
Proceedings of the 2013 Winter Simulation Conference

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

FORMALIZING GEOGRAPHICAL MODELS USING SPECIFICATION AND DESCRIPTION

LANGUAGE: THE WILDFIRE EXAMPLE

Pau Fonseca i Casas

Josep Casanovas

Jaume Figueras

Antoni Guasch

Universitat Politècnica de Catalunya

Jordi Girona 31

Campus Nord, B5 building, InLab FIB

08034 Barcelona, SPAIN

ABSTRACT

In this paper we explore how we can use Specification and Description Language, to represent simulation

models that make an intensive use of geographical information, like environmental simulation models.

The purpose is to perform a complete unambiguous, graphical and formal representation of a wildfire

simulation model. Specification and Description Language is a modern object oriented language that al-

lows the definition of distributed systems. It has focused on the modeling of reactive, state/event driven

systems, and has been standardized by the International Telecommunications Union (ITU) in the Z.100.

Thanks to the graphical representation of the simulation model, the interaction between the experts that

usually come from different areas is simplified. Also, due to the unambiguous and modular nature of the

language, all the details of the model can be validated by personnel that do not necessarily are used with

programming languages or simulation infrastructures.

1 INTRODUCTION

From the different phases of a simulation model construction, the formalization phase sometimes is

missed. The reasons can be diverse but often the time needed to define the simulation model using a for-

mal language is not viewed by the members of the team as a key element that accelerates the process.

Several authors that argue the formalization of a simulation model is a key phase, considering that it could

be understood as a product by itself (Brade 2000).

It is clear that the conceptual model helps in the implementation process and in the communication

between the different personnel involved in the model construction, and if the models, like those present

in this paper, need of the knowledge of personnel with diverse formation, this phase must be considered

as a requirement. Regarding simulation models that use geographical information is often needed to use

cellular automaton structures in order to represent this data (Benenson and Torrens 2004). Since we want

to formalize cellular automaton structures we also need to fully define this structure. We first need to de-

fine what we understand as a cellular automaton, and then to use a language -and in our case extend the

language- to achieve a complete and unambiguous representation of this structure.

Regarding cellular automaton structure, we follow the approach presented on (Fonseca and

Casanovas 2005), and in order to extend the cellular automaton we are based on the preliminary idea pre-

sented on (Fonseca et al. 2010) to represent formally a cellular automaton.

Wildfire simulation model requires a behavior definition that clearly describes how the fire evolves

over time. To do this we follow the approximation proposed by (Andrews and Chase 1989).

This paper explores how we can model environmental systems using Specification and Description

Language, see (Doldi 2003), (Doldi 2001) or (ITU-T 2012). Specifically we present a formalization of a

1961978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Fonseca, Casanovas, Figueras, and Guasch

wildfire model based on BEHAVE model (Benenson and Torrens 2004).Two main concerns exist to do

this, first how to model the behavior of cellular automata graphically using SDL, and second how to man-

age time.

We want to remark that, of course, it is not our intention to state that SDL is the only language that

can be used for this purpose: other alternatives exists like (Wainer 2002). We just want to analyze the fea-

sibility of using SDL in this scope and finally analyze his weakness and benefits. Some related word

where SDL have been used to represent or interact with environmental models can be reviewed on

(Fischer, et al. 2009), (López, Fonseca and Casanovas 2008) or (Fonseca, Colls and Casanovas 2011).

2 SPECIFICATION AND DESCRIPTION LANGUAGE

Specification and Description Language (SDL) (Doldi 2001), (Doldi 2003) is an object-oriented formal

language defined by the International Telecommunications Union–Telecommunications Standardization

Sector (ITU–T) (the Comité Consultatif International Telegraphique et Telephonique [CCITT]) on the Z.

100 recommendation (ITU-T 2012). The language was designed for the specification of event-oriented,

real-time and interactive complex systems. These systems might involve different concurrent activities

that use signals to perform communication. In our current scope SDL SIGNALS represents the events of

the simulation model, hence in the paper SDL SIGNAL or event can be considered equivalent, since the

SIGNAL is the representation of the event in the language. SDL is based on the definition of four levels

to describe the structure and the behavior of the models: system, blocks, processes and procedures. In

SDL BLOCKS and PROCESSES are named AGENTS. The outermost block, the system BLOCK, is an

agent itself. Figure 1 shows this hierarchy of levels.

