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ABSTRACT

In principle the Method of Simulated Moments (MSM) combines simulation-based methods (e.g. Monte
Carlo methods) with non-parametric statistical estimations techniques such as General Method of Mo-
ments (GMM). The MSM is useful when there are empirical data related to the behavior of different enti-
ties. Different statistical moments (e.g. mean, variance, correlation, etc.) of empirical data can be matched
against the moments of model-generated data in order to estimate some structural parameters of the mod-
el. In this paper, we introduce the MSM as a non-parametric method of estimating the parameters of dy-
namic models. The major value of the MSM for estimating dynamic models is in its flexibility to be used
with any type of data, including cross-sectional data and time series data.

1 INTRODUCTION

Increasingly, dynamic modelers face problems where estimating model parameters from numerical empir-
ical data is a requirement. This trend is partly motivated by increasing availability of numerical data from
a large number of ongoing and one off data collection projects that survey different concepts of interest to
dynamic modelers, from individuals and firms to disease incidences and measures of economic perfor-
mance, just to name a few. For example, as of March 2013, Data.gov portal contains data on over 370
thousand machine readable datasets. Another driver of this trend is the increasing application of dynamic
models, beyond case specific corporate projects, to theoretical and academic problems (Repenning 2003,
Sterman 2006). In these cases generic models for a category of objects (e.g. individuals, firms, and coun-
tries) are desired. Parameterizing such models requires specifying the different parameters that quantify
similarities and differences across different objects, a goal often dependent on using robust and replicable
parameter estimation procedures. In fact, in light of rapid growth and dissemination of improved parame-
ter estimation methods for model calibration, hypothesis testing, and policy recommendation in social and
behavioral disciplines, continued relevance of any modeling sub-discipline may partially be tied to its
ability to remain up-to-date with the best available tools in this domain.

Closely tied to the advances of digital computer revolution, at its inception the field of system dynam-
ics (SD) was ahead of many approaches available in social sciences in using advanced analytical methods
of the time (Forrester 1961), and kept this edge for many years. For example advanced filtering and esti-
mation methods were introduced into the SD literature in the 70°s (Peterson 1975). However, over the last
three decades the research in SD has largely focused on diverse applications of the original toolbox, with
limited methodological expansions in parameter estimation domain. In contrast research in econometrics
and other related fields have provided many relevant tools over this period (Greene 2012). As a result cur-
rently many studies in SD do not report formal parameter estimates common in social science research, or
when calibration is pursued, typical measures of confidence in estimated parameter values are not report-
ed. While formal parameter estimation may not be feasible for many modeling problems, expert dynamic
modelers should be equipped with the relevant tools when numerical data is available, model purpose re-
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quires reliable parameter estimates, or the audience requires formally estimated parameters and confi-
dence intervals.

Hand-calibration is commonly practiced for assigning parameter values (Lyneis and Pugh 1996).
When formal parameter estimation procedures are used, modelers typically compare time series data
against the same variables in a model, and minimize the weighted sum of a function of the error term by
changing the uncertain parameters until best fitting estimates are found through a nonlinear optimization
algorithm (Oliva 2003). The error function is frequently defined as the squared error but absolute error
and absolute percent error terms are also common (Sterman 2000). Weights for different data points are
usually given based on the confidence the researcher has in the accuracy of the data and its relevance to
the problem at hand. When reported, confidence intervals are calculated using normality and independ-
ence assumption for error terms which, with weights proportional to the reciprocal of error variance,
would turn least squared error estimates into maximum-likelihood estimates (MLE). Bootstrapping meth-
ods are also sometimes used for estimating confidence intervals (Dogan 2007).

While these approaches cover many important estimation challenges, they each include some short-
comings. Ad hoc selection of the error term and the weights for different data points reduces the con-
sistency of the methods and their ability to provide confidence intervals. Normality and independence
may regularly be violated which negate the benefits of MLE when using squared errors. Bootstrapping,
while flexible, increases the computational costs significantly and as a result may prove infeasible for
many realistically-sized problems. Finally, all these methods rely on having time series data, and cannot
extract from distributions in cross-sectional data the dynamics that have led to those distributions. In gen-
eral the following characteristics signify the estimation procedures ideal for dynamic modelers:

e Model Independence: given that most dynamic models do not follow a fixed structural form (e.g.
linearity), estimation procedures that are independent of model structure are most beneficial.

e Analytical confidence intervals: Ability to find confidence intervals analytically is important be-
cause of the computational costs of optimizing non-linear dynamic models and replications need-
ed for bootstrapping methods.

e Assumption-free error terms: Independence and distributional assumptions on error terms for dy-
namic models are not always easy to justify so methods with fewer such assumptions are pre-
ferred.

e Applicability to diverse data types, including both time series and cross-sectional data. No single
method fully satisfies all these requirements, therefore modelers need to choose from a menu of
available estimation methods to match their problem requirements.

