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ABSTRACT

Model-based optimization algorithms are effective for solving optimization problems with little structure.
The algorithms iteratively find candidate solutions by generating samples from a parameterized probabilistic
model on the solution space. In order to better capture the multi-modality of the objective function than
the traditional model-based methods which use only a single model, we propose a framework of using a
population of models with an adaptive mechanism to propagate the population over iterations. The adaptive
mechanism is derived from estimating the optimal parameter of the probabilistic model in a Bayesian manner,
and thus provides a proper way to determine the diversity in the population of the models. We develop
two practical algorithms under this framework by applying sequential Monte Carlo methods, provide some
theoretical justification on the convergence of the proposed methods, and carry out numerical experiments
to illustrate their performance.

1 INTRODUCTION

We consider deterministic global optimization problems, where the objective functions have little structure,
such as convexity and differentiability, and sometimes can only be assessed by “black box” evaluations.
These problems have a wide range of applications and are usually difficult to solve. Stochastic search methods
are often effective and promising in solving these problems. One class of stochastic search methods generate
new candidate solutions from the neighborhood of the previous solutions, such as simulated annealing
(Kirkpatrick et al. 1983, Aarts and Laarhoven 1989), genetic algorithms (Goldberg 1989), tabu search
(Glover 1990), nested partitions (Shi and Ólafsson 2000), and sequential Monte Carlo simulated annealing
(Zhou and Chen 2013). Another class of stochastic search methods, under the name of model-based
methods (Zlochin et al. 2004), generate candidate solutions from a probabilistic model and update the
parameter of the model based on the function evaluations of the previous candidate solutions. Examples
of model-based methods include annealing adaptive search (Romeijn and Smith 1994, Zabinsky 2003), ant
colony optimization (Dorigo and Gambardella 1997), estimation of distribution algorithms (Larranaga and
Lozano 2002), cross-entropy method (Rubinstein and Kroese 2004), model reference adaptive search (Hu
et al. 2007), and gradient-based adaptive stochastic search (Zhou and Hu 2013, Chen et al. 2013).

In the model-based methods listed above, only one single model is used to generate candidate solutions
at each iteration. To better capture the multi-modality of the objective function, we may generate candidate
solutions from a population of probabilistic models at each iteration. There has been very little work
on population model-based methods, probably due to the difficulty of propagating multiple models and
determining the number of samples to draw from each model. To our knowledge, Hu et al. (2011) is the
only work using multiple models in model-based methods. They propose an approach with dynamic sample
allocation, which aims at efficiently allocating the budget of samples among several models to achieve
better performance. In this paper, we propose a new framework of population model-based optimization
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(PMO) by converting the optimization problem to a parameter estimation problem, where we estimate the
parameter of the optimal model that is a degenerate distribution concentrating on the optimal solution.
The parameter is estimated in a Bayesian manner by tracking the posterior distribution of the parameter
given some observations related to the objective function evaluations. In this way, a population of models
are generated according to the posterior distribution of the parameter, and the diversity of the population
is determined by the spread of the posterior distribution, which is in turn updated based on the function
evaluations. In implementation, the parameter is estimated by sequential Monte Carlo (SMC) methods
(Doucet et al. 2001) — a class of Monte Carlo methods that empirically approximate and track the posterior
distribution of the unobserved state when noisy observations arrive sequentially in time. SMC methods
were first introduced into model-based optimization by Zhou et al. (2008) and Zhou et al. (2013). In
summary, the contributions of this paper include (1) a new framework of population model-based methods
to better capture the shape of the objective function; (2) two practical algorithms: population model-based
optimization with sequential Monte Carlo (PMO-SMC) and population model-based optimization with
projection sequential Monte Carlo (PMO-PSMC); (3) theoretical justification on the convergence of the
proposed methods.

The rest of the paper is organized as follows. In section 2, we introduce the basic idea of our proposed
methods. In section 3, we formally propose the framework of PMO, provide the convergence analysis, and
develop two numerical algorithms. We present the numerical results in section 4, and finally conclude the
paper in section 5.