Figure 1. A structural vision of an SDL model. 4 main different levels exist.

 The different concepts that the SDL language covers are:

 System structure: from the blocks to the processes and their related hierarchy.

 Communication: signals, communication paths or channels, parameters that can be carried out

by the signals, etc.

 Behavior: defined by different processes.

 Data: based in Abstract Data Types (ADT).

 Inheritance: useful to describe relations between objects and their properties.

 Although a textual SDL representation is possible (SDL/PR), this paper uses the graphical representa-

tion of the language (named SDL/GR). More details about the Specification and Description Language

can be found in the recommendation Z.100 (ITU-T 2012) or at the web site (IEC International

Enginyeriing Consortium 2000).

1962

Fonseca, Casanovas, Figueras, and Guasch

To briefly illustrate SDL and in order to explain some of the key elements of the proposed methodol-

ogy we show a specification of a G|G|2 model, following the Kendall notation (Kendall 1953), general

distribution for the arrivals and for the services times, and two servers. The first diagram following the

SDL language can be represented by a single box in the system diagram that contains the GG2 model.

Going inside this BLOCK, Figure 2 shows the inner structure of the model, two servers and a queue.

Figure 2: GG2 model blocks diagram.

 Figure 2 details the structure of the model. The communication mechanism between the different

model elements is asynchronous (we are defining all these elements in a BLOCK agent not inside a

PROCESS agent). Also, we are here representing the signals that travel from one agent to others allowing

this communication EndService1, EndService2, NewService1 and NewService2. We can go further and

analyze what is inside these blocks. We continue the decomposition with other BLOCK’s agents. Finally

we must define PROCESS that can be decomposed in other set of PROCESS. Finally the PROCESS must

be defined with specific behaviors, as the one represented on Figure 4 for the PServer1.

 Note that only one process is represented for each one of the blocks. If two or more processes are de-

fined they are executed sequentially. Since each process defines the states for the object, the definition of

two or more blocks implies that the element states definition are the combination of the states of each one

of the processes. In the former example this is not needed, and a single process is enough.

 Finally is necessary to define the process diagram for each process. In Figure 4 the start operation ini-

tializes the clock of the process (to 0) and finish in the state (IDLE). Two states are defined (IDLE and

BUSY). The events that modify the state of the server are NewService1 (from IDLE to BUSY) and End-

Service (from BUSY to IDLE). Note that the events have a parameter defining the time where the event

takes place (delay). This time is used to update the clock of the element.

1963

Fonseca, Casanovas, Figueras, and Guasch

Figure 3:Server1 block processes diagram.

Figure 4: PServer1 process

1964

Fonseca, Casanovas, Figueras, and Guasch

3 CELLULAR AUTOMATA

Cellular automata must be defined in SDL because they simplify the interaction of simulation models and

Geographical Information Systems (GIS) data (Benenson and Torrens 2004). The cellular automaton we

are using is an extension of the common cellular automaton named m:n-CAk. Its definition can be found

on (Fonseca and Casanovas 2005). Cellular automata are discrete dynamical systems whose behavior is

completely specified in terms of a local relation (Emmeche 1998), hence is needed to represent all the da-

ta needed to perform its evolutions.

 One-dimensional cellular automata are based in a row of "cells" and a set of "rules". A two-

dimensional cellular automaton uses rectangular grids of cells. Each one of the different cells can be in

one of different "states" (the number of possible states depends on the automata). Thinking states as num-

bers, in a two-state automaton, each cell can be only in 1 or 2 state. Cells represent automata space; time

advances in discrete steps following “the rules”, the laws of “automata universe”, usually expressed in a

small look-up table. At each step every cell computes its new state in function of its closer neighbors.

Thus, system's laws are local and uniform.

 Next figure shows one-dimensional cellular automaton initial state and successive two states after

rules application.

