optimal decisions on assigning an ambulance to an incoming service request are examined. In 
this paper, the first type of problem is referred to as a strategic planning problem and the second type as a 
tactical operation problem.  
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2.1 EMS System Planning Problems  

A significant topic of strategic planning problems for EMS systems is the location problem for EMS am-
bulances, which has a long history of investigation since the early 1970s (Toregas et al. 1971, Church and 
ReVelle 1974). A wide range of models for EMS location problems has been developed. A relatively 
simple, deterministic model assumes that ambulances are always available to respond to emergency calls. 
However, the probabilistic models relax this assumption and incorporate the probabilistic availability of 
vehicles in an effort to represent more realistic ambulance operations. Many variations of these models 
exist as a result of the needs of specific problem circumstances, including the two-tiered ambulance mod-
el and double standard model, for example. Owen and Daskin (1998), Brotcorne, Larporte, and Semet 
(2003), and ReVelle and Eiselt (2005) have provided a comprehensive review of such studies. The prima-
ry goal of these problems is to determine the optimal number of and locations for ambulances in order to 
satisfy the relevant performance targets.  

The optimal segmentation of a demand area (i.e. defining dispatch priority for a demand region) for 
EMS vehicles is another example of an EMS system planning problem. For example, Mendonca and Mo-
rabito (2001) and Iannoni, Morabito, and Saydam (2008) developed a model to locate appropriate seg-
ments of demand areas. Assigning the zones of primary responsibility is a key determinant for workload 
balance among ambulances and, therefore, affects the performance of the entire EMS system.  

Planning an EMS system also includes designing a workforce shift schedule. In their study of the 
Edmonton EMS system, Ingolfsson, Erkut, and Budge (2003) proposed a single start station system where 
all ambulances begin and end their shift at the same location. Compared with a multiple start system, the 
single start station system can reduce the downtime for shift changes by pooling the spare ambulances in 
one location. 

2.2 EMS System Operation Problems 

Figure 2 presents the various types of decisions made during the major events in an EMS system for a pa-
tient transport process. Managing the EMS system operation involves sequential decision-making, and the 
EMS system operation problems primarily relate to making decisions during the process of the EMS op-
eration. 
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Figure 2: EMS system operation decisions at each phase of the patient transportation process 

Ambulance dispatch policy design is among the most actively studied topics in EMS system opera-
tions. Dispatch refers to the assignment of an ambulance to incoming emergency calls. While it is a com-
mon practice to dispatch the closest ambulance to the scene, it is possible that different dispatch schemes 
can improve system performance. For example, one may give a higher dispatch priority to an ambulance 
with the longest idle time even if it is not the closest. The dispatch policy is an important factor in EMS 
system performance, and various dispatch policy designs have been discussed in Lim, Mamat, and Braunl 
(2011). 

Triage decisions in a mass casualty event determine the transport priority for patients. Transporting 
patients to an appropriate hospital in a priority order other than the “first-come, first-served” basis can 
yield a better outcome. A transport priority may be determined based solely on the severity of a patient’s 
clinical condition or on more complicated schemes as well. Inoue, Yanagisawa, and Kamae (2006) pro-
posed a subgroup sorting method that could determine the transport priority for patients and demonstrated 
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that triage decision-making by subgroups improves the survivability outcome. Mills, Argon, and Ziya 
(2011) developed a triage scheme (Resource-Based START) in which mapping between the severity level 
and transport priority changed after a threshold time. The motivation of this scheme was that after a cer-
tain period, the survival probability of lower severity patients deteriorates faster than patients with higher 
severity. Related to the triage decisions, a decision may be made not to transport a patient at all; this is 
called a non-conveyance decision (Snooks et al. 2004). While there is practical difficulty in exercising a 
non-conveyance decision, it can improve the ambulance operations by limiting the ambulance tasks to the 
true demands.  

The next decision to be made is regarding which hospital a patient will be transported to for emergen-
cy care. While the nearest emergency department with available beds is a reasonable decision in most sit-
uations, the current congestion level at the candidate EDs should be considered when determining the 
destination. This is particularly relevant to a mass casualty event where the availability and capability of 
nearby EDs should be appropriately distributed to a large number of patients requiring different levels of 
services, but at the same time. Jotshi, Gong, and Batta (2009) suggested a method of determining the des-
tination ED for patients from a mass casualty event, by considering the candidate EDs’ available capaci-
ties, waiting times, and distances from the incident scene. 