2 PROBLEM FORMULATION

We consider the global optimization problem:

x∗ = argmax
x∈X

H(x), (1)

where the solution space X is a nonempty compact set in Rn, and n is the dimension of the problem.
We assume there exists a unique x∗ ∈X such that H(x) < H(x∗) = H∗, ∀x 6= x∗, x ∈X . The objective
function H(·): X → R is a deterministic real-valued bounded function on X , i.e., there exists a lower
bound Hl >−∞ and an upper bound Hu < ∞ such that Hl ≤ H(x)≤ Hu, for any x ∈X .

To solve problem (1), a model-based optimization method relies on a parameterized probabilistic model,
i.e. a family of parameterized sampling distributions { f (·,θ)|θ ∈ Θ}, over the solution space X , where
Θ is a compact subset of Rm and m is the dimension of the parameter. These parameterized distributions
characterize the belief about the promising regions of the solution space. A model-based optimization
method at iteration k mainly consists of two steps: (1) generate candidate solutions from f (·,θk); (2)
compute the updated parameter θk+1 ∈ Θ for the sampling distribution of the next iteration based on the
performance of the current candidate solutions. Under a proper parameter updating procedure, the sequence
of sampling distributions { f (·,θk)} will become more and more concentrated on the promising regions
of the solution space. Ideally, the sequence of sampling distributions will eventually converge to f (·,θ ∗),
where θ ∗ is the optimal parameter such that f (·,θ ∗) concentrates on the optimal solution x∗.

Motivated by the formulation of model-based methods in finding the optimal parameter θ ∗, we may
view the optimization problem as a parameter estimation problem that estimates the optimal parameter θ ∗

based on the function evaluations. We estimate the parameter in a Bayesian way by first introducing the
following dynamic state-space model:

Xk ∼ f (·;θk),

Yk = H(Xk)−Vk. (2)

Xk ∈X is the unobserved state that follows the distribution f (·;θk) parameterized by the unknown parameter
θk ∈Θ. The true value of the unknown parameter θk is the optimal parameter θ ∗, and thus the underlying
value of the unobserved state Xk is the optimal solution x∗. Yk is the noisy observation of the optimal function
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value H(xk), which is equal to H∗, and Vk is the observation noise. In an optimization algorithm, Yk comes
from the function evaluations of candidate solutions and the distribution of Vk brings in randomization into
the algorithm. To estimate the unknown parameter, we track the posterior distribution bk(θk), p(θk|y1:k),
where y1:k denotes the sequence of the received observations up to iteration k, i.e. y1:k = {y1, · · · ,yk} and
yk is a realization of the observation Yk. As the iteration number increases, we gather more information
about the true parameter and the true state value. With an appropriate choice of the observation and the
distribution of the observation noise, the posterior distribution bk(θk), which is our belief about the true
parameter, will become more and more concentrated on the optimal parameter θ ∗. The details about how
to choose the observations and the distribution of the noise will be discussed in section 3.

Based on the above idea of parameter estimation, we propose a framework of population model-based
optimization methods. At each iteration, the following three steps are carried out:

(1) Generate a population of probabilistic models according to bk−1(θk−1).
(2) Generate candidate solutions from the population of models yielded in step (1).
(3) Update the posterior distribution on the parameter to bk(θk) based on the observation yk, i.e., function

evaluation at some candidate solution.

In this framework, the parameter is estimated in terms of the posterior distribution bk(θk). This means we
may get multiple samples of the parameter after sampling from its posterior distribution, and the diversity
of the samples is determined by the spread of the posterior distribution. This provides a proper way to
propagate the population of models. The use of a population of models helps to capture the shape of the
objective function and distribute search in multiple promising regions of the solution space.

3 POPULATION MODEL-BASED OPTIMIZATION

3.1 Framework

As mentioned above in section 2, the optimization problem (1) can be viewed as a parameter estimation
problem with the dynamic state-space model (2). Let the probability density function (p.d.f.) of the
observation noise Vk be ϕ(·), and we have

p(yk|xk) = ϕ(H(xk)− yk). (3)

Thus, the state-space model (2) can be represented in terms of distributions

Xk ∼ f (·;θk),

Yk ∼ ϕ(H(xk)− yk). (4)

Based on the state-space model (4), we can solve the optimization problem by iteratively estimating the
optimal parameter θ ∗ in a Bayesian manner by tracking the posterior distribution bk(θk). One of the
widely-used methods is to treat the unknown parameter as a component of the state vector, with the state
equation

θk = θk−1, (5)

where we abuse the notation θ to denote both the state and its realization. Now the state vector becomes
(Xk,θk). Denote the joint posterior distribution of the state X and the parameter θ by

bk(xk,θk), p(xk,θk|y1:k).