Figure 5:One-dimensional cellular automaton

4 MULTI:N-DIMENSIONAL CELLULAR AUTOMATON (M:N-CA)

A multi:n-dimensional cellular automaton (m:n-CA) is a generalization of a cellular automata defined as

follows (Fonseca and Casanovas 2005):

Definition 1 m:n-CAk A multi n dimensional cellular automaton is a cellular automaton

generalization composed by m layers with n dimensions each one.

 The representation is:
kCAn:m  (1)

Where

 m: is the automaton number of layers.

 n: is the different layers dimension.

 k: is the number of main layers (1 by default). A layer in a m:n-CAk is a main layer if a transition

function  is defined in order to modify its state. A m:n-CA automaton only presents one main

layer, while m:n-CAk automaton presents k main layers.

A two dimensional cellular automaton is represented by a 1:2-CA. A transition in a m:2-CA cellular au-

tomata is defined as in a 2-dimensional cellular automata, but main layer cell state is a combination of da-

ta contained in the m-1 secondary layers at the same position.

All cellular automatons defines two functions: vicinity function that allows to represents the cells (or

the space in the continuous case) that must be analyzed to perform the propagation, and the nucleus func-

tions that defines the cells (or again, the space in the continuous case) that must be modified once the

propagation finalizes. Also, the propagation function can work with several layers allowing to represent

all the necessary model information, and a combination function permits to combine the information that

comes from all the layers. All layers must be georeferenced. The GIS data classification is shown in the

next table based in the table of (Fonseca, Casanovas and Montero 2004).

1965

Fonseca, Casanovas, Figueras, and Guasch

Table 1. GIS data classification in a simulation model.

Layer GPS integration Description

2DLayers Geo referenced Point, polylines, texts or lines.

3DLayers Geo referenced Fixed population of elements over a matrix, and DEM.

Routes Track points Represent Objects movement.

2DObjects Waypoints a 2D object in an specific position

3DObjects Waypoints a 3D object in an specific position.

 Suitable data that can be represented in the m:n-CAk layers are vectorial data (2DLayers) or raster da-

ta (3DLayers). Other elements can be represented using common simulator elements.

Since multiple layers belong to a single automaton its state is defined as follows.

5 IMPLEMENTATION

Usually in a simulation study we begin defining the model and then describing what is the platform se-

lected to implement this model. However in the present case, and since it is needed to extend the lan-

guage, this section must be previous.

 To implement our models we can use different existing tools that understand SDL language, like Cin-

derella (CINDERELLA SOFTWARE 2007), Telelogic (IBM 2009) of IBM or PragmDev (PragmaDev

SARL 2012). However, we are using our tool Specification and Description Parallel Simulator (SDLPS)

(Fonseca 2008), (Fonseca and Casanovas, Towards a SDL-DEVS Simulator 2011) because it allows to

add the needed capabilities to the language without the need to define complex SDL structures.

The current version of SDL (SDL-2010 that appears at the end of 2012) allows defining delays and priori-

ties in the SIGNALS. This extension proposed by some of the authors, simplifies the representation of the

dynamical process involved in a simulation model. Mainly this extension allows defining the time needed

to process a specific event and the priority to be used in the case that two (or more) SIGNALS reach an

SDL AGENT at the same time (see Figure 6). However the recommendations proposed on Z.100 do not

define a structure that directly allows to work with cellular automaton structures.

Figure 6: Defining the delay and priority on a SIGNAL on SDL-2010. The SDL SIGNAL “EndService”

cannot be processed on the SDL AGENT that receives the signal (in this case the same agent that sends

the SIGNAL since we are sending the SIGNAL to itself ”SELF”), until a delay of PServer1_t units of

time are consumed.

 To work with cellular automata we will extend the language. To do this, we first need to understand

that all the cells have the same behavior. This implies that is not required to represent all the cells, but on-

ly one cell. Also is necessary to represent the relation with the neighborhood (that of course is specific of

the cellular automata), and the relation with the other layers. That implies to define the combination, vi-

cinity and nucleus functions, as previously are defined (Fonseca and Casanovas 2005), the propagation

function, that defines the evolution of the cellular automaton representing his behavior can be represented

graphically as a SDL PROCESS we can see next.

