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ABSTRACT 

This paper gives an overview of several optimization solutions for semiconductor problems using mixed 
integer programming (MIP). The single solutions presented in former papers are not key of the publica-
tion. We rather focus on the generic portion within each solution and the approach of building a unique 
MIP model. This allows us to reduce complexity in different applications. The universal model enables 
the use in a wide range of problems for different optimization stages mapped to static allocation prob-
lems. The model itself is a kit of constraints that can be activated according to the problem needs. The 
underlying data layer is an abstract database model that can be fed by different data sources. The paper 
describes the advantages of the consistent technical embedding of database, different solvers and generic 
MIP models in the MES environment. 

1 INTRODUCTION  

Algorithm based systems have been applied to semiconductor shop floor control systems for many years. 
Graphic modeling interfaces as e.g. provided by Real Time DispatcherTM (RTD) have become a standard 
in the industry and allowed rules to be designed by advanced technicians which did not need to be IT spe-
cialists anymore. Thus production experts combining experiences in technology, logistics and basic opti-
mization techniques could implement not only simple sequencing rules but even fairly complex ap-
proaches within reasonable time horizons and fast adaptation cycles if required. 

However, while all of these algorithm based solutions helped to improve logistics performance they 
still remain fixed procedures which do not necessarily provide optimal solution. There is still a gap of 
productivity to utilize which may become remarkable if adequate monitoring is not in place. This needs to 
be established and maintained additionally, as well as all the manual rule adaptations whenever basic con-
straints change. Furthermore, system complexity increases with all of the solutions mentioned above and 
some of the algorithms – e.g. loop calculations – may push standard dispatching systems to their limits in 
terms of modeling capability and response times. 

Meanwhile, the mathematical programming as an alternative optimization technique plays an im-
portant role in the semiconductor industry (Mönch et al. 2011; Klemmt 2012; Bixby, Burda, and Miller 
2006). It provides target function or constraint based self adapting systems. Highly customized but expen-
sive commercial scheduling solutions are available. 

A significant part of corresponding productivity potentials could be addressed by models solving stat-
ic allocation problems (cf. Akcali, Üngör, and Uzsoy 2005; Toktay, and Uzsoy 1998; Chung, Huang, and 
Lee 2006; Chung, Huang, and Lee 2008; Doleschal, Lange, and Weigert 2012). This approach provides 
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hardware. In the next two stages the detail level is increasing up to lots and assigning the resources to the 
specific volume slots. The calculated optima from former stages set the bounds for these allocation steps.  

2.2 Modeling and Case Coverage 

Typically, different classes of mathematical models are used for modeling the problems of the stages 1 to 
4. While static capacity planning can be covered by linear programs (LP) and quadratic programs (cf. 
Harrison, and Williams 2007; Gold 2004) the problems in the stages 2 to 4 often require integer con-
straints, too. This is caused by the granularity level and several side constraints. For static allocation prob-
lems with integer constraints mixed integer programs (MIP) are used primarily. Static allocation means, 
that the model output is valid for a predefined time horizon – without explicitly modeling a time axis in 
the model. In stage 4, the scheduling level, it is crucial to reflect dynamic aspects by modeling the time 
axis. This leads to disjunctive models which can be covered – in limited problem dimensions – by con-
straint programs (CP) or mixed integer programs (cf. Klemmt 2012). The limitation results from the NP-
hardness of most scheduling tasks (Brucker 2004; Pinedo 2008). Figure 2 drafts this classification on a 
very simple level.  
 

 

Figure 2: Classification of mathematical models for workcenter problems  

In this paper a generic allocation concept for the problems of stage 1 to 3 is discussed. It is based on a 
static MIP model which naturally covers the LP-level. Scheduling problems are not covered. However, as 
mentioned in section 2.1 all decisions in stage 4 implicitly depend on the results of stage 1 to 3.  

2.3 The Unified Model Concept 

The basic question which has to be answered by a static allocation problem is: “How many units of a ‘job 
class’ have to be assigned to a ‘resource’ with regard to a given set of constraints in a predefined time 
horizon, fulfilling an objective in sense of optimality?”  

