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ABSTRACT

We consider the Bayesian formulation of the ranking and selection problem, with an independent normal
prior, independent samples, and a cost per sample. While a number of procedures have been developed
for this problem in the literature, the gap between the best existing procedure and the Bayes-optimal one
remains unknown, because computation of the Bayes-optimal procedure using existing methods requires
solving a stochastic dynamic program whose dimension increases with the number of alternatives. In
this paper, we give a tractable method for computing an upper bound on the value of the Bayes-optimal
procedure, which uses a decomposition technique to break a high-dimensional dynamic program into a
number of low-dimensional ones, avoiding the curse of dimensionality. This allows calculation of the
optimality gap for any given problem setting, giving information about how much additional benefit we
may obtain through further algorithmic development. We apply this technique to several problem settings,
finding some in which the gap is small, and others in which it is large.

1 INTRODUCTION

We consider the ranking and selection (R&S) problem, in which we wish to select the best among several
competing alternatives, and the only way to evaluate the quality of an alternative is through stochastic
simulation. Our goal in R&S is to allocate our simulation sampling effort efficiently among the alternatives,
so as to accurately determine which alternative has the largest expected performance, while at the same
time limiting simulation effort.

This problem has been considered by many authors, under four distinct mathematical formulations. We
specifically consider the Bayesian formulation, for which early work dates to Raiffa and Schlaifer (1968),
with recent surveys Chick (2006) and Frazier (2012). The other mathematical formulations of the problem
are the indifference-zone formulation (see the monograph Bechhofer, Santner, and Goldsman 1995, and the
survey Kim and Nelson 2006); the optimal computing budget allocation, or OCBA (Chen and Lee 2010);
and the large-deviations approach (Glynn and Juneja 2004).

In the Bayesian formulation of the R&S problem, we place a prior distribution on the unknown true
expected performance of each alternative, and our goal is to design an algorithm for allocating simulation
effort with good average-case performance under the prior. While some work in this area, such as Raiffa and
Schlaifer (1968), Chick and Inoue (2001b), and Chick and Inoue (2001a), considers two-stage algorithms,
much of the recent work, such as Gupta and Miescke (1996), Chick, Branke, and Schmidt (2010), Frazier,
Powell, and Dayanik (2008), Chick and Gans (2009), and Chick and Frazier (2012), has focused on
sequential procedures, whose allocations of sampling effort are potentially more responsive to previous
samples, and thus promise greater efficiency.

Bayes-optimal sequential R&S procedures are characterized by the dynamic programming equations,
and given sufficient computational power, can be computed by solving these equations. These equations
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have been used to compute Bayes-optimal procedures for problems with one alternative of unknown value
and one of known value (Chick and Gans 2009, Chick and Frazier 2012), and for problems with two
alternatives of unknown value (Frazier, Powell, and Dayanik 2008). However, for problems with more than
a few alternatives, solving these dynamic programming equations becomes computationally infeasible, due
to the curse of dimensionality (Powell 2007).

Thus, work in Bayesian R&S has focused in large part on developing sub-optimal procedures. These
procedures are evaluated sometimes through theoretical investigations, but also by empirical comparison
with previously developed procedures in simulation experiments. If a new procedure outperforms previously
proposed procedures, then this is an improvement of the state-of-the-art. One can view the performance of
each newly proposed procedure as a lower bound on the value of a Bayes-optimal procedure, and as more
procedures are proposed, we may hope these lower bounds will get closer to this Bayes-optimal value.

In this paper, we focus on a complimentary approach: computing upper bounds on the value of a
Bayes-optimal procedure. We focus on one version of the sequential Bayesian R&S problem, independent
normal samples with known variance with an infinite horizon and a cost per sample, which was previously
considered in Frazier and Powell (2008) and Chick and Frazier (2012). For this problem, we use a
Lagrangian relaxation technique to obtain a computable upper bound on the value of a Bayes-optimal
procedure. Our computational procedures build on recent work for the problem of sequential Bayesian
multiple comparisons with a known standard, for which the Bayes-optimal procedure can be computed
efficiently (Xie and Frazier 2013).

This allows computing an optimality gap, which is the distance between this upper bound and the
expected performance of the best existing procedure (which may depend on the specific problem parameters
used). This may be used to inform judgments of the value of continued algorithmic development. If this
gap is small for a given set of problem parameters, it tells us that future procedures can improve only by a
small margin over the current state-of-the-art. If this gap is large, this may be because existing procedures
are far from optimal or because the upper bound is loose, or both. Being able to compute gaps as a function
of problem’s parameters will allow future researchers to focus development of improved procedures and
upper bounds on regions of the problem parameter space where the gap is large.

