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ABSTRACT

Trade-offs between simulation speed, fidelity, compatibility, and scalability limits the use of accurate
high-resolution simulators in the automotive industry. With a growing demand for fuel-efficient and
environmentally friendly vehicles, the need for precise co-simulation of entire vehicle is greater than ever
before. In this paper we present a technique for distributed discrete event co-simulation that exploits parallel
computing and distributed simulation with an advanced synchronization technique to overcome all of these
constraints. The system allows us to add new components with their own solvers to a simulation without
compromising the solution accuracy or simulation speed.

1 INTRODUCTION

Virtual unit testing is a widely employed technique in the automotive industry. However, in recent years
vehicles are becoming increasingly complex due to growing number of new and improved electronic,
mechanical, and mechatronic technologies. To deal with these complexities in a cost-effective way,
automotive makers are moving towards an era of virtual integrated testing of multiple components. Such
integrated testing involves a variety of components that are each best simulated by different simulation
tools. Co-Simulation (co-operative simulation) is a methodology that allows the simulation of heterogeneous
components running simultaneously and exchanging information in a collaborative manner. The scalability
requirements for the integrated testing of 10s or even 100s of components can be provided by using
Distributed Discrete Event Simulation (DDES) techniques over parallel hardware. However, the existing
technologies suffer from speed-accuracy trade-offs and therefore fail to provide sufficient fidelity for fully
parallel executions. In contrast, increasing the accuracy with conventional techniques unacceptably slows
the simulation speed. Ideally, the fidelity of the results for each component during the integrated simulation
should be the same as the fidelity during unit testing of that component.

In this paper, we propose a DDES technique that exploits the “time shifts” that are naturally allowed
between simulation units to achieve a fully parallelized co-simulation of complex systems with on-time
data exchange in a conservative synchronization manner (i.e. no rollbacks are required to recover the exact
data exchange points). The technique was developed for DDES in general with a focus on the automotive
industry. Our contribution is a framework for co-simulation of automobile in a parallel environment with:

• No compromise of fidelity.
• No decrease in simulation speed with the addition of new components.
• 100% parallelism i.e. Simulation time is determined only by the slowest component.
• Deadlock-free simulation.
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Section 2 clarifies the problems that our work seeks to solve. The key idea of the research is discussed
in Section 3. We further elaborate the details of the proposed framework in Section 4. Some empirical
experiments and their results are explained in Section 5. Comparison with existing techniques appear in
Section 6. Finally we conclude the paper with some directions for future work in Section 7.

2 BACKGROUND & MOTIVATION

Modern automobiles consist of increasingly complex engines, cruise controls, and powertrain systems that
are typically controlled by over 60 Electronic Control Units (ECUs) (Pretschner et al. 2007). As the vehicles
become smarter, the dependencies and communications among the different components are increasing.
To perform accurate simulations for a modern vehicle, the most reasonable solution involves integrated
simulations of the whole vehicle. A practical simulator for whole vehicle simulation should be scalable
enough to run a high precision simulation in a reasonable amount of time. In this section, we argue that in
the existing vehicle simulation techniques the scalability comes at the cost of execution speed or solution’s
fidelity.

Classical tools for continuous simulations construct a unified model of the whole physical system.
Although the modules are logically separated for design purposes the tool does not consider these logical
divisions during the actual simulation. Dependencies are resolved among different components and the
execution is scheduled accordingly. Such simulation techniques are most suitable for serial execution
(though limited parallelism can be achieved in some cases).

Discrete time simulation or time-driven simulation is another widely used simulation technique. In
this approach each of the simulation components run the same simulation time step independently and
the communication is limited to predefined synchronization points. This approach is inefficient for events
dispersed irregularly over time. A co-simulation strategy derived from this technique is known as the macro-
step approach. This technique is easy to fully parallelize by assuming a unit-delay on all the connections.
This delay on the connections directly affects the fidelity of the solution, especially when several components
are connected in a serial fashion. Deciding on the step size is also a difficult task. Smaller steps increase
the accuracy of the simulations, while larger steps are required for speed and efficiency.