Once a destination ED is selected, the sub-problem of finding the optimal path from the scene to the 
destination should be considered. For example, Haghani, Tian, and Hu (2004) developed a simulation 
model where the path with the shortest time was determined for an individual origin-destination pair at a 
certain time of day. While the path finding itself is not a significant problem in the context of the EMS 
operation, it is a sub-problem that can be used as a part of another problem such as the dispatch problem. 

Upon completing a transport task, an ambulance may return to a base other than where it originally 
departed from in order to optimally respond to the dynamically changing coverage of the fleet of ambu-
lances. A returning ambulance moves to a temporarily uncovered area where all ambulances in the area 
are busy. This practice is referred to as dynamic ambulance relocation. In a dynamic ambulance reloca-
tion system, when an ambulance is dispatched, thereby leaving an area uncovered, the remaining ambu-
lances are relocated to achieve optimal coverage with the reduced ambulance units. Mathematical models 
for ambulance relocation have been proposed by Gendreau, Laporte, and Semet (2001), Gendreau, 
Laporte, and Semet (2006), and Maxwell et al. (2010). 

3 SIMULATION APPROACHES FOR EMS SYSTEM DESIGN 

This section reviews the applications of simulations to EMS system designs. Specifically, the simulation 
models are discussed in terms of the type of problems they address and the phase of EMS process each 
model investigates.  

Many of the simulation models developed for EMS design aim to evaluate EMS system configura-
tions, and most have focused on ambulance locations (Savas 1969, Fujiwara, Makjamroen, and Gupta 
1987, Iskander 1989, Goldberg et al. 1990, Repede and Bernardo 1994, Yang, Hamedi, and Haghani 2004, 
Silva and Pinto 2010). The first such application of simulation modeling is found in Savas (1969). A sim-
ulation model was constructed to analyze the effectiveness of alternative system configurations of the re-
distribution of ambulances and addition of more vehicles. In Iskander (1989), a simulation model evaluat-
ed the ambulance locations, but their model considered other components including the reduced time in 
dispatch, time spent at the scene, variations in emergency call arrival rates, and non-conveyance scenarios. 
A similar simulation model can be found in Goldberg et al. (1990). Most of these models simplified the 
dispatch decision component as a simple, nearest ambulance dispatching operation and a first-come, first-
served queuing policy. In a few models, alternative dispatch rules were considered. For example, Repede 
and Bernardo (1994) considered the least likelihood of receiving calls in a zone of primary responsibility 
in the dispatch decision. Yang, Hamedi, and Haghani (2004) modeled the dispatch decision for ambu-
lances currently in the outside-depot state. The simulation model developed by Silva and Pinto (2010) al-
so considered ambulances that are assigned to patients as candidate units for dispatch to incoming service 
requests.  
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Simulation models are particularly useful for predicting the performance of new system configura-

tions. Ingolfsson, Erkut, and Budge (2003) modeled a single start station system to evaluate its effective-
ness in reducing the downtime for shift change. The operations for the ambulance shift are represented in 
the model. Their model includes a dispatching decision model in which the destination hospitals are de-
termined using a probabilistic distribution extracted from historical data. Su and Shih (2003) designed a 
two-tiered system that provides advanced pre-hospital care. In their simulation model, the advanced life 
support (ALS) units are dispatched according to a predetermined dispatch priority and then the dispatched 
ALS units determine the destination hospital. Gunes and Szechtman (2005) developed a simulation model 
for a helicopter EMS system with a simple dispatching policy to assign the nearest helicopter to a patient. 

Some other models have been incorporated operational decision components with richer details, 
many of which address dispatch decisions. Lubicz and Mielczarek (1987) developed a simulation model 
that includes the modeling of dispatch operations and non-conveyance operations. Furthermore, ambu-
lance preemption using a higher priority call and priority queuing policy to assign an ambulance were im-
plemented in the model. The simulation model presented in Zaki, Cheng, and Parker (1997) allows the 
evaluation of the inter-zone dispatch policy and priority-based dispatching policy. Andersson and Var-
brand (2007) used simulation experiments to test the proposed algorithms that dispatch and relocate am-
bulances in order to improve the preparedness of the EMS system. Lim, Mamat, and Braunl (2011) also 
used simulation experiments to compare performances among various dispatch policies for EMS systems. 
Haghani, Tian, and Hu (2004) used a simulation model to analyze the dynamic assignment policy where 
the shortest path algorithm was included with time varying traffic information. Relocation or redeploy-
ment is another operational decision problem, and Gendreau, Laporte, and Semet (2001), Gendreau, 
Laporte, and Semet (2006), and Maxwell et al. (2010) have built a simulation model for redeployment in 
order to assess the performance of the solutions they developed in an analytic model.  

