
Proceedings of the 2013 Winter Simulation Conference

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

USING A NATURAL LANGUAGE GENERATION APPROACH TO DOCUMENT

SIMULATION RESULTS

James Curry

Weihang Zhu

Brian Craig

Lonnie Turpin, Jr.

Majed Bokhari

Pavan Mhasavekar

Industrial Engineering

Lamar University

Beaumont, TX 77710, USA

ABSTRACT

Simulation experiments generate large data sets that must be converted into recommendations for deci-

sion makers. This article explores using a Natural Language Generation (NLG) approach for writing

summaries of simulation experiments. The article discusses the steps required to convert simulation ex-

periment data to text and highlights the unique aspects of data to text for simulation experiments. Auto-

mation of report generation can potentially reduce the time and cost of simulation studies and improve the

reporting of results. A prototype software system was developed and applied to a simulation to illustrate

the benefits of a NLG approach.

1 INTRODUCTION

This article discusses using Natural Language Generation (NLG) to convert output data from simulation

experiments to text. NLG software converts facts to human readable text using a series of steps. NLG has

had renewed research interest in part due to several recent efforts in summarizing complex data sets (Por-

tet et al. 2009). Simulation experiments often generate large data sets that must be interpreted and pre-

sented to the decision maker. A significant amount of time and effort in simulation studies is spent writ-

ing reports and summarizing data. Often only a small subset of simulation results are interesting to

decision makers, so an editing process must be applied to the raw data set. Applying NLG to simulation is

a promising approach to streamline simulation studies by automating model documentation and output

analysis.

 Most industrial simulation studies have common analysis goals and steps, but the texts of the reports

are different due to the system being studied, goals of the simulation experiment and the results of the

simulation experiment. The commonality in many simulation studies facilitates a NLG approach to auto-

matically generating effective reports. To illustrate the NLG approach, this paper examines a simulation

study with a predefined experiential design, a single objective cost based on the values of the dependent

and independent variables, and a series of constraints based on system performance. This experimental

setup occurs in many simulation studies. Similar approaches could be applied to simulation studies that

employ optimization to determine the setting for independent variables or studies with multiple objec-

tives.

 This paper is organized as follows. Section 2 provides a brief discussion of NLG technology and a

discussion of data to text systems. Section 3 discusses the unique aspects of reporting simulation study re-

sults. Section 4 presents the NLG steps used in our prototype software and discusses how these steps

2116978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

can be applied to transform simulation data to text summaries of experiments. Section 5 discusses the

software used to develop our prototype system. Section 6 presents a small illustrative case study using

the software developed in this project. Section 7 presents conclusions and discusses future research direc-

tions.

2 NLG BACKGROUND

NLG technology creates computer systems that present information to users in formats that are easy to

comprehend (Reiter and Dale 2007). The NLG approach begins with some nonlinguistic representation of

information as input and uses knowledge about language and the application domain to automatically

produce documents, reports, explanations, and other forms of texts (Reiter and Dale 2000). NLG systems

attempt to develop specialized forms of outputs personalized to suit the receiver. In order to appropriately

generate natural-language text, a system must be able to determine what information to include and how

to organize this information to achieve its communicative goal (McKeown 1985).

 Hunter et al. (2012) used a series of defined steps (data analysis, content determination, aggregation

and microplanning, and realization) for converting data to text. Content determination selects and organ-

izes relevant information from the data analysis to be communicated. Aggregation and microplanning

convert the information into a series of assembled expression. Finally, in the realization process, the as-

sembled expressions are transformed into a string of text with the correct grammar, word order and punc-

tuation.

 A mail merge approach similar to the functionality found in Microsoft Word and other popular docu-

ment creation packages generates text based on a template document with a few variable fields (Reiter

and Dale 1997). The variable fields are typically populated based on information found in a single table or

a few tables joined into a single table. A mail merge approach can be effective in generating a form style

letter where only a small percentage of the document changes for different recipients. The NLG approach

extends the mail merge approach by building the text from raw facts. In NLG systems, a distinction exists

between template based systems that directly map nonlinguistic inputs to the linguistic surface and sys-

tems that do not use a template format, but the quality of output of template based systems is not always

inferior (van Deemter, Krahmer, and Theune 2005). The prototype system developed in this research pro-

ject has some features of a template based system in that parts of the document are canned text based on a

template approach and other sections are not template based. While some text is template based, a realiza-

tion engine is used to apply grammar rules. Some aggregation of ideas is also used to generate non-

repetitive sentences.

