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ABSTRACT

Distribution-free bootstrapping of the replicated responses of a given discrete-event simulation model gives
bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or
monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with as output either the
mean or the 90% quantile of the transient-state waiting times, and as input the traffic rate. In this example,
monotonic bootstrapped Kriging enables better sensitivity analysis than classic Kriging; i.e., bootstrapping
gives lower MSE and confidence intervals with higher coverage and the same length. To illustrate convex
Kriging, we start with simulation-optimization of an (s, S) inventory model, but we next switch to a Monte
Carlo experiment with a second-order polynomial inspired by this inventory simulation. We could not find
truly convex Kriging metamodels, either classic or bootstrapped; nevertheless, our bootstrapped “nearly
convex” Kriging does give a confidence interval for the optimal input combination.

1 INTRODUCTION

Many realistic simulation models have known characteristics such as convexity and monotonicity. For
example, simulation models of supply chains consist of a sequence of submodels (building blocks, modules)
for queues and inventories; higher traffic rates monotonically increase mean waiting time, and reorder levels
and order quantities are often assumed to have a unique optimal combination because the cost function is
convex (instead of having multiple local optima). However, in their classic textbook on convex optimization
Boyd and Vandenberghe (2004) study problems with explicit functions, whereas simulation problems have
implicit functions that are determined by the underlying simulation model. In this paper, we use a metamodel
to approximate such an implicit function (also see Nesterov 2003, pp. 171-172).

Metamodels (also called response surfaces, emulators, etc.) serve sensitivity analysis of the simulation
models and optimization of the simulated systems. There are several types of metamodels, but the most
popular types are linear regression analysis and Kriging (or Gaussian process) models; many references to
various types of metamodels are given by Kleijnen 2008, p. 8. Well-known types of monotonic regression
models are isotonic regression and “rank” regression; see Kleijnen 2008, pp. 98, 162. We, however, focus
on Kriging. Monotonic Kriging metamodels are also examined by Kleijnen and van Beers (2011); we
summarize and update that publication, and extend it to convexity.

To estimate the Kriging metamodel, we simulate (say) n combinations (or points) xi of the k ≥ 1
simulation inputs; we replicate these combinations mi times (i = 1, ..., n) We assume that the simulation
model is expensive; i.e., the simulation requires much computer time to obtain the outputswi;r (r = 1, ...,mi),
so the set of input/output (I/O) data may be so small that “classic” Kriging does not preserve the assumed
characteristic, and shows wiggling (erratic) behavior. We therefore derive bootstrapped Kriging that is
meant to avoid this wiggling. Bootstrapping is discussed in the classic textbook by Efron and Tibshirani
(1993); additional recent references are given by Kleijnen 2008, pp. 81.
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More specifically, classic Kriging is an exact interpolator; i.e., the Kriging predictions y(xi) = yi equal
the simulation outputs w(xi) = wi for the n “old” (actually simulated) input combinations xi. This Kriging
is often applied in deterministic simulation, which is popular in engineering. In stochastic simulation,
however, this interpolation property is not desirable, because this simulation gives different outputs at
the same xi whenever the pseudo-random number (PRN) seed changes. The Kriging metamodel may
be slightly changed such that it does not interpolate the n averaged outputs wi =

∑mi
r=1wi;r/mi; see

Ankenman, Nelson, and Staum (2010). We use the free MATLAB Kriging toolbox called DACE, which
is well documented by Lophaven, Nielsen, and Sondergaard (2002); DACE is often applied in practice
(alternative software is mentioned in Section 5).

To obtain Kriging metamodels that are either convex or monotonic, we apply distribution-free bootstrap-
ping to the old simulation I/O data; i.e., we resample—with replacement—the mi replicated simulation
outputs wi;r. This bootstrapping is computationally inexpensive compared with the computer time re-
quired by expensive simulation. These bootstrapped Kriging metamodels imply sensitivity analysis and
optimization results that are understood and accepted by the users so they have more confidence in the
underlying simulation model as part of the decision support system (DSS). We investigate whether our
monotonic Kriging gives “better” predictions than classic Kriging does; i.e., we compare the mean squared
error (MSE)—which is the standard criterion in Kriging—and the coverage and width of the confidence
intervals (CIs) for the Kriging predictions. We also examine convex Kriging metamodels, expecting that
these metamodels give better estimates of the optimal input combination.

To illustrate our method and estimate its performance, we use the two submodels that are most often
used in simulation; namely, the single-server (GI/G/1) queuing model and the (s, S) inventory model;
see the various textbooks on simulation including Kroese, Taimre, and Botev 2011, pp. 287-292. We use
Kroese, Taimre, and Botev (2011) because we prefer MATLAB code and this book has a web page with
MATLAB code for these models; namely, Kroese, D. P. (2012).