A more practical approach is to design a DDES-based co-simulation system where a large model
is broken down into smaller sub-models called physical processes. One physical process represents a
single component of the actual system (such as an engine or an ECU). Each physical process is then
simulated by a Logical Process (LP) that can run independent of the other LPs. Each LP maintains its own
independent simulation clock called Local Virtual Time (LVT). All DDES systems require some kind of
synchronization mechanism to advanced the LVT. The synchronization techniques can be broadly divided
into two categories, optimistic and conservative approaches. Comprehensive comparisons of optimistic and
conservative approaches can be found in Alois and Satish (1994) and Vee and Hsu (1999).

Optimistic synchronization takes risks that might violate the causality constraint (i.e. causes have to
precede their effects). This approach is based on the work presented in Jefferson and Sowizral (1982),
Jefferson and Sowizral (1985), and Jefferson (1985) as time-warp mechanism. In an optimistic approach
the LPs continue to process events as soon as they are received, even though this could cause some
messages to be incorrectly processed out of order. If an event is received with a timestamp smaller than
LVT, the simulation is rolled back to the time where the erroneous processing occurred, and the simulation
is restarted so that events occur in the correct order. Events sent erroneously are cancelled by sending
“anti-events”. Due to frequent rollbacks the performance of an optimistic approach degrades as the number
of LPs increases. This approach is impractical in some cases, such as Hardware-In-Loop (HIL) simulations.
Also, depending on the simulation tool, a particular component may not support rollback.

Conservative synchronization is based on the work presented in Chandy and Misra (1979), Misra
(1986) and Bryant (1984). In conservative approach events are always processed in chronological order.
This handling of incoming events with exact timestamps yields precisely the same results as obtained by
a centralized (sequential) execution. In order for the LPs to proceed in parallel, they must know the next
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Figure 1: Serialization with a conventional con-
servative approach. {A1,A2,. . . }, {B1,B2,. . .}
represent time steps in LP A and B respectively:
(a) Partial serialization, (b) Full serialization.

Figure 2: Full parallelism can be achieved by
introducing an initial-shift in some logical pro-
cesses. This figure can be compared with Figure
1 to see the advantage of the proposed approach.

lookahead time, during which the other LPs will never send any events to the LP. When an LP receives at
least one event on all of its input ports, the lookahead time can be computed as the minimum timestamp
among all of the received events. The LP can then proceed safely up to this time. Since some of the
LPs may not receive events from all of their sources, they cannot advance, which causes a deadlock
situation. To avoid deadlocks, the LPs need to send null messages to their destination LPs in addition to
the event messages. However, a naively designed scheme could lead to an explosion in the number of null
messages exchanged or even deadlock. The conservative approach fails to achieve 100% parallelization
(Alois and Satish 1994, Vee and Hsu 1999) in simulations where two directly connected LPs have different
lookahead properties (Figure 1(a)). LAB in the figure represents the lookahead time between LP A → B.
For a lookahead value of 0 in one direction the conventional approach fails to achieve any parallelization
and the simulation must proceed sequentially (refer to Figure 1(b)). When compared with an optimistic
approach, a conservative approach shows better scalability for larger models (Perumalla 2007).

In this paper we extend the conservative approach so that the distributed discrete event simulation
can run in a multiprocessor environment with fully parallelized execution. In addition, fidelity is never
compromised in this process of increasing the simulation speed through parallel execution.

3 THE CORE CONCEPT

The key idea behind this research is to shift some of the LPs in time to achieve high fidelity on-time
synchronization (i.e. the events are handled without loosing any fidelity) with full parallelization. We
exploit the fact that the simulation units can run in slightly shifted time periods without violating the
causality constraint. Time shift execution with null-messages enables 100% parallel execution of DDES
with on-time data exchange. These shifts in time are realized by introduction of “initial time shifts” in the
LPs. Initial-shifts are computed so that neighboring pairs have the same lookahead time with each other,
which guarantees full parallelization with no deadlock. Initial-shift is introduced in LP A of Figure 2(a)
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Figure 3: Time-lags can be found in many physical systems: (a) Ideal communication for synchronization
between models, (b) Time-lag due to decision and action time, (c) Time-lag due to communication delay.

and in LP B of Figure 2(b). The technique never violates causality constraint and therefore falls into the
category of conservative synchronization in DDES.