 The Sweave package combines Latex for typesetting and R for data analysis to generate reports that

are dynamic and can be rerun based on the input of new data (Leisch 2002). Integrating data analysis and

documentation of study results allows results to be easily reproduced (Leisch 2002). The Sweave mail

merge style approach provides an effective framework to combine analysis software with documentation,

but does not have built-in tools to aid with grammar.

 NLG systems have been deployed in a variety of domains including interactive museum guides

(Stock et al. 2007), weather forecasts (Sripada, Reiter, and Davy 1986), gas turbine status reports (Yu et

al. 2007), and sensor data (Reddington and Tintarev 2011). Hassan et al. (1997) used natural language

generation to document the sample path of an agent representing a person in a social science simulation

environment. Their goal was to construct simulated biographies of agents.

 Reiter and Dale (2000) noted writing about data requires data analysis and interpretation stages prior

to text generation. Data interpretation and the description of the data interpretation are linked tasks and

the system design should consider ease of explanation when constructing an experiment. The data analy-

sis step distinguishes data-to-text applications from other kinds of NLG systems whose input tends to

consist of information that is already fully structured (Gatt et al. 2009). The output from a simulation ex-

periment under consideration in this paper is highly structured but must be analyzed and summarized be-

2117

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

fore reporting. All the potential results of the analysis stage must be considered when developing the re-

port.

 Several recent research efforts have explored generating text from large complex data sets as a deci-

sion-support aids. The Baby Talk project at Aberdeen (Portet et al. 2009) created a set of NLG systems

which can generate textual summaries of clinical data about patients in a neonatal intensive care unit. The

authors state that with concerted effort, data-to-text technology can improve markedly, to the point where

it can help people understand large data sets, not just in medicine but also in engineering, meteorology,

finance, and many other areas.

 Mahamood and Reiter (2011) in a project related to Baby Talk describe the importance of not only

informing, but also taking into consideration the emotional state and knowledge of the recipients when

communicating information. For instance, a status update for a parent of a patient would be different than

the summary medical note in a chart in terms of detail and tone. This project develops summaries for de-

cision makers that must balance adequately explaining the study with the length of report.

3 REPORTING SIMULATION RESULTS

Communicating simulation results is a key step of the simulation model process and important to the suc-

cess of the simulation project. Wieland and Nelson (2009) noted that the focus of most simulation soft-

ware environments is on developing models and analyzing results instead of reporting model results.

They also discuss how the lack of standardization in reporting can lead to misinterpretation of findings in

the context of confidence intervals and output plots.

 Reporting simulation results can be time consuming. Simulation experiments are often expanded

based on initial results. Unlike physical experiments, additional data in simulation experiments can be

collected at a relatively small cost. While additional experiments can usually be run at a low cost, the

analysis and documentation of the experiment adds to cost and overall time required for the project. An

effective generated report reduces the effort by inserting the additional or updated results into an accepted

reporting format.

 Simulation studies are often refined based on expert feedback after preliminary experiments as part of

validation and verification. While most model refinement during verification and validation aims to im-

prove the model, refinement can be used to make the model output match the modelers or project spon-

sors goals. NLG slightly reduces the ability of the modeler to control the interpretation of the study by

formally defining the report prior to running the model. This approach has the potential to limit modeler

bias in the reported results of a simulation study. While a modeler can and should add interpretation and

refinement to the generated text, having a solid initial report generated from the tool would limit the mod-

eler's ability to stray too far from the underlying results.