In this paper we offer an introduction to the Method of Simulated Moments (MSM) for application to
dynamic modeling problems that represents the characteristics discussed above. While the MSM has be-
come a major econometrics tool for the past two decades, it has been rarely applied in the system dynam-
ics literature. Barlas (2006), in the design of Behavior Pattern Testing (BTS II) approach and software,
uses some of the basic ideas of the MSM, to match moments of model against data, but does not draw on
the MSM literature or discuss issues related to confidence levels. Rahmandad and Sabounchi (2011) adapt
the MSM to estimating the parameters of an individual weight gain and loss model. While this application
follows the basic ideas of the MSM, it has some differences from the canonical the MSM procedure
which will be discussed in section 4.

The basic idea of the MSM is to define appropriate moments of data and, by changing uncertain pa-
rameters, minimize the difference between those moments and their simulated counterpart coming from
the model. Moments could be any function of data points available. However for analytical confidence in-
tervals to be available, one needs these moments to be normally distributed, often meaning that each mo-
ment is an average across a function of multiple independent observations coming from the same underly-
ing distribution (then normality follows from the central limit theorem). In practice those observations
(that feed into the moments calculations) are picked either from time series data when a system is in
steady state (e.g. stock prices over time), or at similar points in the life of similar units of observations
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(e.g. all 5-year old individuals in a country). Typically randomness plays an important role in how these
units have ended up with different observed values (e.g. different weights for similarly-aged individuals).
As a result, the MSM is best fitted for dynamic modeling problems when some of the following problem
characteristics are present:

e Population data. The MSM is suitable for estimation of generic models to population data. Differ-
ent units of data such as individuals, firms, and countries could be available. For each unit one or
more data items (e.g. weight, height, and age for individual data) could be available.

e Role of random processes. The MSM could be a good choice when models include stochastic
processes that drive the model, and their impact on the model behavior is reflected in the data
against which the model is to be calibrated, e.g. when we are trying to match the variance ob-
served across multiple units.

e Cross-sectional data. The MSM applies to both cross-sectional and time series data. Where-as
time series data include multiple data points for the same unit over time, cross-sectional data in-
cludes data points for multiple units at the same time. The MSM may be the only viable choice
for estimating dynamic models when data is cross-sectional as it allows us to extract the infor-
mation about the historical trajectories of units hidden in their cross-sectional distributions.

e Confidence Intervals. The MSM would be a suitable choice when analytical confidence intervals
are sought.

2 HISTORICAL BACKGROUND
MSM is an offspring of the Method of Moments (MM). Here we provide a quick review of the MM.

2.1 Method of Moments

As a classical estimation method in statistics, the MM is based upon finding unknown parameters of a
certain distribution by relating these parameters to the moments of the distribution and then using empiri-
cal moments (obtained from data) to back up the unknown distribution parameters. The unknown parame-
ters are estimated by equating those empirical moments with unobservable population moments and then
solving those theoretical equations (Raychaudhuri 2008). We explain this using a few examples.

2.1.1 Example 1: Normal Distribution

The most convenient (and straightforward) example for MM estimation can be expressed using a case for
the Normal distribution. Suppose you have collected a large sample of independent and identically dis-
tributed (i.i.d) observations for an experiment (a sample of heights of individuals in a country). We are
confident that the true (or the best fitting) functional form for the distribution is Normal. However, we do

not know the values for the mean ( &/ ) and variance (62 ) of this distribution to fully characterize it.

Estimating the mean is easy since we can rely on the Law of Large Numbers (L.L.N) which suggests
that the mean of a large sample of trials will converge to its true mean. So we can simply calculate

n
Z' 1ei
—_ 1=
M=
n

formula for variance o =E(X?)—(E(X))>. Here we know E(X) from our estimation of mean.

