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ABSTRACT

Pandemics such as H1N1 influenza are global outbreaks of infectious disease. Human behavior, social
contact networks, and pandemics are closely intertwined. The ordinary behavior and daily activities of
individuals create varied and dense social interactions that are characteristic of modern urban societies. They
provide a perfect fabric for rapid, uncontrolled disease propagation. Individuals’ changing behaviors in
response to public policies and their evolving perception of how an infectious disease outbreak is unfolding
can dramatically alter normal social interactions. Effective planning and response strategies must take these
complicated interactions into account. Recent quantitative changes in high performance computing and
networking have created new opportunities for collecting, integrating, analyzing and accessing information
related to such large social contact networks and epidemic outbreaks. The paper will describe our efforts
to build a Cyber Infrastructure for EPIdemics (CIEPI) – a high performance computing oriented decision-
support environment to support planning and response in the event of epidemics.

1 INTRODUCTION

A pandemic is an outbreak of infectious disease affecting large populations simultaneously across the entire
globe. For example, the recent H1N1 influenza pandemic spread to most parts of the world in a few weeks.
Pandemics pose disease control challenges unmatched by any other infectious disease outbreaks.

Certain modern trends exacerbate the speed and severity of pandemics. First, the global population
is larger and increasingly urbanized, providing greater opportunity for viruses to be transmitted within
populations. Second, levels of international travel are much greater than in the past, allowing viruses to
spread globally more quickly. Third, populations in many countries are increasingly elderly and immuno-
compromised, thereby increasing the chances that infection will lead to more severe illness and death. It is
important and worthwhile to prepare for these events. Indeed, over the last 50 years, public health agencies
across the world have made remarkable strides in reducing the social, economic and health impacts of such
pandemics.

Advances in computational, biological and information sciences have the potential to dramatically
improve how public health authorities across the world plan for, detect, and respond to pandemics. New
surveillance tools are being developed so that pandemics can be detected at onset. These methods include
sentinel clinics and serological sampling as well as social media based data analytics. Similarly, new high
performance computing models are being created to simulate the spread of a disease at regional, national
and international scales. This scalability and ability to represent region specific detail permits cost-benefit
analysis of various intervention strategies as well as improved prediction. Furthermore, recent models have
begun incorporating detailed behavioral representation. Finally, informatic tools are being developed to
support public health analysts carrying out detailed what-if analysis using these sophisticated tools. There
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are two key advances: (i) the ability to develop simple and intuitive user interfaces so that the end user
can interact with the sophisticated modeling environments without becoming a computer scientist; (ii)
ubiquitous web access to these tools, allowing the analyst to carry out investigations at any time, on any
device and at any location.

2 PERVASIVE INFORMATICS ENVIRONMENT

Current-generation High Performance Computing (HPC) based modeling environments for complex co-
evolving networks use large-scale special-purpose systems. These systems are readily accessible only to
a limited number of highly specialized technical personnel in narrowly defined software applications. In
other words, web-based distributed information CyberInfrastructure (CI) for representing and analyzing
large socio-technical systems simply do not currently exist. Developing such an infrastructure poses unique
challenges, different, for example, from those faced by researchers developing the CI for physical systems:

Scalability The CI must be globally scalable. The scalability comes in three forms: (i) allowing
multiple concurrent users; (ii) processing huge quantities of distributed data; and (iii) executing
large, national-scale models.

Coordination The CI should allow computational steering of experiments. The systems needed by stake-
holders are geographically distributed, controlled by multiple independent, sometimes competing,
organizations and are occasionally dynamically assembled for a short period of time.

Data and Information Processing The CI should facilitate efficient data and information fusion and
analysis. The Internet has enabled data sharing in a simple and cost effective way, from the
producers’ side. Consumers of the data must still locate the appropriate data and deal with multiple
incompatible data formats.