 Sargent (2005) and Colley (1977) discuss the importance of summary and detailed documentation in

simulation studies. Reports for decision makers are often formatted into a short report body that states the

conclusions of the experiments and longer appendices that provide detailed information about the model

and analysis of the results. Our experience with survey report generation project is that decision makers

want relatively short reports without excessive statistical analysis. Decision makers also want access to

organized detailed information that most likely will not be read or studied in detail. After the main report,

relatively long appendixes that provide detailed statistical analysis of all experiments and coding of the

model can be provided for interested readers. The writing of the body of the report requires significant ed-

iting of findings and interpretation of results that is more challenging than providing all the results in a ta-

ble or graph format that can be performed by outputting the data to an organized spreadsheet or appendix.

4 NLG STEPS

Identifying a clear communication goal is critical to developing a NLG system. This paper's communica-

tion goal is to describe the results of the simulation experiment based on a user specified experimental de-

sign. The inputs to the program are independent variables that the user can control, dependent variables

2118

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

that are the results of the simulation study and scenario variables to demonstrate how the system operates

under different conditions. Some examples of independent variables in a simulation experiment are re-

source levels including number of machines and amount of inventory and control policy settings such as

dispatching rules employed. The dependent variables in the simulation are measures of system perfor-

mance based on the simulation experiment such as number of sales, revenue, average wait time, flow

time, number of late jobs and tardiness. The scenario variables define alternative operating conditions

such as different arrival rates and cost parameters.

 The program converts this information into a report using additional meta data about the independent

and dependent variables. The meta data contains a description of the fields for the report. The meta data

defines costs for the independent and dependent variables, so that the variables can be converted into a

single number for total cost or profit. The meta data also indicates if the field is a numeric field or a cate-

gorical policy. The meta data file also defines upper and lower bound constraints for the dependent varia-

bles based on user's goals. Each scenario can have different costs associated with and limits on variables.

This flexibility allows for a wide range of scenario definitions to be supported by the software. The meta

data allows a report to be constructed for a simulation where the goal is to minimize cost or maximize

profit subject to limits on dependent variables.

 The current prototype focuses on paragraphs instead of bullet lists or tables of simulation finding.

Bulleted lists and tables can also be an effective approach for succinctly explaining simulation results.

The same approached could be applied to generated text formatted as bulleted lists or text to support ta-

bles of data.

 NLG systems differ from mail merge systems in part by having organized steps for going from data to

text. A mail merge approach primarily uses fixed text and inserts fields with variable information into the

document. This project has a series of steps for data analysis, content determination, aggregation and mi-

croplanning, and realization that are similar to Hunter et al. (2012). The following subsections discuss

these steps in the context of describing the results of a simulation experiment.

4.1 Data Analysis

The data analysis step first determines the feasible configurations for each scenario. A solution is feasible

if all dependent variables confidence limits are within the user specified acceptable values. The feasible

and infeasible solutions are ranked based on cost of independent and dependent variables in the simula-

tion run. The ranked feasible and infeasible solutions are sent to content determination to identify the re-

sults to be included in the summary of the simulation experiment.

4.2 Content Determination

Content determination identifies the facts to be presented to the user. The system must establish what

simulation results should be presented to the user. The two primary content elements in our project are an

explanation of the experimental design and a discussion of the results. Our prototype employs simple

rules for selecting information interesting to the user. The lowest cost alternative for a scenario that satis-

fies users requirements is presented. The software has simple rules that specify when to discuss infeasible

solutions and feasible solutions with cost above the lowest cost feasible solution.

4.3 Microplanning and Aggregation

Aggregation combines multiple concepts into a single sentence to avoid repetitive sentences. This step is

critical when reporting simulation results and describing simulation experiments. As an illustration, the

following text is not natural:

2119

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

Scenario one has an arrival rate of 1 job per hour. Scenario two has an arrival rate of 2 job per

hour. Scenario three has an arrival rate of 3 job per hour. Scenario four has an arrival rate of 4

job per hour.

A more natural wording of the sentence would be the four scenarios explored arrival rates from 1 to 4

jobs per hour. Aggregation results across scenarios is also important for readability if the best setting for

input variables is consistent across many or all scenarios.

 Our prototype implementation makes several key word choice decisions. Based on settings, the word-

ing of the document can be in terms of maximizing profit or minimizing cost. Other word choice deci-

sions based on the data describe the difference between the best setting for the independent variables and

other alternatives for a given scenario. When a variable represents a policy, a text description of the poli-

cy is used to describe it as opposed to a numeric representation of the variable value. Settings also deter-

mine if and how the confidence limits of the simulation experiment are displayed to the user and how

much discussion of the simulation results is given.

