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ABSTRACT

Simulation performance may be evaluated according to multiple quality measures that are in competition
and their simultaneous consideration poses a conflict. In the current study we propose a practical framework
for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and
identifying the best available tradeoffs, based upon multiobjective Pareto optimization. This approach
necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo
vector optimization. We demonstrate the effectiveness of our proposed approach by applying it to a specific
Artificial Neural Networks (ANN) simulation, with multiple stochastic quality measures. We formulate
performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-
based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe
preference-dependent configurations for the optimal simulation training.

1 INTRODUCTION

Many simulations pose challenging computational tasks, but furthermore, simulations of an open-ended
nature do not possess a known final solution. That is, the target of the learning/training is known, but its
optimal or ultimate form is generally unknown. A common case is the family of ANN-based simulations.
Generally speaking, the scope of the current study is simulations that perform learning tasks, and particularly
ANN simulations that perform open-ended learning. From the Operational Research (OR) perspective,
explicit objective functions for these simulations cannot be derived, but rather, quality measures may serve
as reinforcement feedback. It is often the case that open-ended simulations possess more than a single
quality attribute, as the evaluation of the learning success-rate may be subject to different perspectives.
In these scenarios, these quality measures are often conflicting — i.e., making some progress in a given
direction may be concordant with some quality measures and at the same time discordant with others.
The current study is primarily targeted at treating the meta-learning of simulations with competing quality
measures by proposing the Pareto multiobjective optimization framework for conflict exploration and
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tradeoff analysis. Practically speaking, the obtained Pareto Frontier (a rigorous definition will follow)
relates to the best attainable parameter configurations for the learning outcome of the highest quality. Our
proposed approach to treat such quality measures/attributes accounts for white- and black-box scenarios,
and utilizes accordingly simulation-based optimization. In order to demonstrate our approach we consider,
as a case-study, an ANN-simulation-based visualization technique, whose primary learning problem is
mapping high-dimensional datasets onto 2-dimensional projections. Explicitly, we investigate the quality
measures of Self-Organizing Maps for Multi-Objective Pareto Frontiers (SOMMOS: Chen et al. 2013), a
semantically- and algorithmically-enhanced variant of the Self-Organizing Map algorithm (SOM: Kohonen
2001). The issue of identifying and analyzing performance criteria of computational tasks is raised in
several papers. Caruana and Niculescu-Mizil (2004) described several criteria that can be used to evaluate
the performance of supervised learning and introduced a new metric that combined several existing metrics
into a single one. There are also multiple approaches used in the literature that aim at automated algorithms
tuning, i.e., selection of some defining parameters that would yield the best-performing algorithm for solving
a particular problem with respect to any performance criterion. For instance, investigating performance
of Evolutionary Algorithms for solving OR problems is presented by Oltean (2005). Moreover, Kadioglu
et al. (2010) and Hutter et al. (2009) describe some methods for automated algorithm configuration. In a
study by Polzlbauer (2004), some existing quality measures for Self-Organizing Maps are described. More
quality measures for SOM may be found in a study by Kaski and Lagus (1996). In contrast to these works,
our approach is aimed not only at identifying the set of parameters that would yield the best-performing
algorithm with respect to any single criterion (e.g., computation time) but rather at obtaining the set of the
most-preferred solutions with respect to multiple criteria. This added perspective would enable to further
investigate the nature of the derived performance criteria of our use-case and only then to select the final
solution. The contribution of the current study lies in the following:

e We propose a novel OR perspective on open-ended simulation challenges, which typically do not
possess an objective function to undergo traditional optimization.

e We explicitly derive analytical performance criteria for a specific use-case from the domain of
neural simulations, and illustrate the effectiveness of our proposed framework.

e We demonstrate how analyzing multiobjective optimization results has the potential to cater a better
understanding of the simulation challenge, and at the same time to achieve fine-tuning of the primary
simulation parameters.