The proposed technique relies upon the minimum time-lag properties of the physical system to compute
the lookahead time. The time-lag is a natural communication or processing delay that exists in every electrical
and mechanical system. Figure 2 can be compared with Figure 1 to see how the proposed technique achieves
full parallelization by introducing an initial-shift in one of the processes. LAB and LBA in this figure represents
the time-lag from LP A → B and LP B → A respectively. We can see that even in the case of 0 time-lag
full parallelization is achieved (Figure 2(b)). In contrast the conventional conservative algorithm fails to
achieve any parallelism as is evident from Figure 1(b). In Figure 2(b) the time-lag LBA = 0 and LAB > 0.
By introducing an initial-shift of LAB/2 at LP B, we can calculate equal lookahead (LAB +LBA)/2 in both
directions. Equal lookahead time in both directions ensure a fully parallel execution. Note that both the
LPs are running in a time shifted manner, time step A1 of LP A and time step B1 of LP B runs in parallel
with B lagging behind A. Due to this time shifted execution each LP can generate an event at any point
in time and the receiver LP can catch the event without compromising the fidelity. Even though the total
number of null-messages exchanged in a given amount of time increases when compared to a conventional
conservative approach, we now can achieve full parallelization and reduce the simulation time by using
the hardware resources more effectively.

Figure 3 further illustrates the concept of time-lag. Ideal communication for synchronization between
multiple components is shown in Figure 3(a). In simulation systems, we cannot predict the future rendezvous
points for exact synchronization but we can determine the minimum communication delay and the minimum
time period a LP takes to reply to an incoming request. For example with an ECU and an Engine, the
ECU should receive state update events from the Engine with zero delay, but the Engine will not receive
any actuator signals for some time after the events (250 µs 1), because ECU takes some time to decide the
actuator signals and also HW timer has non-zero interval until its alarm. Therefore, as shown in Figure
3(b) the Engine is allowed to go forward (250 µs) in time without waiting for ECU and without losing
accuracy. Similarly, as shown in Figure 3(c), the CAN communication takes at least 44 µs 2 for a single
data packet at 1-Mbps mode. The communication delay varies according to the size of data packets, but,
it is never less than 44 µs. Therefore, each ECU is allowed to proceed 44 µs without losing any fidelity.

1The engine ECU is designed to consume the crank-angle pulse from the engine. A crank-angle pulse is generated at
every 15◦ of crank-angle and is therefore generated 24 times in 1 revolution of the crank shaft. Assuming 10,000 rpm
(revolutions-per-minute) as the maximum limit and 24 crank-angle pulses generated in 1 second, the frequency of pulses become
(10,000×24)/60 Hz. Therefore, the minimum time delay can be calculated to be 250 µs.

2Referring to Bosch CAN version 2.0 Robert Bosch GmbH (1991) specifications the CAN bit rate is up to 1Mbit/s, so a
1-bit transfer consumes at least 1µs. According to the same document, each data frame of a standard format contains at least
a Start of frame(1 bit) + Identifier(11 bits) + RTR(1 bit) + Control field(6 bits) + Data field(0 bit) + CRC Sequence(15 bits)
+ CRC Delimiter(1 bit) + ACK Field(2 bits) + End of frame(7 bits) = 44 bits. Therefore, 44 bits x 1µs/bit = 44 µs time-lag.
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4 CCSS ARCHITECTURE

We named the proposed technique Complex Control Systems Simulation (CCSS). CCSS is a set of tools and
runtime packages that accelerate integrated simulations of complex control systems. In contrast to standard
simulators used in the industry, CCSS makes sure that the elapsed time of integrated simulation never
increases except for a small overhead even when new components are added to the system. Simulator units
can run in parallel on top of multiple computational resources with very little overhead for communication
and initial scheduling. Also, the simulation’s fidelity is never degraded as long as minimum time-lags of
data exchange communication are defined between logical processes.

4.1 Distributed Framework of CCSS

CCSS allows co-simulation of multiple components that run simultaneously in different simulation tools.
Figure 4 depicts the concepts of CCSS at an abstract level. Each component is connected to an LP. The
LPs are linked with each other to construct a communication backplane among co-simulation components.
Each LP runs in a separate thread controlled by a local scheduler. CCSS framework implements optimal
scheduling and communications scheme by using an extended version of conservative synchronization for
DDES. In CCSS some LPs lag behind other LPs in time, ensuring that in spite of the full parallelization
any event generated by an LP will be received at the exact time it was destined for. This results in
high fidelity without compromising the simulation’s speed. In addition, unlike conventional conservative
approach there is no overhead of any deadlock-avoidance or deadlock-detection-and-recovery algorithm.
CCSS framework ensures a synchronization that is deadlock free with no possibility of a deadlock even if
some of the time-lags in the simulation are 0.