Thus, the posterior distribution of the parameter θ is

bk(θk), p(θk|y1:k) =
∫

X
bk(xk,θk)dxk. (6)
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We can estimate the optimal parameter in a Bayesian manner by tracking the posterior distribution bk(θk).
Since the computation of bk(θk) is usually analytically intractable, we use sequential Mont Carlo (SMC)

methods to approximate the posterior distribution bk(θk) in implementation. The issue of applying SMC
to (5) is that there is no evolution on θ , so the candidate samples of θ will only be limited to the initial
samples and may cause sample degeneracy. A pragmatic method to overcome this problem is to add an
artificial diminishing noise Γk (Liu and West 2001):

θk = θk−1 +Γk. (7)

The noise should be small such that (7) does not differ too much from (5). By (7), the samples of
the parameter evolve very slowly, and thus the algorithm has slow convergence rate. To accelerate the
evolution on θ , we introduce a new method projection SMC for parameter estimation based on the work
of Zhou et al. (2010) and Azimi-Sadjadi and Krishnaprasad (2005). This idea is to project bk−1(θk−1)
onto a parameterized distribution g(·;λk) and generate new samples from g(·;λk). The details of SMC and
projection SMC for parameter estimation will be provided in section 3.3.

In the following, we derive how to propagate bk−1(xk−1,θk−1) to bk(xk,θk). Denote

b̃k−1(θk), p(θk|y1:k−1).

By adding artificial noise,

b̃k−1(θk) =
∫

Θ

bk−1(θk−1)p(θk|θk−1)dθk−1, (8)

where the transition density p(θk|θk−1) is induced by the distribution of Γk and (7). By projection,

b̃k−1(θk) = g(θk;λk). (9)

Define
b̃k−1(xk,θk), p(xk,θk|y1:k−1) = p(xk|θk)p(θk|y1:k−1) = f (xk;θk)b̃k−1(θk). (10)

According to the Bayes rule and (3), the posterior distribution bk(xk,θk) can be expressed by

bk(xk,θk) = p(xk,θk|y1:k)

=
p(yk|xk,θk,y1:k−1)p(xk,θk,y1:k−1)

p(y1:k)

=
p(yk|xk)p(xk,θk|y1:k−1)

p(yk|y1:k−1)

=
ϕ(H(xk)− yk)b̃k−1(xk,θk)∫

X

∫
Θ

ϕ(H(xk)− yk)b̃k−1(xk,θk)dθkdxk
. (11)

Thus, we have
bk(xk,θk) ∝ ϕ(H(xk)− yk)b̃k−1(xk,θk). (12)

Therefore, the posterior distributions are propagated by

bk−1(xk−1,θk−1) =⇒ bk−1(θk−1) =⇒ b̃k−1(θk) =⇒ b̃k−1(xk,θk) =⇒ bk(xk,θk).

In our proposed optimization algorithms, the noisy observation value yk is the function evaluation at
some candidate solution, and thus at the true value of the unobserved state Xk (Xk = x∗) the function value
H(xk) is no less than the observation value yk, i.e. H(xk)≥ yk. By (12), bk(xk) ∝ ϕ(H(xk)− yk)b̃k−1(xk),
where bk(xk) and b̃k−1(xk) are marginal distributions of xk associated with the joint distributions bk(xk,θk)
and b̃k−1(xk,θk) respectively. Thus, the support of bk(xk) is a subset of {xk ∈X : H(xk)≥ yk}. To make
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sure the support of bk(xk) concentrating on more promising regions of the solution space as the iteration
number increases, the observation sequence {yk} should be monotonically increasing. One way to obtain
the observation is to choose from the (1−ρ)-quantile of H(x) with respect to the posterior distribution
b̃k(x). Denote the quantile by