4.4 Realization

Realization applies grammar rule to join words into sentences correctly (Gatt and Reiter 2009). The key

elements of realization are selecting the word forms such as plural and verb form (morphology), capitali-

zation and punctuation (orthography). Realization also considers word order based on the specified struc-

ture of the sentence.

 This project selected SimpleNLG as the realizer software. SimpleNLG is a Java API for realization

engine that was designed to be easy to use for researchers focusing on tasks other than realization when

constructing NLG application (Gatt and Reiter 2009). SimpleNLG is open source software available un-

der Mozilla Public License 1.1. SimpleNLG organizes the sentence, selects inflected forms of words for

number of items and tense, manages punctuation, and handles lists (Gatt and Reiter 2009). Without a real-

ization engine, these tasks would be overwhelming when generating text. As a simple illustration, consid-

er writing the best found solution for resource levels for a particular scenario given an array re-

source_names that stores the name of each resource type, an array number_of_resources that stores the

number of resources required by type, and a string scenario. From this information, an author could de-

scribe the lowest cost alternative in a sentence as follows:

 The lowest cost resource configuration for scenario two is three lathes, four mills and a drill.

Developing a computer program to write the above sentence would be very difficult without using or

writing a custom realization engine. To make nouns plural in the object phase, the developer could either

ask the user to enter the plural names of items into the system or store a dictionary of the English lan-

guage. Organizing a list of items into a sentence is a relatively easy task but cumbersome using a series of

if statements and loops. With SimpleNLG engine, the following Java code (Figure 1) generates the above

sentence based on the resource_names, number_of_resources, and scenario variables.

2120

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

SPhraseSpec p = nlgFactory.createClause(); // create the sentence object.

CoordinatedPhraseElement object_phrase = nlgFactory.createCoordinatedPhrase();

for(int i = 0 ; i<resource_names.length; i++) // For all resources

 {

 NPPhraseSpec r = nlgFactory.createNounPhrase(resource_names[i]);

 if(number_of_resources[i] > 1) //Make noun plural if more than one resource is used

 { // Use plural form of resource name with the number of resources in front.

 r.setPlural(true);

 r.addPreModifier(number_to_text(number_of_resources[i]));

 }

 else

 { //Use single form with a in front.

 r.addPreModifier("a");

 }

 object_phrase.addCoordinate(r);

 }

p.setSubject("the lowest cost resource configuration for scenario " + number_to_text(scenario));

p.setObject(object_phrase);

p.setVerb("is");

output = realiser.realiseSentence(p);

Figure 1: Illustrative Java code to describe a scenario.

5 SOFTWARE FRAMEWORK

This project uses R for developing text summaries of the simulation results. The R program calls Sim-

pleNLG version 4.4 for realization via rJava package (Urbanek 2011). The R language was selected due

to the ease of data analysis and selecting subsets of information from tables stored as data frames.

 The data from the simulation is transformed into a demoralized table to describe the independent, de-

pendent and scenario variables in each simulation replication. The table contains the replication ID, the

name of the variable, the value of the variable, the limits on the variable, the cost of the variable, the text

to describe the variable for non-numeric variables, run length of simulation and the unit of measure for

numeric variables. This basic input is converted into text via a series of R functions.

 The prototype has several user settings that control the format and information in the output report:

1. Writing the report in terms of minimizing cost or maximizing profit.

2. Amount of improvement in dependent variables that justifies discussing a solution that costs more

than the lowest cost solution.

3. The number of alternative feasible solutions with costs greater than the lowest cost solution to in-

clude in the report.

4. How much infeasibility to allow in an infeasible alternative that is included in the report.

5. The number of infeasible solutions to include in the report.

6. How much detail to provide when discussing the cost calculations.

7. How to display numeric results from the simulation in terms of number format and confidence

limits.