The mathematical approach that we follow can be viewed as a Lagrangian relaxation of a stochastic
dynamic program, which was used in Whittle (1980) to study restless bandit problems, and is also treated
in Gittins, Glazebrook, and Weber (2011). Our focus on obtaining upper bounds for sequential decision-
making problems is also similar in spirit to recent work on information relaxations in Brown, Smith, and
Sun (2010), Brown and Smith (2011), Haugh and Kogan (2004), and Rogers (2002).

We begin in Section 2 by formulating the problem. We then describe our upper bound in Sections 3
and how to compute it in Section 4. In Section 5 we describe some special cases in which the bound is
tight. In Section 6 we apply this bound to a variety of problems. In Section 7 we offer concluding remarks.

2 THE BAYESIAN RANKING & SELECTION PROBLEM

We would like to select the best among k alternative systems. We assume that samples from alternative x are
normally distributed, with mean θx and variance λx, and independence across time and across alternatives.
The means θx are unknown, while the sampling variances λx are assumed known. We let θ = (θ1, . . . ,θk).
We place a Bayesian prior distribution upon the unknown sampling means,

θx ∼N
(
µ0,x,σ

2
0,x
)
, x = 1, . . . ,k,

with independence across alternatives. Our goal is to find the alternative with the largest mean θx, i.e., to
find x∗ ∈ argmaxx θx, and our main challenge in Bayesian R&S is to allocate simulation effort efficiently,
so as to best support making this determination.

We assume no fixed computational budget, and instead assume that each sample of alternative x carries
a cost cx > 0 that may vary across alternatives. This assumption may be inappropriate when simulations
are performed on hardware owned by the simulation analyst, and is instead intended to model the cost
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structure of on-demand computation purchased through existing cloud computing services, in which the
user pays a cost per hour of CPU time consumed.

We index time by n = 1,2, . . ., and perform our simulations sequentially. At each time n, based on
the samples observed so far, we either choose to stop sampling (see below), or we choose an alternative
xn to sample, paying a cost cxn , and observing a sampled value yn, yn|xn,θ ∼N (θxn ,λxn). The posterior
distribution that results from a sequence of observations obtained in this way is

θx | x1,y1, . . . ,xn,yn ∼N
(
µn,x,σ

2
n,x
)
, x = 1, . . . ,k, n = 1,2, . . . ,

where µn,x and σ 2
n,x can be computed recursively from µn−1,x, σ2

n−1,x, xn, and yn (see, e.g., DeGroot 1970
or equation 2 in Frazier 2012). We define x∗n ∈ argmaxx µn,x.

At time n, if we choose to stop sampling, then we select an alternative as the best based on the
previously collected samples, and receive a reward equal to the true value of that alternative. We call x̂∗
the selected alternative, so that the reward received from this selection is θx̂∗ . We call τ the total number
of samples taken. We assume that x̂∗ = x∗τ , and one can show formally that this choice is the best possible,
as measured by expected reward under the prior (see, e.g., Frazier, Powell, and Dayanik 2008).

A procedure, or policy, for Bayesian R&S is then comprised of a sampling rule, for choosing each xn
based on the previous samples (xm,ym : m < n), and a stopping rule, for choosing at each time n based on
this same information whether to continue sampling or not, and thus implicitly for choosing the number of
samples taken τ . (The selection rule is assumed to be x̂∗ = x∗τ , as stated above.) We refer to such a policy
with the notation π .

In Bayesian R&S, we measure the quality of a policy π by the expected net reward under the prior
distribution, Eπ [θx̂∗ −∑

τ
n=1 cxn ]. where the expectation is taken both over randomness due to the stochasticity

of the samples, and to the uncertainty about θ , and is written using the notation Eπ when it depends upon
the policy π . This reward includes both the reward due to selection, θx̂∗ , and the sampling costs, ∑

τ
n=1 cxn .

We use the notation Eπ
n to indicate the conditional expectation, with respect to the information available

at time n, (xm,ym : m≤ n).
This formulation of the sequential Bayesian R&S problem with independent normal samples, known

sampling variance, independent normal prior, infinite horizon, and sampling costs, follows that of Frazier
and Powell (2008), Chick and Frazier (2012), and is quite similar to the model in Chick and Gans (2009),
which assumes a discount factor, and to the model in Frazier, Powell, and Dayanik (2008), which assumes
a finite horizon and no discounting.