Our main conclusions—for simulations that are so expensive that sample sizes are so small that classic
Kriging gives wiggling behavior—will be: (i) Bootstrapped monotonic Kriging gives smaller estimated
MSE, albeit not significantly smaller; it also gives CIs with higher coverage and acceptable length; (ii)
bootstrapped convex Kriging gives confidence intervals for the values of the optimal input combination.

Note: If there would be no replicates (mi = 1) (as in deterministic simulation), then our distribution-
free bootstrapping would not apply and we would resort to parametric bootstrapping assuming a Gaussian
process with parameters estimated from the simulation I/O data.

The remainder of our paper is organized as follows. Section 2 summarizes classic Kriging, and details
our bootstrapped Kriging preserving the assumed characteristic (convexity or monotonicity). Section 3
details monotonic bootstrapped Kriging illustrated through the M/M/1 simulation model. Section 4 details
convex bootstrapped Kriging illustrated through an (s, S) simulation model and an artificial examples
inspired by this inventory simulation. Section 5 presents conclusions and topics for further research.

2 BOOTSTRAPPED KRIGING WITH PRESERVED CHARACTERISTICS

First we summarize the basics of classic Kriging as follows. Kriging uses the n×nmatrix Γ = [cov(wi, wi′)]
with i, i′ = 1, . . . , n and the n-dimensional vector γ =[cov(wi, w0)] where wi denotes the output of xi (an
old input combination already simulated), w0 denotes the output of x0, the combination to be predicted—
which may be either new or old. These Γ and γ often use the Gaussian correlation function R(θ,xi,xi′) =
Πk
j=1 exp[−θjh2j ] with hj =

∣∣xi;j − xi′;j∣∣ and θj measuring the importance of input j (Kriging in simulation
implies that each of the k inputs is measured on a quantitative scale such that the Euclidean distance h
is defined). To estimate the unknown Kriging parameters, Kriging usually applies maximum likelihood
estimation (MLE); the resulting MLE estimators are denoted by a hat (e.g., γ̂, Γ̂, µ̂, θ̂j). The predictor for
point x0 is ̂̂

y(x0) = µ̂+ γ̂T Γ̂−1(w−µ̂1) (1)
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with µ̂ = (1T Γ̂−11)−11T Γ̂−1w and w = (w1, . . . , wn)T ; we use a “double hat” ̂̂y to emphasize that this
predictor uses parameters estimated through MLE (obviously, this predictor is nonlinear).

The predictor (1) implies the following gradient with respect to x at the point x0:

∇ ̂̂
y(x0) = JTγ Γ̂−1(w−µ̂1) (2)

where Jγ is the Jacobian of γ̂ so Jγ =∇ ̂γ(x0). This gradient is provided by DACE; see Lophaven, Nielsen,
and Sondergaard 2002, pp. 16-18 (and also Exercise 5.5 in Kleijnen 2008, p. 143).

Classic Kriging also gives CIs; see Lophaven, Nielsen, and Sondergaard 2002, p. 4 and Santner,
Williams, and Notz 2003, p. 96. These CIs assume normality and uses σ̂2ŷ which estimates the variance
of the classic predictor ŷ ignoring the random character of the Kriging weights resulting from estimating
the Kriging parameters.

Most designs for Kriging in simulation use Latin Hypercube Sampling (LHS), which implies that each
of the k inputs has n distinct values that are either exactly or approximately equally spaced; see Kleijnen
2008, pp. 126-130.

Next we summarize our bootstrapped Kriging. Distribution-free bootstrapping assumes that all n old
points are replicated “enough” times: mi � 2; e.g. mi = 5 in the M/M/1 example in Figure 1 (further
discussed below). This bootstrap gives the bootstrapped observations w∗i;r with r = 1, ..., mi; bootstrapping
uses the same sample size mi as the original simulation. These mi bootstrapped simulation outputs give
the bootstrapped average w∗i . At different points xi, the simulation outputs wi;r have different means and
variances so they are not independently and identically distributed (IID). So the vector of bootstrapped
average simulation outputs is w∗ = (w∗i , . . . , w

∗
n)T .

We repeat this bootstrapping (say) B times; B is called the “bootstrap sample size”. A typical choice
is B = 100—but after observing the results for B bootstrap samples, we might select more samples if

necessary; e.g., we double B. So we obtain B bootstrapped Kriging predictors ̂̂y∗b with b = 1, . . . , B;

this ̂̂y∗b uses the MLE computed from (X,w∗b ). From these B bootstrapped predictors we accept the
(say) Ba (≤ B) predictors that satisfy the required characteristic (convexity or monotonicity) and reject
the remaining predictors; we select Ba such that these accepted predictors give reasonable CIs. Our Ba
accepted bootstrapped Kriging predictors ̂̂y∗ba (ba = 1, ..., Ba) are not exact interpolators of wi (these ̂̂y∗ba
are exact interpolators of w∗ba because we compute these predictors through DACE).