2121

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

 User settings allow the report to be customized. Our prototype uses simple rules to determine what

solutions to discuss beyond the lowest cost alternative, since content determination was not the focus of

the initial phase of this project. While these rules are effective for simulations with few feasible alterna-

tives, complex simulations with a large number of similar solutions would require more sophisticated ap-

proaches to select on a small subset of solutions to discuss.

 A simulation was constructed in Rockwell Arena Version 14 to generate raw simulation data. The

simulation was run with the Arena Process Analyzer. The output of Process Analyzer is combined with

meta data and sent to a flat file to be read by the R report generation prototype.

6 CASE STUDIES

This article presents a simple case study to illustrate the NLG prototype system developed. The case study

is a simple simulation to determine the number of machines required for a manufacturing system. The

study determines the number of parallel machines required under different demand rates. The demand

rates in the scenarios are 5 jobs per hour, 10 jobs per hour, 15 jobs per hour, and 20 jobs per hour. The

dependent variables in the simulation experiment is flow time. The average flow time for jobs is restricted

to less than 1 hour. The processing time for jobs follows a uniform distribution from 7 to 15 minutes. The

number of machines ranged from 1 to 6. Each machine costs $500,000. Each configuration is run for 20

replications that are 10,000 hours long with a 1,000 hour warm up period. Jobs are scheduled first come

first served. The results of the simulation experiment are displayed in Table 1.

Table 1: Results of simulation experiment in table format.

Arrival Rate

(Jobs Per Hour)

Number of

Machines

Flow Time

(Minutes)

5 1 76.0

5 2 12.6

5 3 11.2

5 4 11.0

5 5 11.0

5 6 11.0

10 2 41.0

10 3 12.9

10 4 11.4

10 5 11.1

10 6 11.0

15 3 30.9

15 4 13.0

15 5 11.5

15 6 11.2

20 4 25.6

20 5 13.0

20 6 11.6

 The output from the simulation experiment is sent to the R code for producing a text summary. The

summary is based on minimizing capital cost given the constraint that flow time is less than one hour. On-

2122

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

ly interesting results are presented. User settings define interesting results to discuss beyond the optimal

solution. Infeasible results are considered interesting if they are within 50% of the constraint bounds for

dependent variables and the cost is reduced. Feasible results beyond the lowest cost alternative are con-

sidered interesting if the lowest cost solution is close to the constraint as defined by being within 50% of

the constraint and the solution is an improvement for the dependent variables. These settings result in the

text summary of the simulation experiment displayed in Figure 2.

This study examines four scenarios. The four scenarios have different arrival rates

from five to twenty jobs per hour. The goal of the study is to find the lowest cost

systems that satisfies a user defined constraint of flow time less than 60 minutes.

The simulation explored using 1 to 6 machines that cost $500,000 each. Each sim-

ulation was run for twenty replications with replication length 10,000 hours and

warm up period 1,000 hours.

Scenario one explores an arrival rate of five jobs per hour. The best feasible solu-

tion found in the simulation experiment has two machines at a cost of $1,000,000.

The flow time in the simulation was 13 minutes that is significantly under the con-

straint of 60 minutes. A configuration with one machines is an infeasible alterative

with flow time of 76 minutes that costs $500,000.

Scenario two explores an arrival rate of ten jobs per hour. The best feasible solu-

tion found in the simulation experiment has two machines at a cost of $1,000,000.

The flow time in the simulation was 41 minutes that is under the constraint of 60

minutes. A configuration with three machines is an alternative solution with flow

time of 13 minutes that costs $1,500,000.

Scenario three explores an arrival rate of fifteen jobs per hour. The best feasible

solution found in the simulation experiment has three machines at a cost of

$1,500,000. The flow time in the simulation was 31 minutes that is under the con-

straint of 60 minutes. A configuration with four machines is an alternative solution

with flow time of 13 minutes that costs $2,000,000.

Scenario four explores an arrival rate of twenty jobs per hour. The best feasible so-

lution found in the simulation experiment has four machines at a cost of

$2,000,000. The flow time in the simulation was 26 minutes that is significantly

under the constraint of 60 minutes.

Figure 2: Text generated to describe the simulation experiment.