4.1.1 Calculation of Initial-Shift

As it is clear from earlier discussion, the use of initial-shift is a crucial part of CCSS framework. CCSS
framework solves a system of equations to calculate initial-shifts for all of the LPs in the simulation. Lets
assume Li j represents the time-lag from LP i to LP j, and Si represents the initial-shift of LP i. The
initial-shifts are computed by solving this system of equations:{

Si −S j =
L ji −Li j

2

∣∣∣∣∣ i < j

}
where, min

i
Si = 0. (1)

In general, the system is converted to the form As = b, where s = [S1,S2, . . . ,Sn]
T , b = [b1,b2, . . . ,bm]

T ,
and A : m× n(m ≥ n), when initially assigning zero to S0. Depending on the connections between the
components, actually in most of the cases, this system of equations can become overdetermined. In such
cases we need to remove some equations with lower preference in order to make the rank of rank(A) = n.
A preference is a value assigned to each connection. The time-lags for the equations that were excluded are
recalculated to ensure that they never exceed the minimum time-lag originally defined for those connections.
The time-lags are recomputed by:

Figure 4: CCSS communication backplane.
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Figure 5: Different perspectives of CCSS simulation involving three logical processes: (a) Initial-shift and
propagation of null and event messages (state events). Note that time-stamp of event messages are not
known in advance and are only shown here for clarification, (b) Parallel execution over multiple CPUs in
a time delayed manner, (c) Step-by-step execution of the simulation in mathematical form.

Li j := L ji +2(S j −Si), if Li j > L ji +2(S j −Si);

L ji := Li j +2(Si −S j), otherwise.
(2)

When (Li j +L ji)/2 ≤ 0, then we need to merge LP i and LP j into a single simulation component.
However, the discussion is skipped here because it is out of the scope of this paper.

4.1.2 Distributed Synchronization Protocol

In CCSS each LP is controlled by a local scheduler and there is no need for a centralized synchronization.
Each local scheduler is responsible for managing its LVT and handling the communication with the
connected LPs. The local scheduler starts by sending a null-message to all of the connected LPs after
adjusting for the initial-shift. After that each LP responds to every null-message received. Null-messages
are not broadcasted, instead a null-message is sent only to the source of received null-message. Event
messages are generated and consumed at precise times. Using this protocol CCSS can support fully parallel
execution without any compromise of simulation fidelity.

This synchronization protocol is depicted in Figure 5. The figure shows a case involving three LPs
running over CCSS framework. The concept of the initial-shift is shown in Figure 5(a). The fully parallel
execution in a time delayed manner can be seen in Figure 5(b). Continuous or discrete time-step functions
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expect one input and generate exactly one output for each simulation step. In contrast, discrete event step
functions have no such limitations. They can proceed in time without receiving any inputs. Similarly,
there is no limit on the number of output events that can be generated over a given duration of time. Each
event is represented by a value and an accurate timestamp. In CCSS the time always moves in a forward
direction (i.e. a step is never rejected). CCSS-aware simulation modules have an ability to stop at any
previously unknown time to generate an output and then resume their simulation. Figure 5(c) presents this
kind of step function in a mathematical form. The state of the input and output ports is also shown before
and after each time step.

From the theory of conservative synchronization in discrete event simulations we know that the simulation
of an LP cannot proceed in time until all the input ports have a null or event message with a time-stamp
greater than the LVT. It is clear from Figure 5(c) that there is a null-message on all of the input ports of
all of the LPs at the start of each time step. For LP A, even though LBA = 0, a null-message is always
available on both of the input ports at the start of each time-step. This leads to a deadlock free 100%
parallelization without any loss of fidelity.

4.2 Discussion

Now we will prove that CCSS can run high fidelity simulations without ending up in a deadlock. As is
clear from Figure 5, the CCSS framework manages the communication separately for each pair of LPs.
Therefore, if we can prove the condition for an arbitrary pair of LPs it will apply to the entire simulation.
For the proof we consider two logical processes A and B. Both LPs have one in-port and one out-port
connected with each other. The time-lag between the LPs can be defined as either “LAB = 0, LBA > 0” or
“0 < LAB ≤ LBA”. The case where both time-lags are 0 results in an algebraic loop and cannot be handled
by any simulation tool under normal circumstances.
Theorem 1 The simulation is 100% parallel. There are no sequential parts in the simulation and the
resources are used at their full capacity.