(e)
Moreover, we can calculate E(X?) using our sample E(X?) = L
n

Z,l() 2711
n

and use it as the best estimator of 1. Now we need to estimate the variance. Remember the

. Plugging back these two val-

ues into the variance equation we obtain o’ = ) Note that our ability to estimate
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the two parameters here was dependent on knowing the analytical formulas that specify the unknown pa-
rameters (U, 0'2) as a function of quantities that can be directly measured.

2.1.2 Example 2: Binomial Model

Now suppose that our data points are drawn from a binomial distribution Bi(p,n) in which p is the

probability of success and 7 is the number of trials. Let us assume we have several observations from
this distribution, but do not know the value of parameters p and n. We know that the mean and variance

of a binomial distribution is given by #=np and o* = np(1— p). Similar to the previous example we
can calculate the first and second moments of the data (E(X) and E(X?)). Using the formula for the
variance (o~ =E(X?)—(E(X))*) we express the second moment of data using the parameters of the

binomial model, E(X?)=np(1— p)+(np)’. Therefore we can now use the first and second moment
equations together to provide a system of two equations and two unknowns which can be solved to recov-
2 2
E()-EX) _E()
E(X) p

These two examples provide some intuition over the merits and difficulties of MM techniques. While
for certain probability distributions MM can be used to recover parameter values through analytical ex-
pressions, it faces two major challenges. First, we need to know the true functional form of the distribu-
tion of outcomes. Second, we should be able to express the parameters of the distribution in terms of the
data moments, a task only feasible for a small set of probability distributions. For many distributions we
cannot find an analytical (close-form) solution to relate moments to parameters. Structural models in gen-
eral and systems dynamics models in particular usually do not have an analytical solution to relate the
output of the model to its structural parameters. Therefore, the classical method of moments discussed
above is not directly applicable to these models.

er (n, p). Specifically, p =1-—

3 FROM METHOD OF MOMENTS TO METHOD OF SIMULATED MOMENTS

Mcfadden (1989) was the first who proposed using simulation instead of trying to solve the moment con-
ditions analytically. His paper was focused on discrete-response models (multinomial Probit), however he
provided theoretical foundations for more general models. Mcfadden (1989) believed that an unbiased
simulator is used in the MSM where the simulation errors are independent across observations, and the
variance introduced by simulation will be controlled by the law of large numbers operating across obser-
vations. Lee and Ingram (1991) and Duffie and Singleton (1993) extended the framework and provided a
rigorous treatment of the MSM estimators for time-series and panel-data cases and provided relevant sta-
tistics for making tests. Duffie and Singleton (1993) showed that the MSM estimator is, under regularity
conditions, consistent and asymptotically normal. Since then the MSM has been widely used in various
sub-fields of economics such as finance (both asset-pricing and corporate finance), macroeconomics, In-
dustrial Organization (I0), international trade and labor economics.

4 AN EXAMPLE FROM THE DYNAMIC MODELING LITERATURE

As mentioned earlier, Rahmandad and Sabounchi (2011) adapt the MSM to estimating the parameters of
an individual weight gain and loss model. In this section we provide a brief overview of this application
to provide a more concrete example of the MSM use. A simple model of individual’s body mass, consist-
ing of fat mass and fat free mass, is developed. The model included a few uncertain parameters. In ab-
sence of time series data, those parameters were estimated from cross sectional data on individual weights
coming from the National Health and Nutrition Examination Survey (NHANES). NHANES 2005-2006
population of 5,971 subjects was categorized into 110 subpopulations based on different ethnicities (5
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ethnicities), genders (2 genders) and age (11 age groups). For each population group two moments, aver-
age body weight and variance of body weight, were calculated as the moments to be matched, leading to a
total of 220 moments to match.

On the other hand, the model was replicated (using subscripts in Vensim software) for 5,971 instances
that matched the demographic characteristics (Age, Gender, Ethnicity) of the NHANES sample in year
2006. Initial body weight and fat fraction for these individuals were drawn from distributions of another
NHANES sample in 1999-2000. Note that each round of NHANES uses a sample different from other
rounds, thus we cannot track the same individual over time and the data is cross-sectional. The model was
then simulated to grow this synthetic population from their initial age in year 2000 to their final age (con-
sistent with NHANES sample) in year 2006. Mean and variance of weight for different subpopulations in
the simulated population was calculated in year 2006, and compared against the 220 moments coming
from the data. Weighted sum of squared errors was calculated using weights of reciprocal of variance in
each moment, itself calculated using variance and kurtosis of different moments. This error was mini-
mized by changing 17 uncertain parameters using the Vensim internal optimization engine. The estimated
parameters provided the minimum error. As a result, the authors were able to estimate a dynamic model,
including individual growth mechanisms, from cross sectional data with individuals in different age
groups.