2 META-LEARNING OF MULTIPLE SIMULATION CRITERIA

Here, we are concerned with the complex problem of meta-learning in simulations, possessing multiple
quality measures, that upon training are to serve as players in decision making challenges. We consider
it meta-learning because the simulations themselves are concerned with learning tasks. Each raw quality
measure of a simulation outcome constitutes the performance criterion of the learning problem associated
with the simulation, which is likely to be affected by a set of possibly overlapping learning parameters.
Consequently, any attempt to manually set the parameters according to a specific performance criterion
is likely to degrade the other criteria. To address this problem, we propose to apply simulation-based
multiobjective optimization, where each performance criterion is considered as an individual objective
function and the various learning parameters of the simulation are treated as decision variables as in
conventional meta-learning frameworks. The result of the optimization is the entire spectrum of optimal
performance criteria and their associated parameter configurations, constituting the Pareto Frontier and the
Pareto Optimal Set, respectively. Figure 1 summarizes the proposed approach. In general, the authors
acknowledge that the proposed approach and its aftermath are dependent upon the selection as well as the
explicit definition of the actual performance criteria.
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Figure 1: Five layers of the meta-learning framework, subject to a pipeline flow, and the targeted use-case.

2.1 Pareto Multiobjective Optimization

Multiobjective optimization aims at simultaneously treating a number of conflicting objectives, and thereby
revealing the entire trade-off surface amongst the objectives. This framework is in contrast to traditional
optimization approaches that consider multiobjective problems by posing a weighted sum of its objectives
and employ singleobjective solvers to obtain an individual solution point. These traditional methods do not
provide a complete view of the conflict amongst the objectives (they do not reveal the Pareto Frontier), and
moreover, necessitate a priori prescription of the objectives weighing. Other mathematical limitations are
described by Das and Dennis (1997). Let a vector of objective functions in R”, £ (%) = (fi (%) ,..., fu (®))’,
be subject to minimization, and let a partial order be defined in the following manner: given any f(l) e R™
and f(z) € R™, we state that f(l) strictly Pareto dominates f(z), denoted f(l) =< f(z), if and only if
Vie{l,...m} :fi(l) < fl-(z) A Jie{l,...,m} :fi(l) < fl-(z). In addition to the strict domination <, we define
f < f(z) = f(l) < f @)y f 1) = ]?(2)' The individual Pareto-ranking of a given candidate solution is
defined as the number of other solutions dominating it. The crucial claim is that for any compact subset
of R™, there exists a non-empty set of minimal elements with respect to the partial order < (see, e.g.,
Ehrgott 2005). Non-dominated points are then defined as the set of minimal elements with respect to the
partial order =<, and by definition their Pareto-ranking is zero. The goal of Pareto optimization is thus to
obtain the non-dominated set and its pre-image in the design space, the so-called Pareto optimal set, also
referred to as the efficient set. Finally, the Pareto Frontier is defined as the set of all points in the objective
space that correspond to the solutions in the Pareto-optimal set. The computational problem of attaining
the Pareto Frontier of a multiobjective optimization problem (Papadimitriou and Yannakakis 2000) can
be either treated by means of algorithms utilizing mathematical programming solvers — for instance, the
so-called Diversity Maximization Approach by Masin and Bukchin (2008), employing, e.g., CPLEX (2009)
— or approximated by population-based heuristics (see, e.g., Beume, Naujoks, and Emmerich 2007).

2.2 Simulation-Based and Black-Box Optimization

Unlike traditional Operational Research modeling, which targets the explicit analytical forms of the objective
functions and their associated constraints, modern treatment of real-world models may consider them as
white- or black-boxes. Moreover, the advent of existing heuristics allows efficient optimization of such
black-box models. In essence, simulations may also be treated as black-boxes and optimized accordingly,
i.e., their characteristic parameters may be effectively tuned to yield the optimal behavior. Here, due
to the nature of the simulated performance criteria, we choose to realize this option with Evolutionary
Multiobjective Algorithms, as will be specified.
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2.3 Pareto Analysis and Tradeoff Exploration

The optimization process outputs the Pareto Frontier and the Pareto Set, representing the optimal parameter
configurations for the simulation. The solution points on the Pareto Frontier are mathematically indifferent
with respect to each other, and thus the selection phase, entitled Multi-Criterion Decision Making (MCDM:
Koksalan, Wallenius, and Zionts 2011), is subjectively driven by the human decision maker. This process
involves exploration of the Frontier, and eventually, the challenge in selecting a solution is to account for
gains and losses while adhering to personal preferences. Various supporting methodologies do exist — e.g.,
consider AHP (Saaty 1980) or ELECTRE (Roy 1991) — yet, in the current study we shall demonstrate the
effectiveness of manual exploration and selection from the attained Frontier.