 In SDL language we can use types to define blocks that have the same behavior (as is usual in any

OO language). This leads to a simplification in the representation of SDL cellular automata models using

two types VT_P_mnCACell (to build a PROCESS that represents the propagation function) and

VT_P_mnCA (to represent a BLOCK containing the default dimension and main layers that all cellular

1966

Fonseca, Casanovas, Figueras, and Guasch

automata must have). This block also implements some structures that permits to send the SDL

SIGNALS to all the cells of the cellular automaton layer (we can use ALL_CELLS, to send the signal to

all the cells of the VT_P_mnCA agent) or just to a selection (represented by an array). The definition of

these two virtual SDL blocks, due to space reasons are not detailed in this paper.

Figure 7: Extension to the language that allows to send a signal to all the cells of the cellular automaton

represented on the layer. Here we are sending the SIGNAL to the cell that originates the SIGNAL.

6 WILDFIRE MODEL

As we said previously, we are following the model proposed by (Andrews and Chase 1989) to represent

the fire spread. In Figure 8 we are showing the block implementing the cellular automaton that represents

the wildfire propagation model. Since here we are only representing a single mode (fire spread) no other

PROCESSes are included. If we want to combine the fire spread model with other models (containment

models, etc.) can be here specified as new SDL agents.

Figure 8: m:n-CAk cell representation for wildfire model. In this diagram are represented the different

layers that compose the model (on the declarations element “DCL”). All these layers simply represents a

matrix containing data needed to perform the calculus.

 Inside this we can find the definition of the behavior of the model. In Figure 9 we describe the Un-

burn and Burned state for the cellular automaton cells, on Figure 10 we represent the Burning state.

1967

Fonseca, Casanovas, Figueras, and Guasch

Figure 9: states diagram for a cell. This diagram represents the behavior of each one of the different cells

that compose the cellular automaton. Since all the cells of a cellular automaton behaves identical, it is

needed to define this only once.

1968

Fonseca, Casanovas, Figueras, and Guasch

Figure 10: propagation of the wildfire. The propagation for this cell, following the mathematical model

proposed by (Andrews and Chase 1989), is represented on the TASK “FireSpread”.

 Each cell of the model can be in three states, Unburn (that means that is no fire in the cell), Burning

(that means that the cell is on fire) and Burned (that means that the cell is completely burned).

 The signals that can travel from one state to others are Burn, Propagate, Extinguish and Data Update.

Data Update is needed in order to recalculate the state of the cells in the case that the values of the cells

changes due to an external model. Regarding the procedures that are used in the model, just to note that

Vicinity and Nucleus can also be represented graphically in the last level of the SDL diagrams

(PROCEDURE diagrams). For the FireSpread function, that represents the internal calculus of the

BEHAVE (Benenson and Torrens 2004) model this is not allowed, since the method is called in a TASK.

Conceptually this is done in that way because BEHAVE model in this implementation only is represent-

ing the mathematical calculus that defines the modification of the physical state of a cell.

1969

Fonseca, Casanovas, Figueras, and Guasch

7 CONCLUDING REMARKS

This paper shows how we can model environmental systems using Specification and Description Lan-

guage. Specifically we present a formalization of a wildfire model based on BEHAVE model (Benenson

and Torrens 2004).To do this, the main concern is how to model the behavior of cellular automata graph-

ically using SDL, and how to manage time. Time management is well solved in the new recommendation

of SDL (ITU-T 2012) however it does not propose a convenient solution in order to represent cellular au-

tomata structures. In order to do this we propose to add to our specification two virtual blocks that allow

to define the main structures that all cellular automaton requires. This implies that the proposed exten-

sions to the recommendation can be implemented over the existing language using its current structures.

This leads to the definition of a library in the language that simplifies the definition of environmental

simulation models.