While this application follows the basic ideas of the MSM, it has some differences from the canonical
the MSM procedure. First, in this application the number of moments (220) is larger than many typical
applications, in which the numbers of moments and parameters to be estimated are in the same order of
magnitude. Second, given the computational costs in this setting, each moment was only simulated once
whereas typically multiple simulations, using different noise seeds, shall provide the estimation for the
moment, before it is compared with data. Finally, confidence intervals were not reported in this applica-
tion.

5 BASICS OF THE MSM

Let’s go back to the previous example. Suppose you have built a model which captures the dynamics of
people’s body weight as a function of their initial weight, eating and physical exercise habits, genetics,
age, gender and other fixed and time-varying characteristics. People differ both in terms of their idiosyn-
cratic characteristics (genetics, initial weight, etc.) and their environmental factors (e.g. quality of food,
cost to exercise, social eating habits, etc.). By changing initial conditions and model parameters one will
get different dynamic paths for the agent’s (individual’s) weight as a function of her age. Suppose we
have data on the weight of several children of age 10 (our initial value) as well as at ages 11 and 12. Fur-
ther assume that we are interested in estimating a structural parameter (e.g. average weight growth per
year) which determines the weight path as a function of initial weight.

By fixing this (unknown) parameter to an initial value and simulating the model with all empirical
values for the initial weight (age 10), we will generate different paths of weight-age for a simulated popu-
lation the same size as the number of subjects in our dataset. Now we can compare the distribution of
model-predicted weight profiles at ages 11 and 12 against the empirical distributions. Specifically we can
compare the mean and variance of weight for simulated population at ages 11 and 12 against the mean
and variance at the same ages observed in the data. It is likely that our initial choice for the structural pa-
rameter leads to mean and variance weights different from those observed in the data. However these
simulated moments are a function of the parameter. By changing the structural parameter of the model we
will change both the mean and the variance of simulated weight values. We can therefore use an optimi-
zation method to search for the parameter value that minimizes the difference between model generated
mean and variance and their empirical values over all available moments (i.e. mean and variance of age at
ages 11 and 12). This is the core idea behind the method of simulated moments: we simulate the moments
of the model to find simulated counterparts for observed data, then change the structural parameters until
the simulated moments match the observations as closely as possible.
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6 FORMAL DEFINITIONS

Consider a fully-specified model, i.e. a model that can be simulated given a set of parameter values. As-
sume that there are d unknown parameters which we are interested in estimating. Let’s assume that our

empirical data {xt} are observed for T different agents. There are P moments functions (sometimes

called descriptive statistics) that are available in the data for each agent and m;, (¢),i € {1,...,P} is the i th

moment of the data for agent t. The i” element of vector of data moments M ; 1s defined by:
- =T
M, =—>m(1).
=

Notice that since we only have access to a sample of data for estimating moments, the true moments
of population from which the data sample is collected are approximated by empirical moments M p- The
true functional form of the system’s dynamics which lead to output g(.) is approximated by the model’s
output g(.). The output of the model is a function of known parameters vector Z , unknown parameters

vector € (to be estimated) and random inputs u . Choosing different values for u will generate different
values for g . We assume that the model is correctly specified so that g(.) is an unbiased estimator of

g(): E(&(Z,0,u))=g(Z,0)

This ensures that if we generate a large enough sample of outputs using a true random stream of in-
puts u, the arithmetic average of the model output should generate a reasonable approximation of the re-

al-world processes that generate the observations.

m(EO) - D Y (E(Z.0)

Equation above can be understood as following. The component z;m[(é(Z ,0,u,)) represents the

fact that moments may need a number of observations to be calculated. For example, think of variance as
a popular moment. The standard formula of variance E(X —E(X))’ suggests that we should calculate

the empirical average of (X, —E(X))> for all observations ¢ €1,...,T. As a convention the notation of

Z;mi (&(Z,0,u,)) represents all types of averaging operations which are required for calculating dif-

ferent moments.