3 SOMMOS AS A SIMULATOR

We choose to specifically address an ANN simulation problem from the realm of visualization, namely, the
generation of mappings from high-dimensional datasets onto 2-dimensional projections, which relies on
unsupervised neural competitive learning. The defining parameters of the neural learning are to constitute
the decision variables of the optimization process, whose objective functions are to be derived from the
visualization quality measures of accuracy, semantic orientation, etc. The ultimate goal would be to
select specific configurations from the attained Pareto Frontier of the meta-learning problem in order to
simulate/generate high-quality maps. In practice, the meta-learning problem we investigate is regarding the
quality measures of SOMMOS (Chen et al. 2013), a semantically- and algorithmically-enhanced variant
of SOM (Kohonen 2001). These specific maps visualize Pareto Frontiers of given MCDM problems, and
thus, they are to play a role in supporting the human decision making process. The careful reader should
distinguish between the 2 different utilizations of Pareto Frontiers at 2 layers of the current work: one,
as input to SOMMOS, representing an external decision problem, and the other, output of the general
proposed framework. The current problem is especially important to the OR community since it describes
a novel visualization for the display of Pareto Frontiers. The means to solve this problem, as will be shown
here, is simulation-based multiobjective optimization.

3.1 SOMMOS: Technique’s Description

The SOM algorithm constitutes a popular method for visualization of large high-dimensional datasets. By
means of unsupervised competitive learning, a network of prototype vectors is formed, and upon employing
a 2-dimensional regular rectangular or hexagonal network model, visualization is directly attained as data
items can be mapped according to the simulated spatial structure (Vesanto 1999). The actual training
phase constitutes the percolation of dataset values to the neural network based upon its topology. Due to
approximate topology-preserving properties of this method, the resulting visual displays can be intuitively
interpreted by the user. From its origin, SOM inventors concluded that the learning process is open in
nature and cannot be validated. Optimization-wise, SOM has been practically addressed as a learning
problem with a primary objective of minimizing its quantization error (Kohonen 2001). In this paper, we
examine SOMMOS (Chen et al. 2013), an enhanced SOM variant especially designed for visualizing Pareto
Frontiers to facilitate effective multi-criterion decision making. Given an m-dimensional Pareto Frontier,
SOMMOS generates a symmetric m-gon whose vertices represent the optima of the m objective functions and
participate in the training phase of the dataset. The anchoring of these extreme solution points necessitated
algorithmic enhancement to the original SOM, as outlined in what follows with reference to the pseudo-code
presented in Figure 2[LEFT]. Data is first to be normalized within [0, 1]” by considering minimally- and
maximally-attainable objective values (the invoked routine is entitled normalizeFrontier ()). Let
the map be denoted by .#. During the training phase, every so-called anchoring-epoch, Tychor, 2 given
vertex-neuron, dy € {d¢};, C .#, percolates its value to the surrounding neurons based on the learning
functions. Consequently, the closer a neuron is to a vertex, the stronger it learns the appropriate anchor
value. However, as in each update-step data points keep percolating their values, the anchors should also

92



Shir, Moor, Chen, Amid, Boaz, and Anaby-Tavor

learnSOMMOS ()

input Dataset: Pareto Frontier F = {_/}}Lf] L fierm

1: normalizeFrontier ()

2 initSOMMOS ()

3 for £ = 0... Therioa do

4: 8 +—randomSampling(F)

trainSOMMO S, hp(), e ()
6 if (mod (1,7, ==0) then
7 {de}je, C ¢ «— T., {anchoring: explicit fixing at the vertices}

5: trainSOMMOS(M, A, ha(). aa(t))
9:  end if

10: end for

11: return M

initSOMMOS ()
set map size: N
set anchoring dataset by means of the m x m identity Z: A = {Z. /};",

L, @9 eR™

N
generate an m-gon layout as the neural map: M = {7 }/

ow o

randomly initialize neurons: @9 «— 4(0,1), j=1...N
5 identify and reset the m-gon’s vertices: {dr}y", C M: i +— L.
6: initialize learning-rate functions: ap(t), aa(t)