Altogether our bootstrapped convex or monotonic Kriging procedure runs as follows.

1. Read the simulation I/O data (X,wi) with wi = (wi;1, . . . , wi;mi), the bootstrap sample size B,
and the number of predictors to be accepted Ba.

2. Initialize the accepted number of bootstrapped Kriging models ba = 0; the bootstrap sample number
b = 1.

3. Initialize the simulation input combination i = 1; the replicate number r = 1.
4. Resample—with replacement—a replicate number r∗ from U(1,mi), which denotes the uniform

distribution defined on the integers 1, . . . ,mi.
5. Replace the “original” output wi;r by the bootstrap output w∗i;r = wi;r∗.
6. If r < mi then r = r + 1 and return to Step 4 else proceed to the next step.
7. If i < n then i = i+ 1 and return to Step 4; else proceed to the next step.

8. Compute the interpolating bootstrapped Kriging predictor ̂̂y∗ (short-hand notation y∗) from the
bootstrapped I/O data set (X,w∗) where X denotes the n× k matrix with the n old combinations
of the k simulation inputs and w∗ denotes the n-dimensional vector with the bootstrap averages
wi
∗ =

∑mi
r=1w

∗
i;r/mi and i = 1, . . . , n (so y∗i = w∗i ); compute this predictor for all old points and

selected new points.

9. If ̂̂y∗i (the bootstrapped predictor of Step 8) is accepted, then ba = ba + 1.
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10. If b < B then b = b+ 1; return to Step 3; else proceed to the next step.
11. If ba < Ba then B = 2B; return to Step 3; else proceed to the next step.
12. Compute point estimates and CIs from the Ba accepted Kriging metamodels.

3 MONOTONICITY: M/M/1 QUEUE SIMULATION

There are several variants of the GI/G/1 model. In academia, the most popular variant is the M/M/1
model; i.e., the interarrival distribution GI becomes exponential with rate λ (or mean 1/λ) denoted as
Exp(λ), and the service distribution becomes Exp(µ) (so the model becomes Markovian). Implicitly, the
queuing discipline is first-in-first-out (FIFO), the waiting room has infinite capacity, customers do neither
balk nor renege, etc. The input is the traffic rate x = ρ = λ/µ, which is assumed to be smaller than 1 so
that the steady state can be reached. We study two outputs: (i) the steady-state mean waiting time µw; (ii)
the steady-state 90% quantile w.90 defined by P (wt ≤ w.90|t→∞) = 0.9. The classic estimator of µw is
the time-series average w =

∑T
t=1wt/T ; the estimator of w.90 is ŵ.90 = w(d.90T e) (the subscript () denotes

order statistics). To verify the simulation results, we use Kleijnen and van Beers (2011)’s analytical results:
w.90 = − ln (0.1/x) /µ(1− x) and µw = x/[µ(1− x)].

To estimate the sampling variability of w and ŵ.90 , we use m ≥ 2 replicates (each of length T );
replicate r (r = 1, ..., m) gives wr and ŵ.9;r. Kleijnen and van Beers (2011) find that wr and ŵ.9;r are not
normally distributed if the simulation run is as short as T = 1000, even for the relatively low traffic rate
0.5.

We assume that n and mi are so small that the fitted Kriging metamodel may be non-monotonic;
Kleijnen and van Beers (2011) give the example in Figure 1. We assume that we do obtain so many
replicates that the n average simulation outputs are increasing monotonically; see again Figure 1. This
assumption is realistic if otherwise the users consider the simulation model to be wrong (not valid if an
average simulated waiting time is higher for a lower traffic rate). Technically, monotonic bootstrap Kriging
has a weaker requirement; namely, miniwi < maxiwi+1 with ρi > ρi−1; see Kleijnen and van Beers
(2011).

The Ba (accepted) monotonically increasing bootstrapped Kriging metamodels imply that the gradients
at the n old points are positive:

dy∗i;ba
dxi

> 0 (i = 1, . . . , n) (ba = 1, . . . , Ba). (3)

Wiggling may also occur at new points, so we check (say) 100 new points spread uniformly across the
experimental range.