It is necessary to make sure that the moments we estimate from the model are not affected by sam-
pling bias. If the size of a model-generated sample is not too large (i.e. T is small) we will get different es-
timates of moments per each sample. Repeating the sampling for a large number of times (N) and averag-
ing each of the moments over these samples reduces this bias.

A necessary (but not sufficient) condition for being able to identify the model is to have more mo-
ment conditions than unknown parameters. Otherwise, we will have free parameters and the unknowns
will not be determined uniquely. Ideally, we require more moment conditions than the unknown parame-

ters (P >>d ) We call this over-identification.

The previous description was focused on a single set of agents. If we want to simulate K collective
entities (communities, cities, classrooms) in parallel (i.e. generate a panel of observations) we will gener-
ate a larger number of observations. In this case the model generated moments would be expressed as:

mED)~ == LS (8(2.0.4,)
NK <='T <
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The core of the MSM is to minimize the (weighted) difference between the empirical and simulated
moments by changing the unknown parameters. The estimated parameter set is the value of parameters

that minimizes this difference. Specifically, with vector of simulated moments A consisting of
m,(&(.)) elements and the < P x P> matrix W for weighting the moment conditions:

g = argmin (Mg — M, )W (Mg —M,)

If an estimate moment is very sensitive to the random input path, it will generate possibly diverse
values across different rounds. On the other hand, those moments that are more robust against the choice
of the sample will show smaller dispersion. Using the inverse of variance for matrix W helps us give
more weight to more robust moments and reduce the importance of those that change a lot from one
round to another.

7 CHOOSE THE MOMENT CONDITIONS

Usually the first and second moments of model’s outcomes (mean and variance) are good candidates to
use. Remember that the number of moment conditions should be (equal to or) larger than the number of
unknown parameters. Thus, depending on the number of parameters you should decide to use informative
moment conditions. The most informative moments are the ones that 1) are sensitive to at least one of the
unknown parameters (discussed further under Conditions for Identification), 2) have rather small vari-
ances. The larger the variance of a moment (across multiple simulations) the less informative it is for es-
timation.

In addition to single variable moments (e.g. mean and variance of one variable) one can also try
cross-variable moments such as the correlation/covariance between two output variables, autocorrelation
of a variable with itself, etc.

Adding an additional parameter to be estimated is costly, both in terms of computation time and in
terms of identification strategy. So, we suggest trying to estimate as many parameters as possible (if it is
possible and reasonable) from other sources (e.g. review of literature, regressions, etc.) and leave the min-
imum number of parameters for the MSM technique.

8 CONDITIONS FOR IDENTIFICATION

The right choice of moment conditions is the most crucial step in identifying the model and recovering
model parameters. Identification of a model using the MSM requires that the model-generated moment
conditions should fit their empirical counterparts if and only if the structural parameters equal their true
values. Otherwise, the model will generate spurious results. Furthermore, the sufficient condition for
identification is a one-to-one mapping between the structural parameters and a subset of the moment re-
strictions of the same dimension. Because our models often do not yield such a closed-form mapping, to
help ensure an identified model, one should choose moments that are sensitive to variations in the struc-
tural parameters. One way to check this is to run one dimensional sensitivity analyses on each parameter
to be estimated, and check if selected moment conditions vary substantially with changes in parameter
values. If a moment condition does not vary much or if its response to changes in parameters is not
smooth and monotonic then using that moment may not be very informative and even may cause the op-
timization engine to stop in a local optimum or never converge to an optimal solution. Figure 1 shows ex-
amples of informative and non—informative moments.

The moment specified by the solid line moves smoothly as the unknown parameter changes and has a
unique well-defined extreme point (minimum in figure 1). Therefore, minimizing the distance between
this function and the empirical moment will generate a unique parameter value. On the other hand, the
moment represented by the dashed-line is not informative. It is not very sensitive to changes in parameter
value. We cannot even be sure that these small changes are due to true response of the model to various
parameter values or are the artifact of computational or sampling errors (though if the graph is smooth
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these conjectures will be less valid). Moreover, the moment shows multiple extreme values and thus min-
imizing its distance from the empirical value will not identify a unique value.