7: initialize neighbourhood kernels: hp(), ha()

&: set training period and anchoring epoch:  Tjeriods Tanchor
trainSOMMOS(map M, data X, kernel (), learning-rate a)

1: for each point in the dataset 7, € X do

2 for each newron @) € M do Cyclist/Pe-
3 @) — i) + o b (F, M) - (T — d@9)) destrian

4:  end for Trails
5: end for

Figure 2: [LEFT] Pseuodo-code summarizing SOMMOS. [RIGHT] A 5-dimensional Pareto Frontier of a
Transportation Asset Management problem, visualized by SOMMOS. Each anchor represents an objective.
Each Polar Area Bar chart represents a solution. The sector filling represents the values of that solution per
a specific objective. K-Means (Lloyd 1982) was applied to cluster the solutions, reflected as the background
color. It is evident that due to the anchor training, solutions with high values per the corresponding objective
will be closer to that anchor.

repeatedly train the ANN as an additional independent dataset .27, which exclusively represents the vertices;
the actual vertex-units are also explicitly reset. Essentially, the learning procedure comprises two competing
processes with different learning-rates. While the learning-rate function for the input dataset ., noted
as a (), declines over time towards convergence, the anchoring learning-rate function, o(z), linearly
declines from 1.0 to oy (¢) for neurons up to a radius r4 from the vertex, and otherwise it reads o () for
neurons positioned farther. The overall learning of the m-gon ANN is summarized as 1earnSOMMOS ()
in Figure 2[LEFT], where the Pareto Frontier dataset is normalized and the anchoring is carried out using
the identity matrix. A SOMMOS map for a 5-dimensional problem is presented in Figure 2[RIGHT].

3.2 SOMMOS Performance Criteria: Rigorous Formulation

As suggested in Section 2.2, fine-tuning a simulation would require careful evaluation of its quality metrics.
For readability and clarity, this section will formulate the quality metrics in our case study — SOMMOS.
In order to evaluate the quality of SOMMOS generation, we would like to rigorously quantify the targeted
measures of interest and propose respective analysis criteria. We consider four performance criteria, two of
which have been widely utilized to evaluate SOM resolution and topology preservation properties, while the
other two are introduced here particularly for visualizing Pareto Frontier datasets. These additional criteria
stem in the semantic enhancement to SOM that resulted in SOMMOS. This section will rigorously define each

of these four performance criteria. The input dataset constitutes a Pareto Frontier .# involving m objectives.
Given an input data vector ﬁ € . CR™, its best-matching unit (BMU) in the map ﬁgkz e CR"is
the unit that minimizes the Euclidean distance || f; — #]|: ¢*) = argmin;c 4 { Il fie — il } The second-best-

(k)

matching unit, denoted as ii,.., is defined respectively. We then consider the so-called mean quantization

error, representing the learning quality of the attained ANN, which is defined as the mean over || f — ﬁgkg I
(Kohonen et al. 1996):

O =y 117 — )] M
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Figure 3: Illustration of the local orientation error computation, representing the ¢/ objective values by a
gray-scale subject to maximization.

1 if #;,iu; are adjacent ANN units
0  otherwise |
Next, we consider the topographic error, defined as the proportion of the input data vectors whose first-best
and second-best matching units are not adjacent within the ANN:

Cp s
7|

Let 6 () denote the adjacency indicator of the ANN, i.e., 0 (i;, U ;) =

2

We now define the so-called measure of local orientation error, which considers each of the anchor units
and accounts for ranked-based ordering violations with respect to it. In other words, local orientation
violation with regard to the /" vertex (anchor) unit, d; € .#, occurs if a unit i; is placed closer to
dy than ii;, but its ¢'" objective function is inferior. By constructing this measure, we would also like
to apply larger error values to units that are closer to the anchor, since these neurons are the foremost
interesting when concentrating on the corresponding objective function during the decision making process.
Generally speaking, by minimizing this error measure we would like to enable exploration phases as
typically encountered in human decision making: following an examination of a certain solution point on
the Frontier, the decision maker may be interested in rovering around its neighborhood, under the assumption
that the local orientation is concordant with the objective functions. This implies that the local orientation
error should read larger values for violations occurring between neighboring neurons in comparison to
violations between neurons that are located far from each other. Moreover, when considering the relative
positions of these two neurons, care should be given not only to the distance between them, but rather
also to their orientation with respect to the anchor. See Figure 3 for an illustration: the error measure for
the neurons (ii;,iij;) is larger than the error measure of the neurons (i;,ii;>) because of their different