From theBa accepted predictors we compute predictions y∗u for v new input combinations xu (u = 1, ...,
v), which form a test set; the same Kriging metamodel is used to predict the outputs for the v different test
points. Using theseBa predictions for point u, our point estimate is the sample median y∗u;(d0.50Bae). Besides
this point estimate, we also compute the following simple 90% CI; namely, (y∗u;(b0.05Bac), y

∗
u;(d0.95Bae))

(more complicated CIs are discussed in Efron and Tibshirani (1993)). If this interval turns out to be
too wide, then we increase Ba by increasing the bootstrap sample size B; e.g., in our M/M/1 example
we start with B = 100 but augment B with another 100 until either Ba ≥ 100 or (to avoid excessive
computational time) B = 1000. It turns out that only in 5 of the 100 “macro-replicate” (which differ only
in their PRN seeds), B = 100 gives only Ba < 100 monotonic Kriging models, so another 100 bootstrap
samples are generated. These Ba bootstrap samples enable the estimation of both the coverage and the
width of the CIs for bootstrapped and classic Kriging—averaged over all ν test points. Actually, v = 25
new points are selected—through LHS—such that no extrapolation is needed (Kriging is believed to give
a poor extrapolator).
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Figure 1: Classic Kriging and monotonic bootstrapped Kriging, and true I/O function for M/M/1 with n =
5, m = 5, T =1000.
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To estimate whether the bootstrapped median point predictor for the true output (say) ζ is better than
the classic Kriging predictor, the Integrated MSE (IMSE) is estimated:

̂IMSE∗ =

∑v
u=1(y

∗
u;(d0.50Bae) − ζu)2

v
; ̂IMSE =

∑v
u=1(yu − ζu)2

v
. (4)

Estimating the coverage of the bootstrapped CIs uses the indicator function I∗u = 1 if y∗u;(b0.05Bac) < ζu <

y∗u;(d0.95Bae); else I∗ = 0. The classic Kriging uses the classic estimated predictor variance σ̂2ŷu (ignoring

the randomness of the estimated Kriging parameters) so Iu = 1 if ̂̂yu − 1.64σ̂ŷu < ζu < ̂̂yu + 1.64σ̂ŷu ;
else I = 0. This formula shows that the classic CI is symmetric around its point estimate and may include
negative values—even if negative waiting times are impossible. Analogously to the IMSE defined in (4),
these indicator functions are averaged over all v test points: I∗ =

∑v
u=1 I

∗
u/v; I =

∑v
u=1 Iu/v. Let I∗

and I in macro-replicate l be denoted by I∗l and Il with l = 1, ..., L; e.g., L = 100. Bootstrapping then
gives better coverage if I∗ =

∑
l I
∗
l /L is closer to the nominal value 0.90 than I =

∑
l Il/L.

These L macro-replicates also give a 90% CI for the IMSE in classic Kriging; namely, ̂IMSE ±
1.64s( ̂IMSE)/L1/2 where ̂IMSE=

∑L
l=1

̂IMSEl/L and s( ̂IMSE) = [
∑L

l=1(
̂IMSEl− ̂IMSE)2/(L−

1)]1/2. For bootstrapped Kriging, analogous formulas apply. For the coverage and the length of the CI
also analogous formulas apply.

Kleijnen and van Beers (2011) give the estimated IMSE for the average and the 90% quantile.
Bootstrapping gives smaller estimated IMSE, albeit not significantly smaller (as expected, the 90% quantile
has larger IMSEs than the mean has). Bootstrapping gives significantly higher estimated coverages for
the mean and the quantile. Unfortunately, all estimated coverages are significantly lower than the nominal
(prescribed) value 90%. Bootstrapping gives average widths that are not significantly shorter. The variability
of the width is smaller for bootstrapped Kriging. Altogether, bootstrapping gives better coverage without
lengthening the CI.

To further examine this low coverage, Kleijnen and van Beers (2011) increases n from 5 to 10. This
change increases the estimated coverages for both classic and monotonic Kriging; this improved coverage
may be explained by the better fit of the Kriging model resulting from an “adequate” sample size; also see
Loeppky, Sacks, and Welch (2009), suggesting that a valid Kriging metamodel requires n = 10k (which
in the M/M/1 example implies n = 10). These coverages are close to the nominal 90% for monotonic
bootstrapped Kriging, whereas classic Kriging still gives coverages far below the desired nominal value.
This improved coverage does not require significantly longer CIs.