With this formulation, the expected value of a Bayes-optimal sampling policy is then

r := sup
π

Eπ

[
θx∗τ −

τ

∑
n=1

cxn

]
, (1)

which depends implicitly on the number of alternatives k, and, the vectors composed of the prior mean
µ0,x, prior variance σ2

0,x, sampling variance λx, and sampling cost cx of each alternative x = 1, . . . ,k.
This value r, understood as the solution to a stochastic dynamic programming problem, is characterized

by the dynamic programming equations, e.g., as described in Chick and Frazier (2012), but actually
computing r using existing methods is intractable except when k is very small. This intractability is caused
(1) by the fact that the state space of the dynamic program is the set of all possible values of the vector of
posterior means (µnx : x = 1, . . . ,k) and the vector of posterior variances (σ 2

nx : x = 1, . . . ,k), which has 2k
dimensions; and (2) by the fact that computation required to solve a dynamic program scales badly with
the dimensionality of its state space — a phenomenon which is referred to as the curse of dimensionality
(see, e.g., Powell 2007). Our contribution in this paper is to provide a tractable method for computing an
upper bound on r.
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One simple upper bound is immediately apparent from (1). Sampling costs are positive, cx > 0, so we
have ∑

τ
n=1 cxn ≥ 0. Also, θx∗τ ≤maxx θx. Thus,

r ≤ E
[
max

x
θx

]
:= UBs

where the expectation does not depend on π , and so we use the notation E rather than Eπ . UBs can be
computed via numerical integration or Monte Carlo. This upper bound was used as a benchmark in Chick
and Frazier (2012).

In the following sections, we will provide a tighter and more sophisticated upper bound than UBs.

3 UPPER BOUND ON THE BAYES-OPTIMAL VALUE: STEP 1 (DECOMPOSITION)

In this section, we provide an upper bound on (1) in terms of a stochastic dynamic program with a
special structure that admits solution through decomposition, avoiding the curse of dimensionality. Later,
in Section 4, we show how to exploit this structure to allow efficient computation.

We first derive the dynamic program upper bound using a direct approach in Section 3.1, giving the
bound below in equation (5). We then show an alternative derivation using a Lagrangian relaxation in
Section 3.2, which is more complicated, but relates the upper bound to previous literature, and may also
suggest generalizations.

3.1 Direct Approach

First, it is convenient to rewrite r as

r := sup
π

Eπ

[
θx∗τ −

τ

∑
n=1

cxn

]
= sup

π

Eπ

[
max

x
µτ,x−

τ

∑
n=1

cxn

]
, (2)

where the second equation holds since Eπθx∗τ = Eπ
[
Eπ

τ θx∗τ

]
= Eπ

[
µτ,x∗τ

]
= Eπ [maxx µτ,x] by the tower

property of conditional expectation.
We now state the following lemma, which bounds the reward received from the selection decision, and

whose proof involves simple algebraic manipulations.
Lemma 1 For any d ∈ R,

max
x

µτ,x ≤ d +
k

∑
x=1

(µτ,x−d)+ . (3)

This inequality holds with equality if and only if µτ,x∗∗τ ≤ d ≤ µτ,x∗τ , where x∗∗τ = argmaxx 6=x∗τ µτ,x.

Proof. The right-hand side of (3) can be rewritten as

d + ∑
x : µτ,x≥d

(µτ,x−d) .

Consider two cases. If maxx µτ,x ≥ d, then this quantity is greater than or equal to d +maxx µτ,x−d,
which is equal to the left-hand side of (3). If not, so maxx µτ,x < d, then the right-hand side of (3) is equal
to d, which is greater than the left-hand side of (3) by our supposition. In both cases, the right-hand side
of (3) is greater than or equal to the left-hand side.

Furthermore, ∑
k
x=1 (µτ,x−d)+ = maxx µτ,x − d if and only if µτ,x∗∗τ ≤ d ≤ µτ,x∗τ , hence the result

follows.