Table 1 summarizes the simulation models reviewed in this section; it shows the operational decision 
components included in each model. The dispatch component is included in all models because the dis-
patch of an ambulance is a basic feature of EMS simulations. However, there are varying degrees of detail 
and sophistication in the dispatch decision model: some use a simple nearest, first-come, first-served rule, 
while in others, the dispatch components are modeled with a variety of dispatch policies. Redeployment 
or relocation is also represented in many models; including redeployment decisions requires system state 
changes by non-active ambulance vehicles, which potentially complicates implementation. For example, 
allowing an ambulance to respond to a call while it is on its way to a new deployment location requires 
tracking of ambulance positions. The triage and hospital selection components are part of the dispatch de-
cision in a broader sense, but they have modeling and input requirements unique to their decision-making 
process. Both of these are particularly relevant to a mass casualty response when the demands for EMS 
surge in a concentrated fashion in both time and space. However, determining a path for the ambulance 
trip is usually not considered in EMS simulation models. This is mostly because in typical problems stud-
ied using a simulation model, such resolution is not required or can be computed externally. In most cases, 
the time for an ambulance trip is considered using the simple shortest travel distance and driving speed.  

4 MODELING FRAMEWORK FOR EMS SYSTEM DESIGN EVALUATOR 

The reviews in Section 3 suggest that the simulation models presented in EMS system design research 
have often focused on a specific component or phase in the EMS process. That is, the models have had a 
model scope decision according to the individual modeler and can be well justified as with any other 
modeling for simulation studies. However, there appears to be an advantage in designing a more generic 
simulation model that encompasses the entire spectrum of the EMS operation process and the decision-
making associated with the entire process. First, there is a possibility that some key interactions among 
the EMS components and decisions are overlooked, which potentially leads to a fragmented assessment 
of the system performance. Considering that the ultimate goal of EMS system research is to create an im-
pact by implementation, it is important to assess the expected performance of the proposed solutions in an 
environment as close to the real world environment as possible. In doing so, a key factor is to represent 
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the entire chain of EMS processes. There is also an issue of reusability. The simulation models developed 
for individual studies are generally not applicable for other studies due to the different modeling scopes. 
However, an EMS simulation model that represents the entire EMS operation process can facilitate indi-
vidual modeling building efforts.  

Table 1: Operational features and logics included in reviewed simulation models 

Decision
Reference 

Dispatch 
Path  

finding
Triage 

Hospital  
selection 

Redeployment

Savas (1969) 
●  

Nearest 
  ○  

Fitzsimmons (1971) 
●  

Preemption 
 ● ● ● 

Fuziwara, Makjam-
roen, and Gupta 
(1987) 

●  
Nearest 

    

Lubicz and Mielcza-
rek (1987) 

●  
Preemption 

  ● ● 

Iskander (1989) 
●  

Nearest 
 ●  ● 

Goldberg et al. (1990) 
●  

Shortest travel time 
   ● 

Repede and Bernardo 
(1994) 

●  
Least likelihood 

  ●  

Zaki, Cheng, and Par-
ker (1997) 

●  
Inter-zone dispatch 

   ● 

Ingolfsson, Erkut, and 
Budge (2003) 

●  
Nearest 

 ● ● ● 

Su and Shih (2003) 
●  

Nearest 
  ●  

Haghani, Tian and Hu 
(2004) 

●  
Dynamic assignment

●   ● 

Yang, Hamedi, and 
Haghani (2004) 

●  
Dynamic assignment

    

Gunes and Szechtman 
(2005) 

●  
Nearest 

    

Andersson and Var-
brand (2007) 

●  
Preparedness 

    

Silva and Pinto (2010)
●  

Earliest arrival time 
 ● ●  

Lim, Mamat, and 
Braunl (2011) 