User Support The CI should provide an appropriate analysis framework for users, including user
interfaces, high level formalisms to set up experiments, and visual and data analytics that include
methods for integrating heterogeneous databases to support multi-view visualization (e.g. disease
spread in a geographic region and epidemic curves).
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Figure 1: High level view of CIEPI. The geographically distributed middle-
ware system is shown in the center, connecting the four main components
of the system. Each of the individual resources may be geographically and
organizationally distributed.

We will describe Cy-
ber Infrastructure for EPI-
demics (CIEPI), a perva-
sive computing environ-
ment for global model-
ing, information and deci-
sion support, that will pro-
vide scientists, educators
and public health analysts
ways to detect, plan for
and respond to pandemics
(see Section 5 for recent
use of CIEPI). The goal

of the CIEPI is to make HPC resources seamless, invisible, and indispensable in routine analytical efforts
by demonstrating that HPC resources should be organized as an evolving commodity, and made accessible
in a fashion as ubiquitous as Google’s home page. CIEPI was motivated by the need to provide an integrated
platform to support epidemiological science and public health analysis.

CIEPI is comprised of: (i) high-resolution scalable models of disease transmission and behavioral
adaptation; (ii) a service-oriented architecture and delivery mechanism for facilitating the use of these
models by domain experts; (iii) a distributed coordinating architecture for information fusion, model
execution and data processing; (iv) a scalable data management architecture to support model execution
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and analytics; and (v) scalable methods for visual and data analytics to support analysts. See (Barrett et al.
2010; Barrett et al. 2006) for further details.

3 DATA SYNTHESIS AND MODELING

Traditionally mathematical and computational modeling of epidemics has focused on coupled rate equations
– differential equation models for completely mixing populations, in which large groups of people interact
with each other; see (Bailey 1975; Hethcote 2000; Kaplan et al. 2002; Newman 2003) for comprehensive
reviews of this approach. Over the years, these models have proved to be immensely successful. They
yield analytical expressions for a number of important epidemic parameters, including number infected,
deaths, etc. But they can not capture the complexity of human behavior and interactions that serve as a
mechanism for disease transmission.

An important factor influencing the progress of an infectious disease outbreak is the structure of the
contact network across which it spreads. This structure changes with time, both endogenously and in
response to disease prevalence and public health interventions. The resulting phenomena are irreducibly
complex, i.e., the simplifying assumptions required by aggregate models inevitably render them incapable
of reproducing important phenomena. Over the last few years, researchers have begun to investigate a
new approach to epidemiological modeling that can naturally handle this co-evolution. It is based on a
combination of network theory and individual based simulation (Halloran et al. 2002; Carley et al. 2006;
Eubank et al. 2004; Ferguson et al. 2006; Ferguson et al. 2004; Ferguson et al. 2005; Longini et al. 2005;
Germann et al. 2006; Meyers et al. 2003).

”Interaction-based” or ”network-based” epidemiology, as this approach has come to be known, addresses
some of the challenges faced by aggregate models. It seeks to understand the complicated interplay between
the three components that contribute to irreducible complexity: (i) individual behaviors of agents (people
and infrastructure components), (ii) unstructured, heterogeneous multi-scale socio-technical networks, and
(iii) the dynamical processes on these networks.

Although computationally expensive and data intensive, network-based epidemiology fundamentally
alters the types of questions that can be posed, providing qualitatively different insights into disease dynamics
and public health policies. More importantly, the modeling approach allows policy makers to formulate
and investigate potentially novel and context specific interventions. A good example of this is the school
closure policy adopted during the recent H1N1 influenza outbreak http://www.time.com/time/health/article/
0,8599,1915244,00.html and http://www.sciencedaily.com/releases/2012/02/120206174205.htm.

3.1 Network Synthesis

We describe first-principle based methods for generating synthetic regional and national scale social contact
networks. Unlike simple random graph techniques, these methods use real world data sources and combine
them with behavioral and social theories to synthesize networks. The work began almost 20 years ago as a
part of the TRANSIMS project we developed with colleagues at the Los Alamos National Laboratory (Barrett
et al. 2001; Beckman et al. 1996) and has continued with new methods introduced under the Simfrastructure
project (Barrett et al. 2009).