It follows from (2) and Lemma 1 that, for any d ∈ R,

r ≤ d + sup
π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]
:= R(d), (4)
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where we have defined the quantity R(d).
We will see in Section 4 that R(d) can be computed efficiently. Moreover, since the bound (4) holds

for any d ∈ R, it follows that

r ≤ inf
d

R(d) = inf
d

{
d + sup

π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]}
:= UB∗. (5)

We will see in Section 4 that, in addition to being able to compute R(d) efficiently for any d, we can also
take the infimum efficiently over d to calculate UB∗. The bound UB∗ is the main focus of this paper.

3.2 Lagrangian Approach

Suppose that we enlarge the set of decisions made by each policy π to include an additional variable
ax ∈ [0,1] for each alternative x, whose value is determined at time τ when sampling stops. Let Π0 be the
set of such policies satisfying the constraint ∑

k
x=1 ax = 1 almost surely. That is, Π0 =

{
π : ∑

k
x=1 ax = 1

}
.

It follows immediately that

r = sup
π∈Π0

Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]
. (6)

We now apply a Lagrangian relaxation to (6). Let Π1 be the set of policies that relaxes the constraint
on ax to hold only in expectation, and not almost surely, so Π1 =

{
π : Eπ

[
∑

k
x=1 ax

]
= 1
}

. It follows that
Π0 ⊆ Π1. Thus, since, taking a supremum over a larger set provides an upper bound, we know that for
any d ∈ R,

r ≤ sup
π∈Π1

Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]
= sup

π∈Π1

{
Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]
−d

[
Eπ

(
k

∑
x=1

ax

)
−1

]}

= d + sup
π∈Π1

Eπ

[
k

∑
x=1

ax (µτ,x−d)−
τ

∑
n=1

cxn

]
= d + sup

π∈Π1
Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]

= d + sup
π∈Π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]

In the first equality, we have used Eπ [∑k
x=1 ax] = 1 for all π ∈ Π1. In the second equality, we have

used the linearity of expectation and the fact that d does not depend on π to rearrange terms. In the third
equality, we have used that the optimal choice of ax in this supremum is to choose ax = 1 when µτ,x−d is
positive, and ax = 0 when it is negative. In the fourth and last equality, we have switched Π1 to Π because
the value whose supremum being taken does not depend on ax, making it sufficient to consider π ∈Π.

We have derived the same upper bound UB∗ in (5), where d has played the role of a Lagrange
multiplier on the constraint Eπ [∑k

x=1 ax] = 1, using a technique similar to that used in Whittle (1980),
Gittins, Glazebrook, and Weber (2011).

4 UPPER BOUND ON THE BAYES-OPTIMAL VALUE: STEP 2 (COMPUTATION)

In this section we give a tractable method for computing the upper bound UB∗ on the expected value of
the Bayes-optimal policy. This method has two components. First, we show that R(d) can be computed
efficiently for any given d, using a method developed in Xie and Frazier (2013). Second, we show that
d 7→ R(d) is convex in d, allowing efficient computation of UB∗ with a standard method for minimization
of a one-dimensional convex function that uses only function values, such as Fibonacci search or golden
section search (Kiefer 1953).
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4.1 Computation of R(d)

As written in (4), computation of R(d) requires solving a dynamic program whose state space includes
every possible value of the 2k-dimensional vector (µnx,σ

2
nx : x = 1, . . . ,k), for which memory requirements

and computation time scale exponentially in k, making computation intractable except when k is very small.
The essential idea behind this technique is to use the fact that alternatives are independent of each

other, and costs are additive, to rewrite R(d) as the sum of the values of k different sub-problems, each of
which is much easier to solve than the original problem,

R(d) =
k

∑
x=1

Rx(d), (7)

where Rx(d) is

Rx(d) = d/k+ sup
π∈Πx

Eπ

[
(µτ,x−d)+−

τ

∑
n=1

cx

]
,

and Πx is the set of policies with xn = x for all x, i.e., that only measure alternative x. Calculating Rx(d)
requires solving a dynamic program whose state space is only two-dimensional, as it contains only µn,x
and σ2

n,x for a single x. Solving such a low-dimensional dynamic program is tractable, and the computation
to solve k 2-dimensional dynamic programs scales only linearly in k.

Figure 1 shows Rx as a function of d, with k taking values 1,2,3 and 100, and the other parameters
fixed to µ0x = 0, σ2

0,x = 1, λx = 10, cx = e−3. The figure suggests that Rx is convex in d, foreshadowing
the result on convexity of R (though not Rx) to come in Section 4.2.

Figure 1: Rx(d) as a function of d, when µ0x = 0, σ 2
0,x = 1, λx = 10, cx = e−3, for different values of k.