The crucial point in this question is the interpretation of what is a ‘job class’ and a ‘resource’ and the 
definition of the time horizon. This question has to be answered by each application, using the generic al-
location concept, itself. The mathematical model only knows the vocabulary: job class, resource, setups 
and secondary resource. It also provides a large set of possible constraints and objectives bringing this 
vocabulary in connection.  
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Now we want explain the definition of job class and resource on the example of static capacity planning 
(stage 1) in Figure 3. A product mix is given by a demand, which is assigned to a set of routes. Each route 
consists of a sequence of processing steps. Some of these (single process) steps are very similar because 
they have the same pattern of capacity consumption regarding the ‘resources’ (e.g. tools). For instance it 
is not always necessary to reflect all different products and steps, because some routes will have the same 
specifications (dedications) for some of the processes. So, by combining them into ‘ job classes’ we are 
downsizing the capacity planning problem. The result of optimizing the problem drafted in Figure 3 is a 
tool (=’resource’) utilization profile with (145h; 138h; 145h; 160h) – if the objective is load balancing. In 
static capacity planning the time horizon is implicitly defined by the demand – typically wafer starts per 
week. For more details we refer to (Klemmt, Laure, and Romauch 2012). 

 

 

 Figure 3: Example static capacity planning (cf. Klemmt, Laure, and Romauch 2012) 

Now, we can use a generic allocation model also in another context: e.g. for reticle assignments (stage 
3). Here, we are on the operational level and the task is to assign all lots currently waiting at the lithogra-
phy operation to a set of tools (foto clusters). For processing a lot on a tool a specific reticle (mask) is 
needed, which is moveable between the tools. In this example the ‘job class’ is given by the reticle and 
the demand is the amount of lots standing behind the reticle. The objective – next to load balancing – is 
for example the reduction of reticle moves. The (valid) time horizon of this allocation is consequently 
significantly shorter than in static capacity planning – typically one hour. For more details we refer to 
(Klemmt et al. 2010). 

There are several other problems too which can be modeled on this abstract level. A ‘job class’ can 
also be a probecard (cf. Klemmt, and Weigert 2011) in wafertest, an operation for the planning of tool 
qualification matrices (cf. Klemmt et al. 2010) or even a single process step. The demand is the volume 
behind this aggregation level. A ‘resource’ is not necessarily restricted to physical equipments. It can also 
model combinations of tools and secondary resources. On this level of abstraction, a large set of con-
straints is defined, influencing a job class-resource-allocation.  
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Typical constraints are: 
 
 Dedication constraints (allocation allowed or not), 
 Heterogeneous processing times (within a workcenter), 
 Min./max. constraints concerning units and load (load=unit*time) per allocation,  
 Counter constraints (min./max. number of allocations per resource/job class/secondary resource), 
 Setup constraints (several job classes requiring a specified tool state), 
 Mapper constraints (an allocation requires additional (limited) capacity; e.g. secondary resource),  
 Excluding allocations (forbidden combinations/sequences of job classes/setups), …  

 
Also a wide range of objective functions is defined, measuring the performance of an allocation. Typ-

ical objectives are: 
 

 Minimization of the maximum load on a resource (load balancing), 
 Minimization of setups (total sum or maximum number of setups on a resource), 
 Costs (setup cost, allocation costs), … . 

 
Now, all constraints and objectives are available in sense of a modular design principle. So, each spe-

cific application defines itself if a constraint is active or not. Thereby, an activation of a constraint re-
quires some inputs (data, mappers) in a predefined common data layer structure. Furthermore, the appli-
cation defines an objective. If more than one objective is selected a multi-criteria objective function can 
be defined (weighted sum) or an objective hierarchy is defined. In the last case, the problem is than solved 
iteratively in a cascading way (optimization concerning objective 1; fix objective function value 1; opti-
mization concerning objective 2; …) – cf. (Klemmt et al. 2010).   

In Figure 4 the generic allocation concept is drafted on the basis of several applications which are re-
ducible to static allocation problems. 
 