γk , sup
l
{l : Pb̃k

(x ∈X : H(x)≥ l)≥ ρ},

where Pb̃k
(·) denotes the probability with respect to b̃k(x). To create an increasing observation sequence,

we update yk = γk, if γk ≥ yk−1 + ε , where ε is a small positive constant, and keep the observation the
same, i.e., yk = yk−1, otherwise. We use the (1−ρ)-quantile, since we want to keep searching the most
promising regions of the solution space as well as exploring more to produce better estimation of θ . The
parameter ρ serves as a trade-off parameter between exploitation and exploration. With small value of ρ ,
we exploit more on the current best estimation; with large value of ρ , we explore in a relatively larger area.

In summary, we propose the following framework for population model-based optimization.
Population Model-based Optimization (PMO)

1. Initialization: Set the initial density b0(θ0), and set k = 1.
2. Evolution: Obtain b̃k−1(θk) based on perturbation by (8) or projection by (9) and b̃k−1(xk,θk) by

(10).
3. Observation: For k = 1, y1 := γ1. For k > 1, if γk ≥ yk−1 + ε , then set yk := γk; else set yk := yk−1.
4. Updating: Compute bk(xk,θk) by (11).
5. Stopping: If a stopping criterion is satisfied, then stop; else, set k = k+1 and go to step 2.

3.2 Convergence Analysis

In this section, we show that, under some assumptions,

lim
k→∞

Ebk [H(X)] = lim
k→∞

∫
X

∫
Θ

H(x)bk(x,θ)dθdx = H∗. (13)

In our formulation, we consider the case that H(x) has a unique global optimal solution, thus (13) is
equivalent to the fact that the marginal posterior distributions bk(x) and bk(θ) are Dirac delta functions
concentrated on the optimal solution x∗ and optimal parameter θ ∗ as k→ ∞. We introduce the following
assumptions, and the details for the proofs of the theorems in this section can be found in Chen and Zhou
(2013).
Assumption 1 The p.d.f. ϕ(·) has support on [0,Hu−Hl], and is continuous, positive, strictly increasing
on its support.
Assumption 2 For any constant Hc < H(x∗), the set {x ∈X : H(x)≥Hc} has a strictly positive Lebesgue
measure.
Assumption 3 For any x ∈X , the parameterized density f (x;θk)> 0 for all finite k.

Assumption 4 limk→∞ ∑
k
i=1 ci < ∞, where ck , Ebk [H(X)]−Eb̃k

[H(X)].

Assumption 5 limk→∞(b̃k(x)−bk(x)) = 0 almost everywhere in X .
Assumption 1 is a general condition on the p.d.f. of the observation noise Vk. Since yk is the objective

function evaluation at some candidate solution, at the true value of the unobserved state Xk, i.e., xk = x∗,
we have H(xk)≥ yk. In addition, since H(xk)≤ Hu and yk ≥ Hl , the noise Vk = H(Xk)−Yk ∈ [0,Hu−Hl]
by our formulation. With the strictly increasing property of ϕ(·), we have ϕ(H(x1)−yk)> ϕ(H(x2)−yk),
for any x1,x2 ∈X satisfying H(x1) > H(x2) ≥ yk. This ensures that distribution bk evolves to be more
concentrated on the regions with larger function values. Assumption 2 ensures that the neighborhood of
the optimal solution x∗ has a positive probability to be sampled, and it is satisfied by many functions, such
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as a continuous function. Assumption 3 can be satisfied by most of the parameterized distributions, such
as normal distributions. Assumptions 4 and 5 can be considered as conditions on the magnitude of the
perturbation on the parameter state or on the approximation accuracy of the density projection. Assumptions
4 and 5 require that the artificial noise Γk goes to zero or the error of the density projection goes to zero
sufficiently fast as k goes to infinity.
Theorem 1 Under Assumptions 1-5, limk→∞Ebk [H(X)] = H∗.