Figure 2 illustrates our approach to synthesizing urban scale social contact networks, as discussed in
detail in (Eubank et al. 2004; Barrett et al. 2009). First, we create a synthetic population by integrating
a variety of databases from commercial and public sources. The process preserves the confidentiality of
the original data sets, yet produces realistic attributes and demographics for the synthetic individuals. This
process is not simply a de-identification or anonymization of an existing population, but the creation of
an entirely new population with the same statistical properties as the original population. A census of
the two populations is statistically identical at a slightly aggregated level (the US Census block group,
typically 600-3000 people). The process has successfully been employed in other countries such as India
and China. The synthetic population is a set of synthetic people and households, geographically located,
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Figure 2: (a) Coupled social and information networks: the social contact graph (bottom layer), public
information infrastructure network (middle layer) and friendship network (top layer). (b) Schematic diagram
describing various data sources that we have integrated to produce synthetic relational networks.

each associated with demographic variables drawn from any of the demographics available in the input
dataset. Each synthetic individual is created in the context of a household with other synthetic individuals
and each household is located geographically.

Next, a set of activity templates for households are constructed, based on several thousand responses
to an activity or time-use survey. These activity templates include the sort of activities each household
member performs and the time of day they are performed. Thus, across an entire geographical region,
demographic information for each person and location, together with a minute-by-minute schedule of each
person’s activities and the locations where these activities take place is generated using a combination of
simulation and data fusion techniques. This information can be captured in the form of a dynamic social
contact network, represented by a (vertex and edge) labeled bipartite graph GPL, where P is the set of people
and L is the set of locations. If a person p ∈ P visits a location `∈ L, there is an edge (p, `, label)∈ E(GPL)
between them, where label is a record of the type of activity of the visit and its start and end times. Note
that it is impossible to build such a network for any region large enough to be epidemiologically significant
solely by collecting field data, although such data can be incorporated into the synthetic population creation
process. The use of generative models to build such networks is a unique feature of this work.

How do these networks compare with classical random graphs? Our results show that the resulting
realistic social contact networks: (i) differ structurally from synthetic networks generated using simple
random processes (Eubank et al. 2006; Barrett et al. 2009), and (ii) show interesting similarities as well
as differences among urban regions (Barrett et al. 2009; Barrett et al. 2007).

3.2 Behavioral Adaptation and Co-evolving Networks

During a pandemic, a public health policy-maker’s primary goal is to control the spread of infectious disease
through the application of interventions, guided by public policy. Among other things, interventions induce
behavioral changes in individuals at the same time as individuals independently change their own behavior
in response to their perception of how the disease is evolving. These changes in turn produce a constantly
changing social network, which thus co-evolves with individual behavioral changes and disease dynamics.
In other words, individual behaviors, disease dynamics and the social contact networks that they generate
interact and co-evolve as individuals try to avoid infection in the context of public health interventions.
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Figure 3: Counts of various kinds of subgraphs in our synthetic Portland social contact network (1.5 million
nodes and 110 million edges) and a randomized version with the same degree distribution: (a) Number of
non-overlapping subgraphs: star, cycle, chain, and clique, (b) Number of non-overlapping subgraphs after
shuffling the edges (keeping the degree distribution invariant), and (c) number of cliques as a function of
age gap – the age difference between oldest and youngest people in the clique.