relative positions with respect to dy. Let d ®

) max denote the maximally attainable distance within the ANN

boundaries from the ¢ anchor in the direction of the vector #; — dy, and let 6")

i denote the angle between

i; and iij;. Given <ﬁ,~, Uj| >, we calculate Gf(ir)nax as the maximal angle between i; and all the neurons i, that
satisty (d(iip,d¢) > d(i;,dg)) N (d (g, ;) < d(i;,ii1)). The local orientation error is then defined as the
summation over all local violations, V,, with respect to all anchors, weighted by the neighborhood kernel

h():
OE =YY"} h(d(dy,i;)) - Ve (i, ;) 3)
(=11 j
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(Parameter Config.) ANN-Based Simulation (Performance Criteria)
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Figure 4: Model summary: the decision variables and their boundaries comprise the continuous variables
ra € [1,200] and Qyie € [0.01,1.0], an integer variable Tynchor € {5,6,...,1000}, and categorical variables
mapSize, aType, kernelType, trainingLength (see Kohonen 2001 and Chen et al. 2013).

We choose to normalize the local orientation error measure with respect to the equivalent measure of a
random SOMMOS instance (i.e., whose neurons are randomly initialized and do not undergo learning),
which is denoted by OFE.4q4:

OE

OErand ’

Evidently, minimizing the local orientation error measure does not guarantee SOMMOS maps with proper
global orientation characteristics. Consider, for instance, a large SOMMOS map where the units are grouped
around its center, possessing good local orientation, but overall resulting in poor usability since the map
is cluttered and the surface is poorly utilized. This scenario provides us with the motivation to introduce
global orientation as another quality measure of SOMMOS. Such characteristics of global orientation may
be accomplished by minimizing the local orientation error while simultaneously maximizing the global
spatial diversity of all the units. Especially, we adopt the so-called Solow-Polasky diversity measure (see
Solow and Polasky 1994 and Ulrich, Bader, and Thiele 2010). Given the pairwise distances between the
units, d (ii;,i;), let ¥ = (y;;) € RI#1%-| be constructed with matrix elements y;; = exp (—y-d (#;, 1)),
then the Solow-Polasky measure is defined as:

OEnorm - (4)

Dgp =191, )

i.e., the summation over all the elements of ¥~'; y is a domain-specific normalization factor. The Solow-
Polasky diversity measure, which originates in biology, strives to quantify the number of existing species
within the given spatial domain. Thus, the larger this scalar, the more diverse the map is, and following
the aforementioned rationale, better global orientation is obtained. Equivalently, minimizing —Dgp will
achieve the same goal.

4 EXPERIMENT DESIGN

In our ANN-based use-case, the simulation possesses multiple quality metrics, as described in Section 3.2,
whose simultaneous optimization poses a quad-criteria problem formulated as follows:

f1 = OEporm — min
fo =TE — min
f3=0F — min

f4 = —Dgp — min

(6)

We consider a 7-dimensional decision (design) space corresponding to the defining mechanism of SOMMOS,
considering otherwise the conventional setting alternatives for SOM (Kohonen 2001). Figure 4 summarizes
this model, and the reader is also referred to Chen et al. (2013) for more details.
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4.1 Method: Evolutionary Multiobjective Algorithms

The method we employ to tackle the aforementioned simulation-based multiobjective optimization problem
belongs to the family of Evolutionary Algorithms (EAs: Bick 1996). EAs are powerful stochastic
global search methods gleaned from the model of organic evolution, which have been for several decades
successful in treating high-dimensional optimization problems. They especially excel in scenarios where
quality evaluation provided by computer-based simulation constitutes the objective function, or in black-box
evaluations, such as in experimental optimization (Shir et al. 2012). Their broad success in this domain
is primarily attributed to two factors — first, the fact that they constitute direct search methods, i.e., do
not require derivatives determination, and second, their inherent robustness to noise. In the current study
we are especially interested in evolutionary multiobjective optimization algorithms (EMOA) — which have
undergone considerable development in the last two decades (Zitzler, Deb, and Thiele 2000) — to constitute
the optimizers in the current framework (Figure 1). In particular, we employ the SMS-EMOA heuristic
(Beume, Naujoks, and Emmerich 2007) as the multiobjective procedure with a mixed-integer evolution
strategy (MIES) as its solving engine. Our implementation and parameter settings followed Reehuis and
Bick (2010).