4 CONVEXITY: (S, S) INVENTORY SIMULATION

A general textbook on convex optimization is Boyd and Vandenberghe (2004). We focus on (s, S) inventory
models. There are many variants of this (s, S) model, but we wish to select a model with a convex I/O
function. We therefore exclude models with a service-rate constraint; such a constraint would imply two
outputs—namely, the service rate and the sum of ordering cost and holding cost. More specifically, we
select Kroese, Taimre, and Botev (2011)’s model:

C(s, S) = c1S + c2fneg + c3ford (5)

with total costs C(s, S), holding cost c1S, backorder cost c2fneg where fneg denotes the fraction of time
with negative net-inventory, and ordering cost c3ford where ford denotes the frequency of orders; obviously,
s ≥ 0 and S ≥ s. Kroese, Taimre, and Botev (2011) select the parameter values c1 = 5, c2 = 500, and
c3 = 100. Furthermore, for the distributions of the interarrival time, demand size, and lead time they
select Exp(1/5), U(0, 10), and U(5, 10). They run the simulation during T = 1000 days. Through the
cross-entropy method they find the estimated optimum (ŝopt, Ŝopt) = (15.56, 19.42) with estimated minimum
cost Ĉopt = 149.6.
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Actually, the crucial question is whether the specified (s, S) inventory simulation model implies a
convex I/O function (the inputs s and S—besides the distributions of the interarrival time, demand size,
and lead time—implicitly determine the probability functions of the random variables in (5); namely, fneg
and ford). To answer this question, we proceed as follows.

Like Kroese, Taimre, and Botev (2011), we fix the simulation run length at T = 1000. We select an
experimental area that ranges from the minimum to the maximum of the reorder level s that we think to
be reasonable—given the demand and lead time; i.e., we select 0 ≤ s ≤ 100. Analogously, we select 0 ≤
Q ≤ 100 with Q = S − s. (Originally, we selected a much smaller area centered around Kroese, Taimre,
and Botev (2011)’s optimum solution, but this area implied a low signal-noise ratio so it was hard to fit a
Kriging metamodel.) Within this area (0 ≤ s,Q ≤ 100) we select n = 20 combinations of (s,Q), because
of Loeppky, Sacks, and Welch (2009)’s rule-of-thumb (n = 10k). To select the specific n combinations,
we use popular LHS. To obtain reliable simulation responses, we first obtained a pilot-sample of m =
10 replicates for each of these n combinations, and found that the signal-noise ratio was rather low; so
we decide to obtain m = 5000 replicates per combination. This gives the average simulated output per
combination Ci =

∑m
r=1Ci;r/m and its standard error σ̂i = {

∑m
r=1[Ci;r −Ci)]2/[(mi − 1)mi]}1/2 so the

signal-noise ratio is Ci/σ̂i (i = 1,..., n). This simulation experiment gives the I/O data of Table 1; the last
column will be explained after (6) (this table does not display the individual outputs Ci;r, which we shall
bootstrap to find C∗i;r). This table and its plot (which we do not display) suggest that the simulation’s I/O
function is convex in the subarea with relatively low s and Q (which includes Kroese, Taimre, and Botev
(2011)’s optimum); our formal analysis proceeds as follows. The second-order conditions (see Boyd and

Table 1: I/O data of (s, S) simulation with 0 ≤ s ≤ 100 and 0 ≤ Q ≤ 100 (Q = S − s).

i si Qi Ci σi PSD?

1 60.7090 94.3850 776.4399 0.0872 NO
2 65.7360 6.2017 370.3396 0.8975 NO
3 28.1440 35.1720 319.8780 1.2138 YES
4 31.1940 57.9680 447.6184 0.6270 NO
5 54.9630 77.5910 663.9453 0.1090 NO
6 91.8080 13.2570 531.2722 0.4961 NO
7 1.4142 40.1580 282.4015 8.8624 YES
8 17.5980 82.1300 502.6232 2.4031 NO
9 42.2870 70.2050 563.7797 0.1775 YES

10 87.1490 46.7590 671.4780 0.1668 NO
11 12.1530 67.2550 407.8239 4.4803 NO
12 79.9920 96.8710 885.2565 0.0859 NO
13 74.3760 31.3110 531.2612 0.2362 NO
14 35.5270 26.0240 311.2771 0.6009 YES
15 57.1530 64.7110 610.7371 0.1239 YES
16 96.3610 86.7030 916.3779 0.0940 NO
17 20.1100 51.2040 361.1883 2.4102 YES
18 7.3929 16.6630 195.6253 13.4523 YES
19 49.9980 20.8630 358.3725 0.3535 YES
20 81.0160 2.1276 431.7596 1.2542 NO

Vandenberghe 2004, p. 71) imply that if a convex function (say) f is twice differentiable, then this f has
a Hessian that is positive semi-definite (PSD). To verify whether the inventory simulation has indeed a

convex I/O function E[C(s, S)] with C(s, S) defined in (5), we fit a Kriging metamodel ̂̂C (see (1)) to the