In health sciences, researchers have developed what one refers to as verbal social and behavioral theories
and discussed the role of these theories in understanding behaviors and its relationship with diseases and
maintaining a healthy life. This includes the Health Belief Model (HBM) proposed by Hochbaum, Rosenstock
and Kegels, models of behavior as it pertains to human health, The Social Cognitive Theory (SCT) proposed
by Bandura and Rotter, and the Social Ecological Model (SET) proposed by McLeroy, Bibeau, Steckler,
Glanz – that emphasizes multiple levels of influence (individual, interpersonal, organizational, community,
and public policy). Developing computational models of individual and collective behavior requires these
verbal theories to be recast in an algorithmic fashion. We argue that just like biologist have recently
argued the concept of executable or procedural biology, there is a need to develop procedural models of
individual, collective and institutional behaviors. These procedural social theories can prove to be useful
in multiple ways. First, as in other sciences, they make the formal specification of the underlying process
explicit removing ambiguity and thus improving our ability to compare and contrast such theories. Second,
they provide an information-theoretic/algorithmic representation of social systems. We have developed
Indemics (see Section 3.3), a computational modeling environment for representing and analyzing complex
behaviors, and its interplay with epidemics and social networks. We use a mutli-theory, multi-network
representation of individual, collective and institutional behaviors, associated social networks and disease
dynamics. The basic framework was outlined in Monge and Contractor in (Monge and Contractor 2003).

3.3 High Performance Computer Models for Disease Modeling

Representing and analyzing disease dynamics over large unstructured and time-varying social contact
networks requires new work in high performance computing as well. In an effort to address the scaling
problem typical in algorithms implemented for high performance computing, our group has developed
three different parallel algorithms and their implementations over the last 10 years: EpiSimdemics, EpiFast,
and Indemics. These differ in the tradeoff they provide between computation speed, model realism
and sophistication, and ease of introducing new behavior and interventions. All three can be executed on
traditional distributed memory clusters of varying sizes. EpiSimdemics, and its predecessor EpiSims (Eubank
et al. 2004), is quite general and flexible, at the cost of decreased computational speed. EpiFast can model
a restricted class of diseases and interventions, but more quickly. Indemics is a extension to EpiFast that
integrates database computing to enable the most general set of interventions that are the easiest to create,
but at the loss of computational speed. A comparison between the simulations can be found in (Bisset
et al. 2011).

EpiSimdemics (Barrett et al. 2008) is an interaction-based, highly resolved modeling and simulation
system for representing and reasoning about contagion diffusion across large (3x108 nodes) networks. It was
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originally intended to model the spread of infectious disease across social contact networks, but has also been
adapted for modeling the spread of worms between bluetooth equipped wireless devices (Channakeshava
et al. 2011), and the movement and interaction of cells in the human immune system (Bisset et al. 2012;
Wendelsdorf et al. 2011). The EpiSimdemics algorithm is based on contagion diffusion across a social
network. The network is represented as a bipartite graph, with people and locations as the nodes, and
edges between them representing a person’s presence at a location. We refer to this as a person-location
graph. This representation of the network is about 50 times sparser than a person-person contact network
where each edge represents two people in contact for some time. It also allows location based interventions
such as school closure to remove some contacts (e.g., contacts at a specific school) and replace them
with contacts at a replacement location (e.g., home). EpiSimdemics can represent virtually all the existing
models of between-host disease propagation. It supports fully dynamic social networks (nodes and edges
can be added and removed in response to disease propagation). It also has the ability to represent a large
collection of behavioral specifications, including the use of pharmaceuticals (e.g., vaccines or anti-virals)
and change of planned activities (e.g., school closure, quarantine). Contagion and behavior are modeled as
coupled probabilistic timed transition systems (PTTS). Written in C++, EpiSimdemics initially used MPI
but has recently been modified to use the Charm++ parallel framework (Kalé and Krishnan 1993), which
has led to improved scaling and execution time (Bisset et al. 2012). It can simulate the entire population of
the United States, a person-location network with 300 million people and 1.5 billion edges. On a 768-core
cluster, 120 days of an epidemic on this scale can be simulated in under 15 minutes.

EpiFast (Bisset et al. 2009) differs from EpiSimdemics in the following ways: (i) The underlying
person-person social network G is explicitly given, whereas EpiSimdemics builds it implicitly; (ii) EpiFast
implements a simple Susceptible Exposed Infectious Recovered (SEIR) disease model for epidemic simu-
lations; (iii) EpiFast runs in bulk-synchronous mode; (iv) Interventions in EpiFast are coded as structural
changes in G (e.g. non-pharmaceutical interventions) or nodes’ properties (e.g. infectivities and vulnerabil-
ities). EpiFast can handle a class of interventions of the form: when predefined global conditions g1,g2, . . .
and predefined local conditions `1, `2, . . . are satisfied for node v, change v’s properties and/or labels of a
predefined subset of edges incident on v.