In the following, we show the convergence of PMO with perturbation on the parameter evolution under
some more specific Assumptions 6-8, which can be considered as a special case that satisfies Assumptions
4 and 5. Since yk is monotonically increasing and upper bounded by H∗ and is updated only when
γk ≥ yk−1 + ε , there exists K < ∞ such that yk = yK , ∀k ≥ K.
Assumption 6 The perturbation Γk is uniformly distributed on the support [−δk,δk]

m, where δk = δαk,
δ ≥ 0 and 0≤ α < ϕ(0)

ϕ(Hu−yK)
.

Assumption 7 bk(θ) is continuous on Θ, and differentiable on int(Θ), i.e., the interior of Θ.
Assumption 8 There exists a finite constant A, such that ‖∇θ b0(θ)‖ ≤ A, ∀θ ∈ int(Θ).

Assumption 6 restricts the magnitude of the perturbation Γk. Since ϕ(·) is a strictly increasing function
on the support [0,Hu−Hl], we have α < 1. Thus, δk ↘ 0 as k→ ∞. Diminishing perturbation allows
more exploration at the beginning and more exploitation on searching the promising solution regions as
iteration number increases. We use the uniform distribution for Γk because of its simple p.d.f. for further
analysis. We can also use other distribution for Γk in practice as long as the magnitude of the perturbation
diminishes and goes to 0, i.e. normal distributions with mean 0 and variance goes to 0 as k→ 0. For
Assumption 7, the differentiability of bk(θ) mainly depends on the differentiability of f (x;θ) and p(θ |θk)
with respect to θ . The uniform distribution used in Assumption 6 already ensures the differentiability of
p(θ |θk), and the differentiability of f (x;θ) is easily satisfied by many parameterized distributions, such as
normal distributions. Assumption 8 restricts the initial setting of the distribution of the parameter, and it
can be satisfied easily by many distributions.
Theorem 2 Under Assumptions 1-3 and 6-8, limk→∞Ebk [H(X)] = H∗.

3.3 Implementations

In implementation, we apply sequential Monte Carlo (SMC) to estimate the unobserved state and the
unknown parameter jointly based on the observations by tracking the posterior distribution. Given the
initial samples

{(
xi

0,θ
i
0

)}N
i=1 (N is the sample size) that are i.i.d. from b0(x0,θ0), SMC methods recursively

propagate the pervious samples
{(

xi
k−1,θ

i
k−1

)}N
i=1 that is an empirical approximation of bk−1(xk−1,θk−1)

to samples
{(

xi
k,θ

i
k

)}N
i=1 that approximate the posterior distribution bk(xk,θk).

We first present how to propagate the samples by adding artificial noise on θ with state equation
(7). From samples

{(
xi

k−1,θ
i
k−1

)}N
i=1, we can generate samples

{(
x̃i

k, θ̃
i
k

)}N
i=1 that empirically approximate

b̃k−1(xk,θk) based on (8) and (10) by

θ̃
i
k ∼ p(θk|θ i

k−1), i = 1, · · · ,N,

x̃i
k ∼ f (xk; θ̃

i
k), i = 1, · · · ,N.

By importance sampling, (11) can be empirically approximated by

bk(xk,θk)≈
N

∑
i=1

ϕ(H(x̃i
k)− yk)

∑
N
i=1 ϕ(H(x̃i

k)− yk)
δ ((xk,θk)− (x̃i

k, θ̃
i
k)),
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where δ (·) is the Kronecker delta function. Let the normalized weight for sample
(
x̃i

k, θ̃
i
k

)
be

W i
k =

ϕ(H(x̃i
k)− yk)

∑
N
i=1 ϕ(H(x̃i

k)− yk)
, i = 1, · · · ,N.

Then, the empirical approximation of bk(xk,θk) is

bN
k (xk,θk) =

N

∑
i=1

W i
kδ ((xk,θk)− (x̃i

k, θ̃
i
k)).