I/O data in Table 1; i.e., we apply DACE to the averages Ci. This Kriging model implies estimates ∂ ̂̂C/∂s
and ∂ ̂̂C/∂Q at a specific point (say) (s0, S0); see again (2). This metamodel is less precise at interpolated
new points than it is at simulated old points; nevertheless, we compute not only the predicted first-order
derivatives at the n old points, but also at 10000 new points on a 100×100 grid (in their M/M/1 simulation
Kleijnen and van Beers (2011) also estimate derivatives at new points). These first-order derivatives imply
the following estimates of the second-order derivatives at the point (s0, Q0), given the old points i (i =1,
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..., n):

κs;i =
∂2γ̂i
∂s2

∣∣∣∣
s0;Q0

= [−2θ̂s + 4θ̂s
2
(s0 − si)2] exp[−θ̂s(s0 − si)2 − θ̂Q(Q0 −Qi)2]

κs;Q;i =
∂2γ̂i
∂s∂Q

∣∣∣∣
s0;Q0

= [4θ̂sθ̂Q(s0 − si)(Q0 −Qi)2] exp[−θ̂s(s0 − si)2 − θ̂Q(Q0 −Qi)2]

κQ;i =
∂2γ̂i
∂Q2

∣∣∣∣
s0;Q0

= [−2θ̂Q + 4θ̂Q
2
(Q0 −Qi)2] exp[−θ̂s(s0 − si)2 − θ̂Q(Q0 −Qi)2]

hs = κTs Γ̂−1(w−µ̂1) hs;Q = κTs;QΓ̂−1(w−µ̂1) hQ = κTQΓ̂−1(w−µ̂1) (6)

so the Hessian is the symmetric 2× 2 matrix with the off-diagonal element ∂2 ̂̂C/∂s∂Q at (s0, Q0).
Unfortunately, we find that only six of the n = 20 old points give PSD Hessians; namely, those point

that satisfy the subarea 0 ≤ s0 ≤ 55 and 0 ≤ Q0 ≤ 49; see the last column of Table 1. We offer two
explanations:

1. E(C) = f(s,Q) (the true I/O function in Kroese, Taimre, and Botev (2011)’s simulation) is not
convex. The conditions for a convex function in (s, S) systems are derived by Sahin (1982); e.g., lead
times are constant and the demand distribution must belong to certain families (e.g. exponential).
However, when in Kroese, Taimre, and Botev (2011)’s simulation we make the lead times constant
and the demand distribution exponential, we still find points that are not PSD (we do not display
these results).

2. Even if E(C) satisfies the convexity conditions, we estimate its convexity through a Kriging
metamodel that is not convex (but wiggles). Wiggling Kriging is known to result if the Kriging
ignores the randomness (internal noise, nugget) of the simulation output; see Figure 2 in Yin, Ng,
and Ng (2011). “Stochastic” Kriging accounts for this randomness, so Kriging is no longer an exact
interpolator—which may eliminate wiggling. We use DACE, as we do for monotonic Kriging.
Moreover, Kriging in deterministic simulation is known to be a bad extrapolator; the points in Table
1 that do not give PSD Hessians are near the border of the experimental area.

Next we run a new experiment that is limited to the subarea 0 ≤ s0 ≤ 55 and 0 ≤ Q0 ≤ 49. Fitting
a Kriging metamodel gives the plot in Figure 2. Unfortunately, we again find that only ten (was six) of
the twenty “old” points in this subarea give PSD Hessians. We also estimate the Hessians at 55× 49 new
points on a grid. Altogether we find PSD Hessians for the sub-subarea 0 ≤ s0 ≤ 36 and 0 ≤ Q0 ≤ 21.

Given these problematic results for the inventory simulation, we decide to examine our bootstrapped
convex Kriging through an artificial (Monte Carlo) example. This example is inspired by this simulation;
i.e., to the I/O data for the subarea 0 ≤ s0 ≤ 55 and 0 ≤ Q0 ≤ 49 we fit a second-order polynomial in x1
and x2 instead of s and Q (= S - s). For this fitting we use ordinary least squares (OLS). We treat these
OLS estimates as the true coefficients, so the artificial example becomes:

E[y(x1, x2)] = 332.794− 7.427x1 − 4.922x2 + 0.127x21 + 0.093x22 + 0.130x1x2. (7)

It is easy to check that this function has a PSD Hessian so it is convex. Its optimal input combination is
xopt = (x1;opt, x2;opt) = (24.5, 9.2), which gives the optimal output yopt = 218.7.

Next we fit a Kriging metamodel to the same twenty input combinations inside the subarea 0 ≤ s0 ≤
55 and 0 ≤ Q0 ≤ 49 selected through LHS (not displayed); i.e., we use x1;i = si and x2;i = Si (i = 1, ...,
20) but we replace Ci by E[y(x1;i, x2;i)] = E(yi) following from (7). This Kriging metamodel turns out
to give PSD Hessians at sixteen of the twenty old points.