4.2 Pre-Experimental Planning

Both SOMMOS and the SMS-EMOA were implemented and run in MATLAB. SOMMOS is applied here to
the visualization of a 5-dimensional Pareto Frontier from the domain of Transportation Asset Management
(TAM). In TAM, when building a portfolio of projects/initiatives, taking cost-effective decisions regarding
resource allocation in order to preserve, maintain, or improve transportation infrastructure (roads, bridges,
or buildings) is crucial (see, e.g., AASHTO 2002). Here, the objectives were formulated as maximizing
congestion reduction, maximizing pedestrian and cyclist trails, maximizing safety, maximizing economic
growth, and maximizing air quality across the transportation network. A single SOMMOS generation
approximately takes 1sec on a machine with Intel {7 CPU featuring 4 1.60 GHz processors. Due to the
stochastic nature of SOMMOS, we invoked 20 simulations per evaluation of a candidate configuration,
and applied averaging to yield the objective function values. Toward the end of solving the 4-objectives
optimization problem of Eq. 6, here is our planned modus operandi: (1) individually applying the MIES
solver to each one of the objective functions as 4 singleobjective independent optimization problems
(employing a population of 15 parents and 30 offspring with non-elitist selection); (2) computing the
Pareto Frontier of this problem (utilizing the steady-state SMS-EMOA with a population size of 50); (3)
investigating the results obtained in those calculations.

5 EXPERIMENTATION AND RESULTS

We describe here our practical observations of the optimization methodology applied to Eq. 6.

5.1 Preliminary: Optimization Aftermath

We first consider the individual treatment of the 4 objective functions. By doing so we aim at understanding
the nature of each particular objective function and at identifying some conflicts in the early stages of the
analysis. It is evident that all four minimizers dramatically differ. For instance, we briefly compare the
minimizers of OE and QE: in order to obtain small OE values, training neurons with values that boost
the orientation quality of the ANN (i.e., anchoring) should be carried out more frequently (small Tynchor
values). At the same time, such effective training may be achieved also when it is propagated to neurons
located farther from the proximity of the anchor unit, e.g., by setting large r4 values and strengthening the
anchor’s impact on the ANN. QE, on the other hand, is concerned with the degree to which the dataset fits
the trained neurons. Therefore, a frequent anchoring operation may compromise the desired degree of fit,
since anchors constitute inorganic elements with respect to the dataset; minimizing QE should be intuitively
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) All(27127)>

Filters S Wsta-Learning of SOMNOS Generation

Selected Solution Points on the Pareto Frontier

OE=0.002, MQE=0 476, TGE=0.0015, SPD=-6.67 o OE=0.206, MQE=0.175, TGE=0.0015, SPD=-13.13 o OE=0.016 MQE=0.324, TGE=0.0138, SPD=-12.90 o

Figure 5: The Pareto Frontier for Eq. 6 is depicted in Parallel Coordinates at the top. Three specific
solutions (highlighted in yellow at the top visualization) have their SOMMOS realizations depicted at the
bottom. These realizations are prescribed by the Pareto Optimal Set information.