EpiFast is implemented in C++, using MPI for communication. It is similar to EpiSimdemics in that
it can run on any distributed memory system, so long as the total of all available memory can hold the
whole network and modeling parameters. The computing architecture comprises of one master processing
element (PE) and multiple worker PEs. The system runs in a bulk synchronous parallel mode. The master
PE passes messages and data and for coordinating synchronizations. The network is partitioned online and
stored on worker PE such that each node has a unique “owner” PE and all edges incident on this node
“reside” together on the same PE. A worker PE can distinguish “local” nodes and “foreign” nodes and the
master PE knows the “owner” PE of every node. This way, all data about foreign nodes are relayed by the
master PE. For the problems we have considered to date, the master PE does not appear to be a bottleneck.

In each time step of a simulation, computations consist of either applying a set of interventions or
moving time forward and computing the disease dynamics. In case of interventions, the master PE and
worker PE collaborate to evaluate global conditions. Then each worker PE evaluates local conditions for
each node. Corresponding changes are applied to nodes that satisfy all conditions and to edges incident
on them. In order to compute disease dynamics, each worker PE identifies its infectious nodes. For each
such node, a PE computes adjacent nodes that it infects and sends messages about infected foreign nodes
to their owner PE via the master PE. This information is communicated to the master PE that updates
the state of each node based on the information received from the worker PEs. This information is then
relayed back to the appropriate worker PEs completing one global step.

Indemics (Interactive Epidemic Simulation) is a data intensive, interactive, high performance modeling
environment for pandemic planning, situation assessment, and course-of-action analysis. Indemics supports
online interaction between users and the computational model. The user can stop the simulation at a specific
time point or specify a stopping criteria. When the simulation stops, a user can assess the epidemic state
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by appropriate queries. A typical query captures a set of individuals with specified demographic attributes
and disease state within a given spatial region. Based on this, the user can then formulate intervention
strategies and continue to move the simulation forward. Simulations can also be rewinded back in time
to a specified time point. The start-stop and rewind features for HPC-simulations require that we hold
appropriate information about the system state in memory. Another unique feature of Indemics is the use
of databases and relational query languages to specify interventions and state assessment. In Indemics
the disease propagation is separated from state assessment and intervention computation. This separation
facilitates scaling, use of databases to actively guide the disease dynamics and improves human productivity
by allowing analysts to use powerful query languages to specify interventions.

4 ANALYTICS AND SCALABLE MIDDLEWARE

The epidemiological modeling tools described above are capable of providing very detailed information
on spatio-temporal disease dynamics. The size and scale of the data and the expertise required to use
the simulations demand a user friendly environment that provides an easy way to set up experiments and
analyze the results.

We have built a tool called the Interface to Synthetic Information Systems (ISIS) that achieves the
first goal. ISIS allows a user to set up detailed factorial experiments. Using a simple interface to an
underlying digital library, a user can choose from among many pre-constructed instances: (i) a social contact

Figure 4: ISIS User interface including Indemics.

We have built a tool called the Inter-
face to Synthetic Information Systems
(ISIS) that achieves the first goal. ISIS
allows a user to set up detailed facto-
rial experiments. Using a simple inter-
face to an underlying digital library, a
user can choose from among many pre-
constructed instances: (i) a social con-
tact network; (ii) a within-host disease
progression model; and (iii) a set of in-
terventions. Each intervention requires
additional details such as compliance
level, sub-populations to which the in-
terventions are applied and interven-
tion triggers. An experiment consists
of sweeping one or more parameters
across a user-specified range of values.
After setting up the experiment, the user
is provided access to the results of the
simulations. A set of basic analyses are
performed automatically and the results
are displayed. See Figures 4 and 5 for an illustration of ISIS. The standard plots and epidemic curves
provide very detailed information about the epidemic. Additional information such as the spatio-temporal
dynamics and disease dendrogram (how the disease moved over the social network) is also available. A
key aspect of ISIS is its simplicity – we can train public health analysts to make effective use of the system
in about three hours. Paradoxically, by hiding the computational models from the end user, ISIS makes
them much more accessible.