 

Figure 4: Generic allocation concept 
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3 APPLICATION EXAMPLES 

3.1 Current Status 

The potential of solver based applications to improve productivity was already shown at Infineon. There 
are several use cases at shop floor control and planning level where system complexity could be reduced 
in parallel: 
 
Capacity Planning Load balancing in complex dedication scenarios has been a weakness of planning 

systems formerly used. It had to be configured manually and did not provide opti-
ma. 
 

 Meanwhile, optimization has become a standard feature in our system and the LP 
solver based functionality (cf. Gold 2004) could be covered by the generic alloca-
tion component. 

 
Tool Qualification Optimization and adaptation of workcenter configurations according to product 

mix changes often has been a trial and error approach based on static models. 
 

 We implemented a solver based solution for lithography which allows to optimize 
resist allocation and tool qualification in one procedure based on controllable ob-
jectives (cf. Klemmt et al. 2010). It includes the usage of open source and com-
mercial products alternatively. The generic allocation approach will enable easy 
transfer to comparable use cases. 

 
Reticle Allocation Dispatch rules for lithography became quite complex over time considering all pa-

rameters necessary for lot sequencing, reticle changes, R2R and split/merge con-
trol. Thus its load balance feature was limited and required additional monitoring 
at shop floor level. 
 

 Assigning reticles (lot groups) to available equipments based on constraints and 
delivery predictions can be modeled as a static allocation problem (cf. Klemmt 
2012) where we applied the generic approach described in this paper. 

 
Setup Control IMP Setup rules considered parallel machine status in order to reduce setup times and 

limit queue length while preventing inappropriate setup combinations. However, 
there was still a gap to a fully automated mode considering critical changes at cer-
tain equipments. 
 

 The reticle allocation model mentioned above can easily be extended to setup op-
timization problems at the implant area. Real data models are running. 

 
Setup Control Test Short term setup control for functional wafer test area is challenging due to reen-

trant flows. Time consuming manual planning with limited accuracy needed to be 
replaced. 
 

 Combining a MIP allocation model and a discrete event simulator within an itera-
tive optimization procedure allowed us to benefit from short static model calcula-
tion times while, on the other hand, providing a lot based schedule (Klemmt, and 
Weigert 2011). 
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Transport Control Besides stocker capacity and equipment availability rolling horizon parameters 
were calculated in order to adapt volume-to-capacity balance between alternative 
production areas. This lot transport destination settings showed limitations at e.g. 
batch operations and a more precise capacity check was required in order to reduce 
moves between buildings. 
 

 Using the generic allocation component we generate lot assignment proposals 
which consider all relevant tool specific constraints. Thus, we are able to reduce 
long distance transports significantly in pilot areas. 

 

3.2 Future Work 

There is potential to further utilization of the flexibility of the generic allocation concept in many ways. 
Future use cases for static model applications may include: 
 

 Advanced approaches to consider quality related tool preferences, 
 WIP balancing across closed machine sets or automated backup tool release at bottlenecks, 
 Cluster tool feeding based on availability of chamber combinations, 
 Batch building at small lot sizes considering limited tool internal carrier storage capacity, 
 Capacity check at downstream equipments for time constraint based lot release, 
 Improved low volume and priority lot-to-tool assignment. 

 
Most of these scenarios would improve existing solutions and/or reduce system complexity if the ge-

neric approach is used. Section 4 will show a basic strategy how to integrate the unique model into a 
framework. 

4 FRAMEWORK APPROACH 

4.1 Requirements to System Architecture 

The implementation of mathematical optimization software plays a crucial role for the manufacturing or-
ganization. People on the shop floor and in the planning department rely on their daily operations or busi-
ness decisions. For this reason, correct and consistent behavior of the software systems is a fundamental 
part of the end users expectations. On top, the management requires cost-effective development, mainte-
nance, and operation of the software.  

To implement mathematical optimization software as additional components in an existing fab MES 
system architecture several challenges have to be solved by IT. Especially in high automated fabs soft-
ware components should follow the same requirement specifications like standard process equipment, e.g. 
reliability, availability and maintainability (RAM). The following detailed requirements for the new soft-
ware were given by the IE and production department: 

 
 The software has to be implemented in different wafer fabs with different MES system architec-

tures, 
 The software will be used in full automated fabs as well as in manually operated fabs, 
 The software has to support on demand decisions at the shop floor and real time decisions, 
 The software should be reusable for allocation problems, 
 The optimization engine should be build in as a plug-in component to have the flexibility for fur-

ther development, 
 A fall back solution is required in case the optimization engine will not provide a solution in a 

timely manner, 
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 What-if analysis capability is required to analyze changes prior to their implementation, 
 Optimization results should be validated easily and verified by the end users, 
 The execution of the results should be monitored with actual data from the shop floor. 
 