7 CONCLUSION AND FUTURE RESEARCH

NLG can be an effective tool for building automated reports of simulation systems. Using a realization

engine can significantly reduce the amount of programming required to develop generic simulation re-

ports. The combination of two open source software tools, R and SimpleNLG, is an effective develop-

ment environment for simulation data to report text. A key challenge in developing generic simulation re-

ports are identifying what information is useful to the decision maker. Our initial prototype employed a

simple rule based approach to determine when to display feasible and infeasible solutions beyond the

lowest cost feasible configuration.

2123

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

 The NLG approach discussed in this paper has the potential for improving how simulation studies are

executed. By reducing the effort required to report results, modelers can focus on modeling and experi-

mental design instead of documentation. Being able to quickly regenerate a report with additional scenar-

ios and design alternatives would reduce the time and cost required to modify a simulation experiment.

 Several future research exist for this project. Analysis of simulation differs slightly from most exper-

imental data in that additional results are relatively inexpensive to produce. As a result, a generated report

that can be easily recreated could be an effective tool. This project developed a simple prototype to illus-

trate the effectiveness of NLG techniques to achieve this goal. The prototype developed can be expanded

and improved to be effective in more simulation environments with additional output reports and formats

including detailed report documents and high level slides for presentations. We are currently working on

an effective IDE for our current prototype that combines experimental design, output formatting and re-

porting into a single interface. We are also expanding the tool to produce summaries of optimization

based simulation experiments.

 Another promising direction is to use NLG to document the simulation model. Simulation models are

often complex and difficult to explain to decision makers who do not understand the simulation language.

Documenting entity paths within the simulation model for testing and model documentation could be aid-

ed with a NLG approach.

 Content determination especially summarizing large data sets in short summaries is a NLG research

area that is especially important for effective reporting of simulation experiments. Simulation can gener-

ate vast data sets based on running an experimental design or optimization. Selecting a subset of infor-

mation to display to the user can be a major task for modelers when writing simulation reports. Alterna-

tive solutions can be presented in text format, table format, or summaries based on statistical models such

as linear regression. Given that simulations can generate thousands of feasible solution, presenting a small

number of diverse high quality representative solutions beyond the best solution can explain the solution

space to decision makers. Content determination can be viewed as an optimization problem of maximiz-

ing the amount of information in the report given page length constraints.

REFERENCES

Colley, B. 1977. "Documenting Simulation Studies for Management." In Proceedings of the 1977 Winter

Simulation Conference, edited by H. J. Highland, 743-746. Piscataway, New Jersey: Institute of Elec-

trical and Electronics Engineers, Inc.

Gatt, A., and E. Reiter. 2009. "SimpleNLG: A Realisation Engine for Practical Applications." In Proceed-

ings of the 12th European Workshop on Natural Language Generation, edited by E. Krahmer and M.

Theune, 90-93. Association for Computational Linguistics.

Gatt, A., F. Portet, E. Reiter, J. Hunter, S. Mahamood, W. Moncur, and S. Sripada. 2009. "From Data to

Text in the Neonatal Intensive Care Unit: Using NLG Technology for Decision Support and Infor-

mation Management." Ai Communications 22(3):153-186.

Hassan, S., J. Pavón, M. Arroyo, and C. Leon. 2007. "Agent Based Simulation Framework for Quantita-

tive and Qualitative Social Research: Statistics and Natural Language Generation." In Proceedings of

the Fourth Conference of the European Social Simulation Association, edited by F. Amblard, 697-

707.

Hunter, J., Y. Freer, A. Gatt, E. Reiter, S. Sripada, and C. Sykes. 2012. "Automatic Generation of Natural

Language Nursing Shift Summaries in Neonatal Intensive Care: BT-Nurse." Artificial intelligence in

medicine 56(3): 157-172.

Leisch, F. 2002. "Sweave. Dynamic Generation of Statistical Reports Using Literate Data Analysis." Re-

port Series SFB Adaptive Information Systems and Modelling in Economics and Management Sci-

ence, WU Vienna University of Economics and Business, Vienna.