associated with suppressing the anchoring operation. We begin by investigating the depicted Frontier, as
shown in the Parallel Coordinates visualization at the top of Figure 5. Each axis denotes a performance
criterion and each line denotes an optimal solution for all four performance criteria. K-Means clustering
(Lloyd 1982) was applied to this Frontier, and 3 clusters are colored accordingly. A birds-eye view at the
Frontier reveals that OE is in a hard conflict with all other 3 objectives, which are in soft conflicts amongst
themselves. This is mainly because training on the objectives’ maximal values (i.e., the anchors) interferes
with the training of the data itself. This interference is so severe that the known SOM conflict between QE
and TE (Polzlbauer 2004) appears as a soft conflict when compared to the conflict between OE and these
regular SOM quality measurements. This view also contains 3 actual SOMMOS maps, each corresponding
to a solution within one of the clusters on the Frontier; these were generated by prescribing the optimal
decision variables provided by the optimization process (Pareto set) into the SOMMOS algorithm. The
cluster colored in green corresponds to a subset of maps with low OE but low diversity and high QE
(its representative SOMMOS map is depicted in the left). When analyzing the generated maps, we found
that the high QE values reflect a misrepresentation of the data. Also, having a low diversity hinders the
decision maker’s ability to spot an area of particular interest. On the positive side, it is very easy for a
user to explore the space since there is a clear sense of direction, i.e., it is easy to associate the solutions
with a direction towards an objective. The next cluster is colored in red (its representative SOMMOS map
is depicted in the middle). Unlike the green cluster, the current subset of maps is characterized by very
small values of QE, highly diverse maps, somewhat low TE but high values of OE. These are maps that
accurately represent the data and are well-diverse. However, the high values of OE are reflected in the
inability to practically rover from one solution to another when exploring the Frontier. The last cluster,
colored in blue, represents solutions of “meeting-in-the-middle” in terms of OE, QE as well as diversity
(its representative SOMMOS map is depicted in the right). Evidently, maps in this cluster possess high
diversity and fine OE values. However, some of the solutions in this cluster, specifically those with high
QE, constitute problematic representations of the data.
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5.2 Analysis and Discussion

In what follows, we shall demonstrate the final step in the proposed framework —how analyzing multiobjective
optimization results may cater a better understanding of the learning challenge, and at the same time achieve
fine-tuning of the primary simulation parameters. While the tradeoff analysis contributes to our understanding
of the learning performance criteria, the end goal is to determine which solutions on the Frontier constitute
preferable balance joints amongst these performance criteria. This final selection phase is subjective, and
in what follows we demonstrate a decision-making flow that adheres to a certain set of arguments regarding
the aforementioned SOMMOS example. The following preferences are considered in this example. First,
a SOMMOS map should possess local orientation error as small as possible. This prerequisite is essential
for any user that utilizes the map, since maps possessing high local orientation error may hinder the
exploration process. However, taking into account only this first argument will potentially lead to maps
with the maximally attainable quantization error within the cluster (due to the inherent conflict) — which
is impractical to utilize, since each neuron is likely to be mapped onto many data points on the Frontier.
Therefore, we decide to compare maps generated with parameters that correspond to low orientation error
and medium-to-low quantization error. It was apparent that solutions within the green cluster are inadequate,
leading to an interesting deduction that the diversity criterion does not play a significant role in this selection
process as all maps in the blue and red clusters contain high diversity. Upon filtering out all the solutions
from the green cluster, it becomes evident that the low orientation error is represented by the blue cluster
and the low quantization error is represented by the red cluster. We further narrow down our focus on
the solutions that are in the joint between those clusters. Here, given two solutions with similar degrees
of quantization error and local orientation error, we would like to account for both the topographic error
and the diversity measure — and advise to select the solution point with better values in the latter pair of
criteria. Overall, following the insights gained from the tradeoff analysis, and given subjective preferences
of the decision maker that we prescribed for this example, a procedure to select an optimal parameter
configuration has been described. It should be noted that an additional subjective criterion upon which the
decision maker is likely to select a solution from the Frontier would be the visual aesthetic aspect of the
SOMMOS map, an aspect which is left for future work.

6 CONCLUSIONS

In this paper we proposed the employment of simulation-based multiobjective optimization as a computational
framework to address conflicts amongst multiple performance criteria of simulations (Figure 1). In order to
illustrate the effectiveness of this framework, we analyzed a specific ANN-simulation-based visualization
technique with multiple competing performance criteria, that does not possess a known best outcome. We
formulated a quad-criteria optimization problem and employed multiobjective solvers to attain its Pareto
Frontier. We further showed how to explore the available tradeoffs amongst the prescribed performance
criteria and how to gain insights concerning the inherent conflicts. Evidently, this approach also allowed
us to locate desirable areas within the Pareto Frontier that are more likely to meet expectations regarding
the simulation task. Altogether, our mechanism for analyzing multiobjective optimization results led to a
better understanding of the simulation challenge and fine-tuned the primary simulation parameters.
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