From left to right, k = 1,2,3,100. R(d) = ∑
k
x=1 Rx(d), and our upper bound on the value of a Bayes-optimal

procedure is UB∗ = infd R(d).

The decomposition (7) was previously reported, and justified formally, in Xie and Frazier (2013),
which considered the related problem of multiple-comparisons with a known standard (MCS). The quantity
R(d)−d is actually the value of a Bayes-optimal procedure for a variant of this MCS problem, which Xie
and Frazier (2013) refers to as the variant for normal sampling, linear terminal payoff, and infinite horizon.

Here, we briefly describe this variant of the MCS problem. It arises when we sample exactly as
in Section 2, paying a cost for each sample as before, but when sampling stops, our goal is not to
find the alternative with the best true mean θx, but is instead to find the set of alternatives whose true
means are above a threshold d, {x : θx ≥ d}. At time τ , in this problem, the decision-maker chooses
a set of alternatives, and earns a reward of θx− d for every alternative selected, and a reward of 0 for
every alternative not selected. The Bayes-optimal way to make this selection decision is to choose to
include an alternative x iff 0 ≤ Eτ [θx− d] = µτ,x− d, making the optimal set of alternatives to include
Bτ := {x : µτ,x−d ≥ 0}. When the selection decision is made in this way, the resulting expected reward
is Eπ

[
∑x∈Bτ

(θx−d)
]
= Eπ

[
Eτ

[
∑x∈Bτ

(θx−d)
]]

= Eπ
[
∑x∈Bτ

(µτ,x−d)
]
= Eπ

[
∑

k
x=1 (µτ,x−d)+

]
, by the
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tower property of conditional expectation. Including the sampling costs, the value of a Bayes-optimal
policy for this variant of the MCS problem is supπ∈ΠEπ

[
∑

k
x=1 (µτ,x−d)+−∑

τ
n=1 cxn

]
, which is exactly

R(d)−d.
It is also useful for development in Section 5 to define Vx(d) = Rx(d)−d/k− (µ0,x−d)+. We have

subtracted from Rx(d) the term d/k, as well as the value (µ0,x−d)+ that we would receive in expectation
in the MCS problem if we were forced to stop immediately and estimate whether θx is above d or below
d. Thus, Vx(d) can be seen as the optimal incremental reward that can be obtained through sampling,
in an MCS problem with a single alternative. Xie and Frazier (2013), in its discussion of MCS with
linear terminal payoff, normal sampling and infinite horizon, shows that Vx is non-negative, symmetric,
maximized at d = µ0,x, with bounded support. The methods described in Xie and Frazier (2013) actually
compute Vx(d), from which Rx(d) can be determined via

Rx(d) = d/k+(µ0,x−d)++Vx(d).

4.2 Convexity of R(d)

We now show that R is convex, allowing efficient computation of UB∗ = infd R(d) with Fibonacci search
or golden section search.
Proposition 1 R is a convex function.

Proof. Let Π denote the complete set of policies. Since point-wise supremum preserves convexity, it
suffices to show that g : R×Π 7→ R, defined by

g(d,π) = Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]
,

is convex in d for any given π . Now for a given π ,

g(d,π) =
∫

h(d, ~ω) pπ (~ω) d~ω,

where

~ω = (τ,x1, . . . ,xτ ,µτ,1, . . . ,µτ,k) , h(d, ~ω) =
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn ,

and pπ (~ω) is the probability distribution of ~ω given the specified priors and the sampling policy π . Since
h is convex in d for any given ~ω , its integral (infinite sum) g is also convex in d.

5 SPECIAL CASES IN WHICH THE UPPER BOUND IS TIGHT

In general, the upper bound UB∗ is not tight. However, the following theorems present two special cases
in which the upper bound UB∗ is tight, i.e., in which it is strictly equal to the optimal expected value r.
Theorem 1 If k = 1, then UBs = UB∗ = r.

Proof. First note that UBs = E [θx] = µ0,x, and that the optimal policy is to stop without taking any
samples at τ = 0, with r = E [θx] = µ0,x.

R(d) = d +(µ0,x−d)++Vx(d) =

{
d +Vx(d), if d ≥ µ0,x

µ0,x +Vx(d), otherwise
.