From the point of view of the model, the unambiguous and graphical representation of the cellular au-

tomaton increases the understanding of its behavior by the experts of the system to be modeled, and al-

lows to perform a Conceptual Validation as is defined in (Sargent 2007). Since all the data that the au-

tomaton needs is also represented in the SDL diagrams, it remains clear what the dependencies of the

model are in order to be executed. SDL is not a symmetric language, is more complex to write a model

than read a model (in less than one hour everyone can be capable to read any SDL diagram). This is a

clear advantage, since the modelers must be capable to write the model correctly, at least to beneficiate

from the capabilities of the automatic execution, but this is not mandatory for the system experts, facilitat-

ing a faster and deeper use of its knowledge in the model. This also avoids a possible refusal to use the

language by people not used with this type of specification strategies since the learning curve to under-

stand it is relatively fast.

Other clear advantage is related to the fact that SDL is a standard ISO language and several tools un-

derstand our models. This leads to automatic implementations an easier use of different platforms, and the

simplification of the verification process.

REFERENCES

Andrews, P.L., and C.H. Chase. 1989. BEHAVE: Fire behavior prediction and fuel modeling system-

BURN subsystem, part 2. Gen. Tech. Rep. INT-260., Ogden, UT: U.S. Department of Agriculture,

Forest Service, Intermountain Research Station, 93.

Benenson, I., and P. M. Torrens. 2004. Geosimulation, Automata-based Modeling of Urban Phenomena.

West Susses PO19 8SQ: John Wiley & Sons Ltd.

Brade, D. 2000. "Enhancing modeling and simulation accreditation by structuring verification and

validation results." Edited by J. A. Joines, R. R. Barton, K. Kang and P. A. Fishwick. Winter

Simulation Conference. 840-848. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

CINDERELLA SOFTWARE. 2007. Cinderella SDL. Accessed 03 31, 2009. http://www.cinderella.dk.

Doldi, L. 2003. Validation of Communications Systems with SDL: The Art of SDL Simulation and

Reachability Analysis. John Wiley & Sons, Inc.

Doldi, L. 2001. SDL illustrated - visually design executable models. TRANSMETH SUD OUEST.

Emmeche, C. 1998. Vida Simulada en el ordenador. Barcelona, Catalunya: Gedisa.

Fischer, J., F. Kühnlenz, K. Ahrens, and I. Eveslage. 2009. "Model-based Development of Self-

organizing Earthquake Early Warning Systems." Edited by I. Troch and F. Breitenecker. Proceedings

MATHMOD 09. Vienna.

Fonseca, P. 2008. "SDL distributed simulator." In Procededings of the 2008 Winter Simulation

Conference. Edited by S. J. Mason, R. Hill, L. Moench, and O. Rose, 2943-2943. Piscataway, New

Jersey: Institute of Electrical and Electronics Engineers, Inc.

Fonseca, P., and J. Casanovas. 2005. "Simplifying Gis Data Use Inside Discrete Event Simulation Model

Through m:n-ac Cellular Automaton." Edited by Chiara Brianco, Claudia Frydman, Antonio Guasch

and Piera Miquel Angel. Environmental Modeling and Simulation Symposium. Marsella. - FRANCE.

1970

Fonseca, Casanovas, Figueras, and Guasch

7-15.

Fonseca, P., J. Casanvas, and Jordi Montero. 2004. "GIS and simulation system integration in a virtual

reality environment." In Proceedings of the 2004 GISRUK. 403-408.

Fonseca, P., M. Colls, Casanovas, and Josep. 2010. "Representing Fibonacci function through cellular

automata using specification and description language." Ottawa. http://hdl.handle.net/2117/8340.

Fonseca, P., M. Colls, and J. Casanovas. 2011. "A novel model to predict a slab avalanche configuration

using m:n-CAk cellular automata." Computers, Environment and Urban Systems (Elsevier) 35 (1):

12-24.

IBM. 2009. TELELOGIC. Accessed 03 31, 2009. http://www.telelogic.com/.

IEC International Enginyeriing Consortium. 2000. SDL Tutorial. Accessed January 2009.

http://www.iec.org/online/tutorials/sdl/.

ITU-T. 2012. "Specification and Description Language (SDL)." Series Z: Languages and general

software aspects for telecommunication systems. International Telecommunication Union. Accessed

November 2012. http://www.itu.int/ITU-T/studygroups/com17/languages/index.html.