The weights W i
k are proportional to ϕ(H(xi

k)−yk). The strictly increasing property of ϕ(·) assigns higher
weights on the promising regions of the solutions, and specifically the optimal solution x∗ has the strictly
largest weight. Therefore, the posterior distribution bk(xk,θk) evolves to be more concentrated on the
promising regions. We denote the samples and their associated weights by

{(
x̃i

k, θ̃
i
k

)
,W i

k

}N
i=1. Then, we

can produce the samples with equal weights
{(

xi
k,θ

i
k

)
, 1

N

}N
i=1 approximately according to bk(xk,θk) from

the weighted samples
{(

x̃i
k, θ̃

i
k

)
,W i

k

}N
i=1 by a resampling step. The resampling procedure is introduced to

generate more samples with high weights and less samples with low weights, which helps concentrate more
samples on the promising regions as well as avoiding the degeneracy problem of the weights. In summary,
we propagate the samples as follows:{(

xi
k−1,θ

i
k−1
)
,

1
N

}N

i=1
=⇒

{(
x̃i

k, θ̃
i
k
)
,W i

k
}N

i=1 =⇒
{(

xi
k,θ

i
k
)
,

1
N

}N

i=1
.

Therefore, given the samples according to b0(x0,θ0), we may recursively generate random samples to
empirically approximate the posterior distribution bk(xk,θk).

In projection SMC parameter estimation, we project the empirical posterior distribution bN
k−1(θk−1)

onto a parameterized distribution g(·;λk), and generate samples
{

θ i
k

}N
i=1 from g(·;λk). The projection is

conducted by minimizing the Kullback-Leibler (KL) divergence between these two distributions.

λk , argmin
λ

DKL
(
bN

k−1(θ)‖g(θ ;λ )
)
, (14)

where

DKL
(
bN

k−1(θ)‖g(θ ;λ )
)
,
∫

Θ

bN
k−1(θ)

g(θ ;λ )
bN

k−1(θ)dθ .

KL divergence is used to measure the distance between two distributions. Lower KL divergence indicates
that these two distributions are more similar. When g(·;λk) is an exponential family distribution, (14)
admits an analytical solution. Then, we generate samples of the parameter and candidate solutions by

θ
i
k ∼ g(θk;λk), i = 1, · · · ,N,

xi
k ∼ f (xk;θ

i
k), i = 1, · · · ,N.

By importance sampling and (11), the empirical distribution bN
k (θk) that approximates bk(θk) is

bN
k (θk) =

N

∑
i=1

W i
kδ (θk−θ

i
k),

where the normalized weights are

W i
k =

ϕ(H(xi
k)− yk)

∑
N
i=1 ϕ(H(xi

k)− yk)
, i = 1, · · · ,N.
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Therefore, we propagate the samples as follows:{(
xi

k−1,θ
i
k−1
)
,W i

k−1
}N

i=1 =⇒
{(

xi
k,θ

i
k
)
,W i

k
}N

i=1 .

Using projection SMC for parameter estimation not only avoids adding artificial noise to the state of the
parameter but also avoids the resampling step. Moreover, projection SMC may also save the computational
time, since generating samples from the projected distribution helps to evolve the samples much faster than
adding artificial noise.

Applying SMC and projection SMC to empirically approximate the posterior distribution bk(xk,θk)
in PMO, we propose two numerical algorithms: population model-based optimization with sequential
Monte Carlo (PMO-SMC) and population model-based optimization with projection sequential Monte
Carlo (PMO-PSMC).
Algorithm 1 Population Model-based Optimization with Sequential Monte Carlo (PMO-SMC)

1. Initialization: Set initial density b0(θ0), and generate samples {θ i
0}N

i=1 ∼ b0(θ0). Set k = 1.
2. Sampling: For i = 1, · · · ,N, generate sample θ̃ i

k ∼ pk(θk|θ i
k−1) and sample x̃i

k ∼ f (·; θ̃ i
k).

3. Observation: Set γ̂k as (1−ρ)-quantile of {H(x̃i
k)}N

i=1. For k = 1, y1 := γ̂1. For k > 1, if γ̂k ≥ yk−1+ε ,
then set yk := γ̂k; else, set yk := yk−1.

4. Updating: Compute weights according to W i
k ∝ ϕ(H(x̃i

k)− yk) and ∑
N
i=1W i

k = 1, i = 1, · · · ,N.
5. Resampling: Draw samples

{(
xi

k,θ
i
k

)}N
i=1 from the empirical distribution

{(
x̃i

k, θ̃
i
k

)
,W i

k

}N
i=1.