Since Vx is symmetric and maximized at d = µ0,x, we know

UB∗ = inf
d

R(d) = R(−∞) = µ0,x +Vx(−∞) = µ0,x.
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Figure 2: Upper bounds UB∗ and UBs and lower bound LB on the value of a Bayes-optimal procedure
for R&S problems with µ0x = 0, σ2

0,x = 1, λx = 10, and cx = c for all x. UBs is a simple upper bound
computed by supposing that the best alternative is revealed without sampling, and UB∗ is computed using
the methods described in this paper. LB is the expected value of the best existing procedure for the given
problem parameters, among a collection of procedures tested, as computed using Monte Carlo simulation.
The left plot fixes k = 3 and varies c from e−4 to e−2. The right plot fixes c = e−3 and varies k.

Theorem 2 If k = 2 and σ 2
0,1 = 0, then UB∗ = r.

Proof. Since alternative 1 has known value µ0,1, the optimal sampling policy only samples from alternative
2, and µn,1 = µ0,1 for all n. It follows from (2) that

r = sup
π

Eπ

[
max{µ0,1,µτ,2}−

τ

∑
n=1

cxn

]
= µ0,1 + sup

π

Eπ

[
(µτ,2−µ0,1)

+−
τ

∑
n=1

cxn

]
.

By (5), we know

r ≤ UB∗ ≤ µ0,1 + sup
π

Eπ

[
(µτ,2−µ0,1)

+−
τ

∑
n=1

cxn

]
= r.

6 NUMERICAL RESULTS

In this section we apply the technique in Section 4 for computing the proposed upper bound UB∗ on several
test problems, to bound the optimality gaps of existing R&S procedures.

In our numerical experiments, we implement a number of benchmarking policies, each of which is the
combination of a sampling rule among KG1 (Frazier and Powell 2008), KG∗ (Frazier and Powell 2010),
ESPb (Chick and Frazier 2012), and a stopping rule among EOCc,k (Chick and Frazier 2012), KG∗ (Frazier
and Powell 2010), ESPb (Chick and Frazier 2012). The best expected value of these policies serve as a
lower bound on the expected value of the Bayes-optimal policy. We denote this lower bound by LB.

First, in Figure 2, we consider a collection of problems with homogeneous priors µ0x = 0, σ2
0,x = 1, on

the unknown means, homogeneous sampling variances λx = 10, and homogeneous sampling costs, cx = c
for all x. We first fix k = 3 and vary log(c) (where log indicates the natural logarithm) within [−4,−2],
and then fix log(c) =−3 and vary k within [2,15]. Figure 2 shows the resulting upper bounds UBs, UB∗,
and the lower bound LB, on the Bayes-optimal value.
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Figure 2 shows that the proposed upper bound UB∗ improves dramatically over the naive upper bound
UBs. Moreover, the optimality gap provided by UB∗ vanishes as c increases, and stabilizes as k increases.
We hypothesize that the optimality gap vanishes as c increases because, when c is large, both the Bayes-
optimal R&S procedure, and the Bayes-optimal MCS procedure used to compute UB∗, stop sampling
immediately, without taking any samples. When both procedures stop immediately, then µτ,x = µ0,x, and
the bound is tight.

Figure 3: Upper bounds UB∗ and UBs and lower bound LB on the value of the Bayes-optimal procedure for
R&S problems with heterogeneous priors. We set σ2

0,x = 1, λx = 10, cx = e−3 for all x, k = 3, µ0,1 = µ0,2 = 0,
and µ0,3 = δ , and plot bounds as a function of δ .

Second, in Figure 3, we consider problems with non-homogeneous priors on the unknown means. We
set σ 2

0,x = 1, λx = 10, cx = e−3 for all x, fix k = 3, µ0,1 = µ0,2 = 0, and vary µ0,3 = δ between [0,0.5].
UB∗ gives a significantly tighter bound than does UBs, and the gap vanishes for sufficiently large δ . We
hypothesize that the optimality gap vanishes for large δ because a large difference between the best and
second-best prior allows a well-chosen value of d to be between the best and second-best values of µτ,x
with a probability close to 1, and when this occurs the bound in Lemma 1 is tight.

7 CONCLUSIONS

We have provided a computationally tractable method for computing upper bounds on the value of a
Bayes-optimal procedure for the Bayesian R&S problem with independent normal samples, an independent
normal prior, and an infinite horizon with a cost per sample. These upper bounds can be used to judge
how far from optimality existing procedures are, for a given set of problem parameters, and can be used
to judge where future algorithmic development can be directed.
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