Additional analysis is also possible. Our colleagues at the University of Utah have partnered with us
to develop an elegant visual analytics tool for epidemiological simulation. Epinome, shown in Figure 6, is
an integrated dynamic visual analytic workbench for epidemic investigation in which a user can explore,
compare, and analyze geo-temporal data from simulated infectious disease outbreaks (Livnat et al. 2010;
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Figure 5: Example standard plot (left) and simulated epidemic curves (right). The standard plots can
capture interaction effects as well display ranking of interventions.

Livnat et al. 2012). The design of this tool focuses on the interaction between public health practitioners
and the surveillance system and on the human factors affecting information comprehension and decision-
making. Epinome features a dynamic display in which various data views can be laid out dynamically to
form a coordinated multiple views environment (Livnat et al. 2012). As tasks and focus change, a user
can drag additional tools into the workspace, rearrange them interactively, or remove them all together.
Parallel workspaces are also supported, each with its own collection of views centering on different subsets
of the data. The use of multiple workspaces allows users to explore multiple simulation runs in parallel.
Filtering is achieved through an intuitive filter-by-example paradigm in which a user directly drags a data
value (either text or graphics) from one view to another to create and apply a data filter on the receiving
view.

Simfrastructure is a service oriented middleware system (see Figure 1) that serves as a multiplexer
for four types of components in CIEPI: user interfaces, digital libraries, models and simulations, and high
performance computing resources. It is designed to allow any component to easily access the services
provided by any other component without needing to know about the existence of any particular service
provider, through the use of an asynchronous Message Board. The Simfrastructure Resource Broker matches
service requests to appropriate service providers and computing resources, taking into account required
timeliness and accuracy, as well as security, cost and other factors.

5 CASE STUDIES AND APPLICATIONS TO PUBLIC POLICY

Using Simdemics for Supporting Federal Pandemic Influenza Planning. In 2006, at the request of federal
agencies, as members of the NIH Models of Infectious Disease Agent Study (MIDAS) project, we
participated in a study to support federal pandemic plans. Three teams in the MIDAS program analyzed
combinations of strategies for responding to influenza. These strategies included both pharmaceutical and
non-pharmaceutical interventions (NPI) targeted at those parts of the population where they might most
effectively control the spread of disease. Examples of NPI include: closing schools or reducing contacts
at work and in the community. The goal of an NPI is to change human social behaviors so as to mitigate
an outbreak. The MIDAS groups modeled the effectiveness of various combinations of these measures,
implemented at various times during the outbreak, and with varying compliance rates.

Results of the MIDAS analyses were reviewed in a Letter Report by the Institute of Medicine, Modeling
Community Containment for Pandemic Influenza (Committee on Modeling Community Containment for
Pandemic Influenza and Institute of Medicine 2006) and have been subsequently published in (Halloran et al.
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2008). The report concludes, among other things, that the evidence suggests a role for community restrictions
in reducing pandemic influenza virus transmission. The evidence does not allow for differentiating possible
effects of specific types of community restrictions, nor does it allow differentiation between voluntary
versus mandatory community restrictions. The committee further identified “intervention fatigue as a factor
that could undermine the potential effectiveness of any of these community restriction measures.” Note
that community restrictions (voluntary and mandatory) involve a behavioral change that in turn implies
structural changes in the underlying social contact network. Network-based epidemiological modeling
played an important role in the case study.

Figure 6: Screen shot of the Epinome tool.