9 OPTIMIZATION ROUTINE AND ITERATION

This is the most computationally-challenging step of the MSM procedure. We need to minimize the
weighted distance of model-generated moments from empirical moments. More formally:

6" = argmin (M,, — M ,)W(M,, —M,)

Uninformative Moment
(Flat or Non-Monotone)

Value of Moment Condition

\ Useful Moment

(Unique Global Min)

Unknown Parameter

Figure 1: Informative and non—informative moments

We need to use numerical optimization routines to find the minimum of the total error function. A
smart choice of initial values for parameters may facilitate the quicker convergence of the optimization
routine significantly. Any numerical optimization method requires a tolerance rule to stop. This will be

given as the error tolerance for the objective function || Q' — Q™" || &y as well as for the parameters

| 8" —0"" | &,. Similar to any non-linear optimization routine, the MSM estimator may fall into the trap

of a local maximum. Moreover, if some of moment conditions are not very informative, they would have
low sensitivity to parameter values the problem may face a flat value function which makes it very diffi-
cult to progress and converge. To avoid introducing sampling error into rounds of simulation we should
work with the same random sample of shocks in each period to make sure that changes in results are due
to changes in structural parameters and not the random sample.

10 OVER-IDENTIFICATION TEST

When the model is over-identified some of moment conditions will be different zero. In this case a subset
of moments, whose number is equal to the number of unknowns, will satisfy zero and the remaining (p-q)
moment conditions can be different than zero. For a good model, whose structure and parameter values
are close to the true system, the value of these conditions should not be substantially different from zero.
One can use the standard J test for testing over-identification. The J-statistic is given by

J =1N—T((Mm — M)W (M, —~M)): 7*(p-q)
+N

11 ROBUSTNESS CHECKS

The MSM uses numerical methods to find the minimum of the objective function. Therefore, the results
might be sensitive to initial values, the precision of the search algorithm (the level of error tolerance), and
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the quality of algorithm to distinguish local and global extreme points. We recommend to re-run optimi-
zation using distant initial values to check if the results are sensitive to the choice of initial value.

12 CRITIQUES AND SHORTCOMINGS OF THE MSM

In principle the MSM shares some of the concern of being ‘black box’ regarding the transparency of dy-
namic systems modeling. Some researchers believe that it provides a large degrees freedom for choosing
the moment conditions which serve the interests of the modeler. By imposing different moment condi-
tions one may recover different structural parameters and as long as there are enough meaningful moment
conditions the researcher has the luxury of using an arbitrary subset of moments. This critic compares the
MSM method to standard econometrics techniques which are more easily available for outsiders and pro-
vide a better chance of independent verification of the estimation results.

Adda and Cooper (2003) believed that for implementing the MSM, a large number of simulations is
needed to compute the standard errors of the estimator. Using Monte-Carlo analysis, Ruge-Murcia (2012)
presented that even when simulated series are short, the MSM works and it can deliver accurate estimates;
however, the distribution of the estimates is not efficiently approximated by the asymptotic normal distri-
bution.

There are ways to address some of these concerns. Providing graphs showing the sensitivity of the
likelihood function to parameter values is one way to convince the others that the moments were indeed
informative. Providing the data (if they are not propriety) and the programming codes enables others to
check the results independently.

13 CONCLUSION

Over the last three decades the research in system dynamics has largely focused on diverse applications of
the original toolbox, with limited methodological expansions in parameter estimation domain. While for-
mal parameter estimation may not be feasible for many modeling problems, expert dynamic modelers
should be equipped with the relevant tools when numerical data is available, model purpose requires reli-
able parameter estimates, or the audience requires formally estimated parameters. In this paper we offer
an introduction to the MSM for application to dynamic modeling problems. The basic idea of this method
is to define appropriate moments of data and, by changing uncertain parameters, minimize the difference
between those moments and their simulated counterpart coming from the model.

Given that most dynamic models do not follow a fixed structural form (e.g. linearity), estimation pro-
cedures such as the MSM that are independent of model structure are most beneficial. Moreover, inde-
pendence and distributional assumptions on error terms for dynamic models are not always easy to justify,
so the MSM with fewer such assumptions is preferred. The MSM is especially useful when error terms do
not follow any well-established distribution. It could be also a good tool when models include stochastic
processes that drive the model, and their impact on the model behavior is reflected in the data against
which the model is to be calibrated, e.g. when we are trying to match the variance observed across multi-
ple units.

The MSM is also applicable to diverse data types, including both time series and cross-sectional data.
It may be the only viable choice for estimating dynamic models when data is cross-sectional as it allows
us to extract the information about the historical trajectories of units hidden in their cross-sectional distri-
butions.
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