Kendall, D. G. 1953. "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the

Method of the Imbedded Markov Chain." Annals of Mathematical Statistics 24 (3): 338-354.

doi:10.1214/aoms/1177728975.

López, J., P. Fonseca, and J. Casanovas. 2008 Corfú. "SDL Formalization of a Hydrologic Model."

Applied Simulation and Modelling. Corfú (Grece): ACTA Press.

PragmaDev SARL. 2012. http://www.pragmadev.com/product/codeGeneration.html.

Sargent, R. G. 2007. "Verification and Validation of simulation models." Proceedings of the 2007 Winter

Simulation Conference. Edited by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew and

R. R. Barton, 124-137. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wainer, G. 2002. "CD++: a toolkit to develop DEVS models." Software, Practice and Experience (John

Wiley & Sons. Ltd.) 32 (3): pp. 1261-1306.

AUTHOR BIOGRAPHIES

PAU FONSECA I CASAS is a professor of the department of Statistics and Operational research of the

Technical University of Catalonia, teaching in Statistics and Simulation areas. He obtained his master de-

gree in computer engineering on 1999 and his Ph.D. on 2007 from Technical University of Catalonia. He

also works in the InLab FIB (http://inlab.fib.upc.edu/) as a head of the Environmental Simulation area,

developing Simulation projects since 1998. His research interests are discrete simulation applied to indus-

trial, environmental and social models, and the formal representation of such models. His e-mail and web

addresses are pau@fib.upc.edu and http://www-eio.upc.es/~pau/, respectively.

JOSEP CASANOVAS Professor Josep Casanovas (Ph.D. in Computer Science, Industrial Engineer,

MSc in Economics) is the head of inLab FIB, formerly called LCFIB, at Barcelona School of Informatics.

He is a full professor of the Statistics and Operations Research Department at UPC. His main research ar-

eas are Modeling and Simulation, Internet and Information Systems. He is the author of numerous re-

search articles and other kinds of publications and has collaborated in the development of many projects

for the European Union and other companies and institutions. Between 1998 and 2004 he was dean of the

Barcelona School of Informatics. In addition, Prof. Casanovas has been vice-rector of university policies

of the Technical University of Catalonia (2006-2011) with responsibilities in strategic projects like the

definition of new university governance models, reformulation of university departmental structure or de-

sign and promotion of the new Diagonal-Besos Campus in Barcelona. He was also responsible for ICT

policies at UPC. Currently, Josep Casanovas is co-director of LogiSim (Centre of Simulation and Optimi-

zation of Logistic Systems) and coordinator of the Severo Ochoa Research Excellence Program in the

Barcelona Supercomputing Center (BSC-CNS). His email address is josepk@fib.upc.edu.

1971

Fonseca, Casanovas, Figueras, and Guasch

JAUME FIGUERAS born in 1974, had his degree in Computer Science in 1998. His research is in Au-

tomatic Control and Computer Simulation and Optimization. He has designed and developed CORAL, an

optimal control system for sewer networks, applied at Barcelona (Spain); PLIO, an optimal control sys-

tem and planner for drinking water production and distribution, applied at Santiago de Chile (Chile) and

Murcia (Spain). Nowadays He participates in different industrial projects, like the power consumption op-

timization of tramway lines in Barcelona with TRAM and SIEMENS and the development of tooPath

(http://www.toopath.com) a free web tracking system of mobile devices. He is also the local representa-

tive of OSM (http://www.openstreetmap.org) in Catalonia and participates in different FOSS projects. His

email address is jaume.figueras@upc.edu.

ANTONI GUASCH is a research engineer focusing on modelling, simulation and optimization of dy-

namic systems. He received his Ph.D. from the UPC in 1987. He is an Associate Professor in the depart-

ment of "Ingeniería de Sistemas, Automática e Informática Industrial" in the UPC and head of Simulation

and Industrial Optimization at inLab FIB (http://inlab.fib.upc.edu/). Since 1990, Prof Guasch has lead

more than 40 industrial and research projects related with modelling, simulation and optimization of nu-

clear, textile, transportation, car manufacturing, water, pharmaceutical and steel industrial processes. His

email address is toni.guasch@upc.edu.

1972