Subsequently, we make this artificial example more realistic by making it give random outputs; i.e., to
(7) we add Gaussian noise εi;r with zero mean and standard deviation

√
5000σ̂i with σ̂i = s(Ci) computed

550



Kleijnen, Mehdad, and Van Beers

Figure 2: Kriging predictions for (s, S) simulation in subarea 0 ≤ s0 ≤ 55 and 0 ≤ Q0 ≤ 49.

from 5000 replicates Ci;r (r = 1, ..., m) for each of the 20 points inside the subarea 0 ≤ s0 ≤ 55 and 0 ≤
Q0 ≤ 49 (σ̂i not displayed):

yi;r = E(yi) + εi;r (i = 1, . . . , n) (r = 1, . . . ,m). (8)

To make the example more representative of expensive simulations, we select the number of replications
much smaller than 5000; namely, m = 10 (so the variance of the average output yi increases).

We fit a Kriging metamodel to the n averages yi =
∑m

r=1 yi;r/m, using DACE. We find that this Kriging
gives PSD Hessians at only eight of the twenty old points.

For a wiggling original Kriging metamodel, we bootstrap. So, for input combination (x1;i, x2;i) we
resample—with replacement—the m original outputs yi;r (see (8)) to obtain the bootstrapped simulation
outputs y∗i;r and their average y∗i =

∑m
r=1 y

∗
i;r/m. We do so for each of the n combinations, which gives

the vector of bootstrap averages y∗ = (y∗1, . . . , y
∗
n)T .

Next we fit a Kriging model to (X,y∗) where X is the 20×2 matrix of input combinations (x1;i, x2;i).
This bootstrapped Kriging model gives predictions y∗, which differ from the original predictions ̂̂y, because
(with probability 1) y 6= y∗ and θ̂ 6= θ̂∗. We accept only those bootstrapped Kriging metamodels that have
at least as many old points with PSD Hessians as the original Kriging metamodel has; i.e., at least eight
PSD points.

After some experimentation with the bootstrap sample size B, we report results for B = 1000. This
gives Ba = 418 accepted bootstrapped Kriging metamodel with at least 8 out of 20 Hessians being PSD
(the classic Kriging metamodel had 8 PSD old points). (The maximum number of PSD Hessians in the
accepted metamodels is 16; this maximum occurs in bootstrap ba = 97.)

We expect that the accepted Kriging metamodels improve simulation optimization. There are many
simulation–optimization methods, but we apply a simple grid search; i.e., in the area of interest (0 ≤ x1 ≤
55 and 0 ≤ x2 ≤ 49) we compute the Kriging predictor at (say) the 56× 50 grid of integers, and select the
combination that gives the minimum predicted output y∗. So, the Ba = 418 accepted Kriging metamodels
give the estimated optimum outputs y∗b;opt with b = 1, ..., 418. To get CIs, we sort these estimates; the
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resulting order statistics y∗(b);opt give the 90% CI [y∗(21);opt, y
∗
(397);opt] = [191.65, 304.88]. They also show

one outlier; namely, y∗(1);opt = -283.00. The median is y∗(209);opt = 287.83. Furthermore, ̂̂yopt = 303.012

(the result of the grid search applied to the original Kriging metamodel ̂̂y) and yopt = 218 (true optimum
following from the second-order polynomial (7)).

TheBa = 418 metamodels also give the estimated optimum input combinationsx∗b;opt = (x∗b;1;opt, x
∗
b;2;opt)

T

with b = 1, ..., 418. Sorting these estimates for the optimal input x1 gives the order statistics x∗(b);1;opt, which

give the 90% CI [x∗(21);1;opt, x
∗
(397);1;opt] = [21, 42]. The median is x∗(209);1;opt = 39. Furthermore, ̂̂x1;opt =

38 (for original Kriging metamodel ̂̂y) and x1;opt = 24.5 (true optimum input of second-order polynomial
(7)). Likewise, for x2 we obtain the 90% CI [x∗(21);2;opt, x

∗
(397);2;opt] = [4, 25], median x∗(209);2;opt = 18,̂̂x2;opt = 21, and x2;opt = 9.2.

In this artificial example we know the true I/O function, so we can verify the preceding results;
i.e., into (7) we substitute ̂̂xopt = (38, 21)T (optimal combination estimated through the original Kriging
model), x∗ba;opt (optimal combination estimated through accepted bootstrapped Kriging model ba). This

gives y(̂̂xopt) = y(38, 21) = 274.918 and y(x∗ba;opt) with ba = 1, ..., 418; these y(x∗ba;opt) range between
218.947 and 310.888 (remember yopt = 218). (The bootstrapped metamodel with the maximum number
of PSD Hessians gives y(x∗97;opt) = 278.339.) We point out that xopt (true optimal combination) and ̂̂xopt
( classic estimator) lie within the rectangle defined by the CIs for the two optimal inputs.