●  
Policy review 

   ● 
      

     
● Modeled 

○ Addressed but not modeled 
 
 An EMS system simulation model must satisfy a number of fundamental requirements. First, it 
should be able to capture the possible interactions among the EMS components and decisions. Each com-
ponent in the EMS operation process should be represented with sufficient detail for the problem at hand 
and should be integrated so that their interactions can be modeled appropriately. Second, it should allow 
analysts to evaluate the solutions for various types of EMS system design problems. In order to achieve 
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this, the model must provide a means to incorporate design solutions into the model. This may not be 
straightforward because there are different types of solutions to consider ranging from what can be repre-
sented as location data, queuing policy, or logic and algorithm for decision-making based on system states. 
Lastly, it is desirable for the model to have flexibility for a modeler to incorporate modifications to meet 
the requirements specific to their problem.  

A conceptual framework for an EMS system simulation model is presented in Figure 3. It consists of 
three modules: modeling of the input data, the EMS process flow, and decision-making. The EMS pro-
cess flow module, shown in the middle row, is the central part of the simulation model: it describes the 
EMS process following a patient’s transaction through the process. The input data module includes the 
EMS demand modeling, EMS system configuration, and time interval generation, which are shown in the 
top row of Figure 3. The EMS system configurations initialize the setting for the target EMS system in 
the simulation model. The EMS demand modeling and time interval generation manage the various at-
tributes for service requests and processing times for each process step that are used in the process flow 
module. The decision-making module controls the decision-making process at various points in the EMS 
process by providing a set of rules or logics. 
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Figure 3: A framework for EMS system design evaluator 

4.1 Input Data Modeling Module  

The input data modeling module consists of three components: the EMS demand modeling, EMS system 
configurations, and time interval generation. The EMS demand modeling generates the attributes of the 
incoming EMS requests. The typical attributes of EMS requests include arrival time, severity (priority), 
and location of the incident. The attributes can be obtained from historical data in a format of raw samples 
or probabilistic distribution. The forecasting technique is an alternative to generating attributes of the 
EMS request from historical data. Channouf et al. (2007) and Matteson et al. (2011) developed forecast-
ing techniques that effectively capture the features of the EMS request arrival process. The EMS demand 
modeling may also be extended to include a function that can construct a virtual set of EMS request data 
from a hypothetical scenario such as a mass casualty event or wide-area disaster event. 

The EMS system configurations are required in order to define the initial settings of the simulation 
experiments. The number of ambulances and their locations are examples of the information managed in 
the configurations. Alternative configurations can be obtained from EMS system planning problems 
through optimization or heuristics, and input to the EMS system configurations. 

The last part of the input data modeling is to generate the time intervals for various processing times; 
travel time, time spent at the scene, and time spent at the hospital are examples of time intervals. The 
travel time is key information for the simulation because it typically occupies the largest portion of the ac-
tive ambulance operations and thus is an important determinant of the EMS system performance. Deci-

798



Sung and Lee 
 

sion-making such as ambulance dispatch and hospital selection is primarily based on the expected travel 
time. There are numerous studies that propose a means to predict the travel time of an ambulance, and a 
brief review is provided here.  

Early studies in EMS simulation used simply approximated travel times. Fitzsimmons (1971, 1973) 
used a rectangular distance based on the orthogonal arrangement of streets between two points as the 
travel distance. Lubicz and Mielczarek (1987) obtained the travel distance using the actual road network 
and average driving speed. In some cases, the linear distance was used and the travel time was adjusted 
with a coefficient to compensate the nonlinearity of the travel distance (Iskander 1989). Some models 
have adopted a slightly more refined version. The square root law was proposed in order to approximate 
a fire engine travel time in an attempt to consider acceleration and cruising speed separately (Kolesar, 
Wakler, and Hausner 1975). Fuziwara, Makjamroen, and Gupta (1987) also used a piecewise function to 
generate the travel time for an EMS simulation model, as follows: 