Using Simdemics for Pandemic Plan-
ning: Optimal Resource Allocation. In
a recent NIH sponsored study during
the summer of 2008, we modeled dif-
ferent anti-viral drug distribution strate-
gies to mitigate pandemic flu. Several
strategies were considered, including
prophylactic home stockpiling, public
distribution, market based distribution,
and income based distribution. The re-
sults showed that the market based al-
location plan was less effective in re-
ducing incidence and the epidemic du-
ration than the public allocation (treat-
ment based) strategy. This difference
was explained by the fact that the mar-
ket (i) under-provides public goods that
have positive social externalities; (ii)
often leads to inequitable deployment;
(iii) favors the affluent and reinforces

distrust among the non-affluent; and (iv) leads, via income stratification and assortative mixing, to spatial
clustering of the antiviral recipients. It was clear that market based allocation would provide the medkits
to those who do not necessarily need them and hoarding would cause the price to rise enough to make
it unaffordable to the really sick and poor. Defensive behavior from the affluent would concentrate the
medkits in small spatial clusters which in turn would allow the epidemic to spread in less affluent areas.
More details of this study can be found in (Chen et al. 2010).

Federal Interagency Support during the Emergence of H1N1 Influenza during April and May, 2009. This
effort was in direct response to the initial reports of the emergence of the H1N1 Influenza virus that
eventually caused a global pandemic. At first, infections were confirmed in Mexico, California, and Texas
and, a few days later, New York. The rapid spread combined with initial overestimates of its mortality rate
raised serious concerns of a repeat of the 1918 influenza pandemic.

Initial reports about the disease characteristics were unreliable, with wide variations placed on important
parameters like proportion of symptomatic individuals and duration of the infectious period. Having
developed a web-based front-end to our CIEPI, called DIDACTIC, for just this purpose, we were able
to quickly run a series of studies to learn the likely impact of variations in these parameters on the US
population. A report was quickly drafted about the impact of disease characteristics on the size and shape
of the expected epidemic curve. Several variants of disease models were added to the DIDACTIC tool.

As H1N1 Influenza continued to spread in the US, the Department of Health and Human Services
(DHHS) teamed up with the Defense Threat Reduction Agency (DTRA) to place the DIDACTIC tool
in the hands of US government analysts to provide day-to-day modeling results. At a daily interagency
meeting at DHHS, led by the Office of the Assistant Secretary for Preparedness and Response (ASPR) and
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the Biomedical Advanced Research and Development Authority (BARDA), analysts and policy-makers
discussed overnight projections of the pandemic and possible interventions. These projections were generated
using DIDACTIC as one of just two tools that were available and capable of providing detailed forecasts
and analyses at these timescales. This integration inside the 24-hour decision cycle running the federal
government’s response to this emerging crisis would not have been possible without the development of
CIEPI. The analysts at DHHS were able to perform course-of-action analyses to estimate the impact of
closing schools and shutting down workplaces.

DIDACTIC, in conjunction with other modeling tools, was used to study a number of important
policy questions, including: (i) the role of anti-virals as prophylactic drugs to reduce the severity of the
pandemic and delay its peak; (ii) the effect of school closures in slowing the spread; and (iii) the role
of travel restrictions, especially international travel restrictions. Officials were able to use modeling tools
such as DIDACTIC themselves to evaluate these scenarios. This experience demonstrates the importance
and feasibility of placing sophisticated modeling tools in the hands of public health decision makers and
highlights the role that highly detailed modeling can play during a response to an emerging crisis.

6 CONCLUDING REMARKS

We have described CIEPI, an integrated cyberinfrastructure that allows public health analysts unprecedented
access to high performance computational models and analytics to support policy making. CIEPI has been
used for planning as well as during the response phase of recent epidemic outbreaks. A number of issues
were not discussed due to space limitations; we mention a few important ones here. First, the modeling
methodology described here can in fact be used to support event forecasting. Second, we did not discuss
a number of interesting computational issues surrounding control and optimization problems arising in
networked epidemiology; see (Eubank et al. 2006). Finally, modeling environments such as these are
applicable to understanding zoonotic diseases (Alexander et al. 2013) as well as vector borne diseases such
as Cholera and Dengue.
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