We conclude that in this artificial example our bootstrapping helps find better solutions than classic
Kriging suggests. Specifically, the CIs for the optimal inputs suggest that in the next stage we should
simulate and search in the subarea 21 ≤ x1 ≤ 42 and 4 ≤ x2 ≤ 25 (the experimental area was 0 ≤ x1 ≤
55 and 0 ≤ x2 ≤ 49).

5 CONCLUSIONS AND FUTURE RESEARCH

In practice, simulation may be computationally expensive, so we simulate only a few input combinations and
replicate these combinations only a few times. Classic Kriging may then give metamodels that contradict
our prior qualitative (structural) knowledge of the characteristics (e.g., convexity or monotonicity) of the I/O
function that is implicitly defined by underlying simulation model. Users may then reject the metamodel and
the simulation model, and we (as analysts) may find that the metamodel does not provide good sensitivity
analysis or does not accurately estimate the true optimum I/O of the simulated system.

Our monotonic distribution-free bootstrapped Kriging for an M/M/1 simulation turns out to give better
coverage without longer CI. Unfortunately, this coverage may still be lower than desired, because the small
number of simulation observations may give too little information to estimate an adequate metamodel—be
that metamodel a classic Kriging or a monotonic bootstrapped Kriging metamodel. In such situations we
would advise spending more computer time to obtain reliable results, but while awaiting these results we
can bootstrap the too small sample to obtain a monotonic bootstrapped Kriging metamodel that is better
than the classic Kriging metamodel.

An additional advantage of our bootstrapped Kriging is that the CI does not include negative values if
negative values are impossible (as in the simulation of waiting times). Technically, bootstrapped Kriging
does not give an exact interpolator, which is attractive because the average simulation outputs still show
sampling variation. Our Kriging also allows variance heterogeneity of the simulation outputs.

We also try to derive convex distribution-free bootstrapped Kriging. A twice differentiable convex
function implies PSD Hessians at all input combinations. Unfortunately, a given simulation model defines its
I/O function only implicitly. Therefore we fit a Kriging metamodel to the simulation I/O data; this Kriging
metamodel implies estimated Hessians at old and new points. We verified that fitted Kriging metamodels
may show Hessians that are not PSD at several old points, even in our example of a second-order polynomial
without noise and with coefficients such that this polynomial has PSD Hessians. In random simulation
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we obtain replicates for all old points (to improve the accuracy of the simulated output), so we can apply
distribution-free bootstrapping to these replicates. To these bootstrapped outputs we can apply Kriging.
We accept only those bootstrapped Kriging metamodels that have at least as many old points with PSD
Hessians as the original Kriging metamodel.

We illustrate our bootstrapped Kriging through two types of examples: (i) a (s, S) inventory simulation,
and (ii) an artificial Monte Carlo experiment with a convex second-order polynomial augmented with Gaussian
noise. Example (i) gives a Kriging metamodel that was not convex; i.e., some old points gives non-PSD
Hessians. Example (ii) demonstrated that accepting those bootstrapped Kriging models with at least the
same number of PSD Hessians gives CIs that do cover the true optimal input combination; classic Kriging
does not give a CI for the optimal input (it does give a CI for the output of a given input combination).
These CIs may limit the area in which we search for the optimum, in a next stage (which is not the topic
of this paper).

Future research may try to solve the following problems:

• Extension to “stochastic Kriging”, formalized by Ankenman, Nelson, and Staum (2010), Chen,
Ankenman, and Nelson (2010), and Yin, Ng, and Ng (2011). This stochastic Kriging covers a
nugget effect with homogeneous (constant) variances, a modified nugget effect with heterogeneous
variances, and nugget effects that in case of CRN are correlated across input combinations. For
software we also refer to Dancik and Dorman (2008), Roustan, Ginsbourger, and Deville (2012),
and Rasmussen and Nickisch (2012).

• Replacement of Ordinary Kriging by Universal Kriging, which replaces the constant term by a
first-order and a second-order polynomial respectively (Universal Kriging turned out not to remove
the wiggling in the M/M/1 example, and to give excellent results for the second-order polynomial
example).

• Replacement of the simple grid search by one or more popular simulation-optimization methods (e.g.,
response surface methodology or RSM, efficient global optimization or EGO, a genetic algorithm).

• Extension of our approach to k > 2 inputs, including practical applications (e.g., supply chains).
• Preservation of structural knowledge about other characteristics of the I/O function (besides mono-

tonicity and convexity); e.g., Kriging predictions may be required to be nonnegative.
• Bootstrapping other metamodeling methods (besides Kriging); e.g., isotonic regression.
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