( )
c D if D d

T D
a bD otherwise

  
 ,

 

where T(D) is the expected travel time, D is the travel distance, and d is the distance required to achieve 
cruising speed. The parameters a, b, c, and d were empirically estimated in the study. Ingolfsson, Erkut, 
and Budge (2003) adopted a similar scheme to generate travel times for ambulances. Goldberg et al. 
(1990) applied a travel time generation method that considers different road types and travel speeds on 
the road types. They divided the road network into four categories (freeways, major roads, non-major 
roads, and local roads), and the path between two points was divided into segments of the four road cate-
gories. Then, the travel time was calculated using a linear regression function with the four road category 
factors. Henderson and Mason (2005) considered time-varying travel time. They used actual road traffic 
data to find a representative value for morning peak travel time (8 AM), midday travel time (12 PM), and 
evening peak travel time (5 PM). Then, the travel times during other hours of the day were estimated us-
ing weighted combinations of the three values. While these models provide a deterministic travel time, a 
probability distribution is also often used to generate travel time. Repede and Bernardo (1994), Zaki, 
Cheng, and Parker (1997), Christie and Levary (1998), Su and Shih (2003), and Haghani, Tian, and Hu 
(2004) used probability distributions in their simulation models in order to generate travel times that re-
flect the target region’s travel time pattern. Budge, Ingolfsson, and Zerom (2010) proposed a travel-time 
distribution model that incorporates a dependence between the distance and median travel time. 

While the schemes discussed above are sufficient in most cases, there are some applications where 
more substantial models may be required. For example, in a disaster scenario, the data or model devel-
oped for a nominal condition will not apply. There may be a loss of road infrastructure, unexpected heavy 
traffic, local congestion at the disaster scene, and so on. For this, integrating a traffic simulation into the 
model may be considered as long as the increased complexity is manageable. 

4.2 EMS Process Flow Module 

The EMS process flow module defines the basic process flow for the simulation. Driven by the require-
ments from the EMS system design problems identified in Section 2, a generic process flow for EMS op-
eration is presented in Figure 4. The process flow is designed to allow representation of the identified de-
sign problems in the EMS system. The backbone of the process flow is the process of patient transport, 
which dictates how patients are transported through a number of sub-processes and decisions throughout 
the main process. Delays associated with supporting the operations, such as maintenance or redeployment 
of ambulance units, are also included because the ambulance availability is affected by these events. 

Figure 4 is a generic representation of an EMS process, which can be easily modified to reflect the 
specific attributes of the target EMS system. For example, for an EMS system with an ambulance reloca-
tion policy, the waiting ambulances move to another station located in a temporally uncovered area; this 
type of operation can be incorporated by modifying the maintenance operation flow. Some other features 
may need more significant modification in order for them to be incorporated into the model.  
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Figure 4: A generic process flow for EMS operations 

4.3 Decision-Making Module 

The decision-making module provides rules or logics for making operational decisions in the EMS flow 
process. The four major decisions identified in Section 2.2 are dispatch, triage, destination hospital selec-
tion, and redeployment. These decisions control the details of the EMS operation during the process flow. 
The operational decisions can be developed external to the simulation model and a set of rules, protocols, 
or priorities may be simply provided for the model. In other cases, a decision-making model may be de-
signed using real-time (simulation time) information for the EMS system state. This would require in-
teroperation or integration of the decision-making module and the main EMS process flow model.  
 A common criterion for decision-making in the EMS system design is the response time, i.e. the time 
period between the receipt of an EMS request and an ambulance’s arrival at the scene. The response time 
is accepted as a key performance measure of an EMS system. A possible weakness of using the response 
time is that it is an indirect measure of the true system performance, and there are some studies that ad-
dress this issue. For example, McLay and Mayorga (2010) discuss appropriate threshold response times 
that maximize the survival rate of cardiac arrest patients. Erkut, Ingolfsson, and Erdogan (2008) provide a 
review for estimating the survival rate of cardiac arrest patients. The Resource-Based START, which is 
the triage scheme proposed by Mills, Argon, and Ziya (2011), is based on survivability as a performance 
measure.  

5 SUMMARY 

In this paper, various system design problems that were studied in prior EMS research were reviewed. 
Simulation has been frequently used in these studies to evaluate the proposed designs for the problems. In 
most cases, the simulation models have been developed with a specific focus on their target problems. 
While defining the model scope according to the problem being studied is reasonable, there appears to be 
an advantage of implementing a more generic EMS system simulation model. An EMS system simulation 
model that encompasses the entire spectrum of the EMS operation process and decisions involved will 
enable the capture of possible interactions between the system components and operational decisions. Al-
so, it will allow researchers to more easily evaluate their design solutions under various assumptions and 
conditions for other process components. As a first step toward a generic EMS system simulation model, 
a conceptual framework for an EMS system simulation model was presented in this paper. The modeling 
considerations and practices are discussed in three parts of the framework: the input data modeling, EMS 
process flow, and decision-making.  
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