6. Stopping: If a stopping criterion is satisfied, then stop; else, set k = k+1 and go to step 2.

Algorithm 2 Population Model-based Optimization with Projection Sequential Monte Carlo (PMO-PSMC)

1. Initialization: Set initial density b0(θ0) and initial weights
{

W i
0

}N
i=1 = 1

N . Generate samples
{θ i

0}N
i=1 ∼ b0(θ0). Set k = 1.

2. Projection: Project the empirical distribution bN
k−1(θk−1) = ∑

N
i=1W i

k−1δ (θk−1−θ i
k−1) to a parame-

terized distribution g(·;λk) by (14).
3. Sampling: For i = 1, · · · ,N, generate sample θ i

k ∼ g(·;λk) and sample xi
k ∼ f (·;θ i

k).
4. Observation: Set γ̂k as (1−ρ)-quantile of {H(xi

k)}N
i=1. For k = 1, y1 := γ̂1. For k > 1, if γ̂k ≥ yk−1+ε ,

then set yk := γ̂k; else, set yk := yk−1.
5. Updating: Compute weights according to W i

k ∝ ϕ(H(xi
k)− yk) and ∑

N
i=1W i

k = 1, i = 1, · · · ,N.
6. Stopping: If a stopping criterion is satisfied, then stop; else, set k = k+1 and go to step 2.

4 NUMERICAL EXPERIMENTS

In this section, we test the performance of PMO-SMC and PMO-PSMC on some well-known continuous
and unconstrained benchmark global optimization problems from Hu et al. (2007), and compare their
performance with model reference adaptive search (MRAS) (Hu et al. 2007) and multi-start simulated
annealing (SA). The problems we consider are listed below with their dimensions in the parentheses.

(1) Powell function (n=20)

H1(x) =−1−
n−2

∑
i=2

[
(xi−1 +10xi)

2 +5(xi+1− xi+2)
2 +(xi−2xi+1)

4 +10(xi−1− xi+2)
4] ,

where x∗ = (0, · · · ,0)T , H1(x∗) =−1.
(2) Rosenbrock function (n=10)

H2(x) =−1−
n−1

∑
i=1

[
100(xi+1− x2

i )
2 +(xi−1)2] ,
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where x∗ = (1, · · · ,1)T , H2(x∗) =−1.
(3) Griewank function (n=20)

H3(x) =−
1

4000

n

∑
i=1

x2
i +

n

∏
i=1

cos
(

xi√
i

)
−1,

where x∗ = (0, · · · ,0)T , H3(x∗) = 0.
(4) Trigonometric function (n=20)

H4(x) =−1−
n

∑
i=1

[
8sin2(7(xi−0.9)2)+6sin2(14(xi−0.9)2)+(xi−0.9)2] ,

where x∗ = (0.9, · · · ,0.9)T , H4(x∗) =−1.

Specifically, Powell (H1) and Rosenbrock (H2) are badly-scaled functions; Griewank (H3) and Trigonometric
(H4) are high-dimensional multi-modal problems with a large number of local optima, and the number of
local optima increases exponentially with problem dimension.

In PMO-SMC and PMO-PSMC, we use independent multivariate normal distribution as the parameter-
ized distributions f (·;θk), where θk = (µk,σ

2
k ) and k is the iteration number. In the experiment, the initial

mean µ0 and the initial standard deviation σ0 are chosen randomly according to the uniform distribution
on [−50,50]n and [0,50]n respectively. The sample size is N = 1000, the quantile parameter ρ is set to be
0.1, and ε = 10−10. Let the p.d.f. of the observation noise ϕ(·) be

p(yk|xk) = ϕ(H(xk)− yk) ∝ (H(xk)− yk)I{H(xk)≥yk},

where I{·} is the indicator function. This choice of ϕ(·) ensures that it is a strictly increasing function on
its support. In PMO-SMC, the artificial noise Γk is uniformly distributed on [−δk,δk]

2n, where δk = δαk,
δ = 20, and α = 0.995. With the diminishing noise, the algorithm allows more exploration at the early
iterations and more exploitation later. The noise parameter α acts as the trade-off parameter between
explorative and exploitative search. In PMO-PSMC, we use independent normal distribution N (µλ ,Σλ ),
where Σλ = diag(σ2

λ
), as the projection distribution g(·;λ ) for the parameter θ .