To handle the complexity of this application and their maintainability a framework approach was de-

veloped. Maintainability is defined as how easy changes can be made to the software components. This 
includes changes for adaptation of the system to meet new requirements, changes for additional new func-
tionalities and changes for corrections when deficiencies occur. 

4.2 Steps to a Fab Solver Framework 

The basic Fab Solver Framework approach is shown in Figure 5. To integrate the solver in different com-
puter integrated manufacturing (CIM) environments as a first step a Common Input Data Layer was de-
fined. As described previously most of the solver applications require the same input data structure or a 
subset of them. For each application of the scheduler an input data adapter has to be built to collect the 
data from the site specific data sources. The adapter has to verify and validate the data collection, has to 
control the frequency of the data update and has to identify the data for the different applications.  
 

 

Figure 5: Fab Solver Framework 

In a second step a Solver Input Transformation will be performed which translates the data from the 
Common Input Data Layer to the solver specific input matrixes and vectors. This Solver Input Transfor-
mation Component is specific to a commercial or an open source solver software and to the mathematical 
problem description. As pointed out, if most of the solver application can be represented by only one 
problem description, the complexity of this component can be reduced greatly. Only this component 
needs to be extended if more than one solver software is used or a second mathematical problem descrip-
tion is developed.   

In a third step the actual optimization has to be executed. Therefore a User Interface has to be devel-
oped to parameterize the constraints, to define the object function and to define runtime parameters for 
the optimization. Part of the User Interface is a role concept to allow a differentiation between administra-
tion and user rights. Because the execution time is crucial for many applications a client/server architec-
ture was developed. With the client/server architecture the optimization runs can be performed on high 
performance computers. It provides a cost efficient implementation and is scalable for future performance 
requirements.  

In a last step the results of the solver are stored in a Common Output Data Layer. From there, an out-
put transformation can be performed which formats and provides the results according to the target appli-
cation. For example the results can be visualized in some information systems to support manual deci-
sions or they can be used by a dispatching systems or can be integrated in automation workflows.  

The framework provides a flexible solution to support the multi-stage optimization approach. Based 
on the applications the framework can be integrated in the planning environment, in different MES envi-
ronments or can be integrated with discrete event simulation software to perform what-if analysis.  

Factory Data 

Source 1

Source 2

Source n

C
om

m
on

 In
pu

t 
D

at
a 

La
ye

r

In
pu

t 
Tr

an
sf

or
m

at
io

n

Input Schema
for Allocation
Optimization

Solver

Solver GUI

O
ut

pu
t

Tr
an

sf
or

m
at

io
n

Factory Output 

Application 1

Application 2

Application nC
om

m
on

 O
ut

pu
t 

D
at

a 
La

ye
r

2131



Werner, Lehmann, Klemmt, and Domaschke 
 

5 CONCLUSION 

Mathematical optimization has become more and more important in several areas of semiconductor man-
ufacturing. In the past, we have designed many single applications to specific problems with very good 
results. Now, we faced the variety of the applications to be maintained, where the core of each application 
is similar to each other. Therefore, we forced the successful development of a generic model approach 
that is able to solve different problems. The basic mathematical model uses a mixed integer program with 
dynamically linked constraints embedded in a framework that clearly defines the task of each functional 
layer. Single applications were quickly transferred to the new generic framework approach. The numer-
ous optimization demands in all areas of the fab will lead to a fast extension of applications covered by 
the framework. We are very encouraged to pull in more tasks to the solver approach to reduce complexity 
of customized state-of-the-art solutions on the one hand and to improve target achievement close to opti-
mum on the other hand. The future work will focus on the extension of the generic mathematical model as 
well as on the improvement of the system interfaces to achieve a plug-and-play solution for many use 
cases.  
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