2124

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

Mahamood, S., and E. Reiter. 2011. "Generating Affective Natural Language for Parents of Neonatal In-

fants." In Proceedings of the 13th European Workshop on Natural Language Generation, edited by

C. Gardent and K. Striegnitz, 12-21. Association for Computational Linguistics.

McKeown, K. R. 1985. "Discourse Strategies for Generating Natural-Language Text." Artificial Intelli-

gence 27(1):1-41.

Portet, F., E. Reiter, A. Gatt, J. Hunter, S. Sripada, Y. Freer, and C. Sykes. 2009. "Automatic Generation

of Textual Summaries from Neonatal Intensive Care Data." Artificial Intelligence 173(7):789-816.

Reddington, J., and N. Tintarev. 2011. "Automatically Generating Stories from Sensor Data." In Proceed-

ings of the 16th International Conference on Intelligent User Interfaces, edited by P. Pu and M. Paz-

zani, 407-410. ACM.

Reiter, E., and R. Dale. 1997. "Building Applied Natural Language Generation Systems." Natural Lan-

guage Engineering 3(1):57-87.

Reiter, E., and R. Dale. 2000. Building Natural Language Generation Systems. Cambridge: Cambridge

University Press.

Sargent, R. 2005. "Verification and Validation of Simulation Models." In Proceedings of the 2005 Winter

Simulation Conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 130-

143. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Sripada, S., E. Reiter, and I. Davy. 2003. "SumTime-Mousam: Configurable Marine Weather Forecast

Generator." Expert Update 6(3):4-10.

Stock, O., M. Zancanaro, P. Busetta, C. Callaway, A. Krüger, M. Kruppa, T. Kuflik, E. Not, and C. Roc-

chi. 2007. "Adaptive, Intelligent Presentation of Information for the Museum Visitor in

PEACH." User Modeling and User-Adapted Interaction 17(3):257-304.

Urbanek, S. 2011. rJava: Low-level R to Java Interface. R Package Version 0.9-3.

van Deemter, K., E. Krahmer, and M. Theune. 2005. "Real Versus Template-based Natural Language

Generation: a False Opposition?" Computational Linguistics 31(1):15-24.

Wieland, J. R. and B. Nelson. 2009. "How Simulation Languages Should Report Results: a Modest Pro-

posal." In the Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R. R.

Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 709-715. Piscataway, New Jersey: Institute of Elec-

trical and Electronics Engineers, Inc.

Yu, J., E. Reiter, J. Hunter, and C. Mellish. 2007. "Choosing the Content of Textual Summaries of Large

Time-series Data Sets." Natural Language Engineering 13(1): 25-50.

AUTHOR BIOGRAPHIES

JAMES CURRY is an Associate Professor in the Industrial Engineering Department at Lamar Universi-

ty. His research interests are simulation, optimization, data mining and natural language generation. His

email and web address is james.curry@lamar.edu and dept.lamar.edu/industrial.

WEIHANG ZHU is an Associate Professor in the Industrial Engineering Department at Lamar Universi-

ty. His research interests are information technology, optimization, simulation and human computer inter-

faces. His email and web address is weihang.zhu@lamar.edu and maritime.lamar.edu/personal/zhu.

BRIAN CRAIG is a Professor and Chair of the Industrial Engineering Department at Lamar University.

His research interests are human factors, ergonomics and safety. His email and web address is bri-

an.craig@lamar.edu and dept.lamar.edu/industrial.

LONNIE TURPIN, JR. is an doctoral student in the Industrial Engineering Department at Lamar Uni-

versity. He is currently employed as an Instructor in the Department of Management, Marketing and

2125

Curry, Zhu, Craig, Turpin, Bokhari, and Mhasavekar

Business Administration at McNeese State University. His research interests are Operations Research and

Decision Analysis. His email address is lturpin@mcneese.edu.

MAJED BOKHARI is a doctoral student in the Industrial Engineering Department at Lamar University.

His research interests are optimization and data mining. His email and web address is mbo-

khari@my.lamar.edu and dept.lamar.edu/industrial.

PAVAN MHASAVEKAR is a doctoral student in the Industrial Engineering Department at Lamar Uni-

versity. His research interests are lean manufacturing, inventory control and simulation. His email and

web address is prmhasaveka@lamar.edu and dept.lamar.edu/industrial.

2126