For comparison, we also solve the above benchmark problems with MRAS and multi-start SA. For MRAS,
the parameterized exponential family distribution f (·;θk) is also chosen to be independent multivariate
normal distributions N (µk,Σk). The initial mean µ0 is generated randomly according to the uniform
distribution on [−50,50]n, and the initial covariance matrix is set to be Σ0 = 502In×n. The sample size is
chosen to be N = 1000 and the quantile parameter is ρ = 0.1, which are set to be the same as in PMO-
SMC and PMO-PSMC. In the implementation, we apply the smoothing parameter updating procedure
(Rubinstein and Kroese 2004) to prevent premature convergence. The smoothing parameter is chosen
to be ν = 0.2, which is found to work well by trial and error in experiments. Multi-start SA, a naive
population-based simulated annealing method, runs simulated annealing independently from multiple initial
candidate solutions and picks the best result among these independent runs as the final solution. In the
experiment, the initial candidate solutions are chosen according to the uniform distribution on [−50,50]n,
and the sample size is the same as in other methods, N = 1000. The initial temperature is T0 = 5×106,
and the temperature is updated by geometric form Tk = T0rk, with reduction parameter r = 0.995. The new
candidate solution around the point xi

k is generated by N (xi
k, In×n).

We run each of these four methods 50 times independently, and compare the average optimal values.
The average performance is shown in Table 1, where H∗ is the true optimal value of H(·), H̄∗ is the
average optimal value of 50 runs, std err is the standard error of the optimal function values, and Pε is the
percentage of ε-optimal solutions out of 50 runs (ε-optimal solution means the optimal value is within ε

difference from the true optimal value H∗). We consider ε = 0.01 in our experiments. In Figure 1, we plot
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the average best function values with respect to the total number of function evaluations. The comparison
is based on similar computational effort, since the function evaluation dominates the computational time
for all these four algorithms.

Table 1: Performance Comparison of PMO-SMC, PMO-PSMC, MRAS and multi-start SA
PMO-SMC PMO-PSMC MRAS multi-start SA

H∗ H̄∗(std err) Pε H̄∗(std err) Pε H̄∗(std err) Pε H̄∗(std err) Pε

H1 -1 -1(1.07E-5) 100% -1(1.10E-4) 100% -1(1.16E-11) 100% -413.5(10.69) 0%
H2 -1 -1.041(0.0022) 0% -8.483(0.0164) 0% -7.367(1.172) 0% -38.3(0.876) 0%
H3 0 -0.0022(5.69E-4)) 100% 0(0) 100% -0.0160(0.003) 56% -0.277(0.0049) 0%
H4 -1 -1(5.57E-6) 100% -1(2.15E-17) 100% -1(5.09E-16) 100% -79.65(0.694) 0%
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Figure 1: Average Performance of PMO-SMC, PMO-PSMC, MRAS and multi-stat SA

From the results, PMO-SMC and PMO-PSMC find the ε-optimal solutions in all the runs for all the
test problems except problem H2. For MRAS, the accuracy rate is 100% only for problems H1 and H4.
Multi-start SA dose not provide ε-optimal solutions in any of the test problem. In terms of convergence
speed, PMO-PSMC converges faster than MRAS, and MRAS converges faster than PMO-SMC in all the
test problems.

5 CONCLUSION

In this paper, we have proposed a framework of population model-based optimization methods, where candi-
date solutions are generated from a population of models at each iteration. We view the original optimization
problem as a parameter estimation problem that estimates the optimal parameter of the probabilistic model.
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The parameter estimation is conducted in a Bayesian manner by iteratively approximating the posterior
distribution of the parameter given the observations regarding the objective function evaluations, and thus
the diversity of the models is determined by the spread of the posterior distribution. Under this framework,
we have proposed two practical algorithms, PMO-SMC and PMO-PSMC. Numerical experiments on several
benchmark problems have shown their promising performance compared to some other existing stochastic
search methods.
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