In the theory of conservative synchronization a simulation is fully parallelized if the lookahead time is
the same in both directions between two LPs. In the case of CCSS the lookahead time in both directions is
always equal to (LAB +LBA)/2, hence fully parallelizing the execution of the LPs on separate processing
cores.
Theorem 2 The system is deadlock-free.

In a conventional conservative approach deadlock can occur when lookahead time is not equal in both
directions between two connected LPs. In this situation an LP needs to wait for other LPs to finish a step.
Deadlock is easy to occur in systems with complex connections especially the ones involving loops. As
discussed in theorem 1, in CCSS two neighboring LPs always have equal lookahead in both directions.
This leads to a deadlock free fully parallel execution even when time-lag in one direction is 0. Hence,
there is no need for a deadlock avoidance or detection algorithm.
Theorem 3 Minimum number of null-messages are used for a fully parallel high fidelity implementation.

From the previous theorem we can see that the size of each time-step TStepSize is given by TStepSize =
(LAB +LBA)/2 or the average of both time-lags and exactly one null-message is generated by each LP in
each time-step. Now let’s consider the two other possibilities and see what happens in each case.
If (TStepSize < (LAB + LBA)/2): The number of null-messages exchanged in a given period of time will
increase as compared to CCSS. Therefore, we don’t need to discuss this case.
If (TStepSize > (LAB+LBA)/2): Lets assume LAB > LBA. For a fully parallel implementation the step size for
both the LPs must be equal. Let’s assume the new step size is T newStepSize > (LAB+LBA)/2. The number of
null-messages in the system will decrease but the simulation will no longer be able to support high fidelity.
If LP A generates an event in the nth time-step ((tn−1, tn]) where tn = n �T newStepSize. The exact timing of
the event is tn−1 +α , where α is a very small positive real number. The event must be received by LP B
at tn−1 +α +LAB. Since LP A is lagging behind LP B, the B will be executing the (n+1)th time-step. If
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Figure 6: Implementation of CCSS framework.

TStepSize > (LAB +LBA)/2, then LP B will not have finished the (n+1)th step at time tn−1 +α +LAB. The
LP B will not be able to consume the event at its intended time, hence losing some fidelity. This problem
can be solved by running some parts of A and B sequentially.
This discussion let us conclude that TStepSize = (LAB +LBA)/2 is the best option since it uses the minimum
number of null-messages required for a high precision fully parallel execution.
Theorem 4 The simulation is always correct and precise. The time delayed execution of the LPs does
not affect the fidelity of the solution.

As discussed in theorem 3 lookahead time of (LAB+LBA)/2 ensures that the events are always generated
at the correct timing by the sender LP and are always received and processed at the intended point in time
by the receiver LP. This ensures the simulation is always correct and the fidelity is never lost.

5 IMPLEMENTATION & RESULTS

Figure 6 describes the implementation details of the CCSS framework. The input to the system is the
simulators database and Simulation Definition (SD) file. The SD lists the simulator modules used by the
simulation and defines the connection information between these modules. For the sake of compatibility
wrapper modules (out of the scope of this paper) are provided to convert continuous, discrete time and
tool-coupling simulation models into CCSS aware discrete event simulation modules. The master scheduler
calculates the initial-shift for each process by using the time-lag information provided in the SD. The
master launcher then launches each LP as a thread on a processing core. Each LP is controlled by a local
scheduler. The current implementation of CCSS is targeted for a multi-core processor environment and
shared memory is used to communicate events among different LPs.

Figure 7: Delayed feedback control model.
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Figure 8: Integrated simulation model of a vehicle with time-lags.

For empirical results we have used two different experimental models. First model emphasizes on the
importance of fidelity in a control system while the second example shows the scalability of the proposed
technique by using a realistic integrated simulation scenario that can occur in an automotive simulation.

While precision can lead to error accumulation in some cases, in other cases the macro-step or any
other approach that compromises on fidelity will produce entirely incorrect results. Such a scenario is
shown in Figure 7. This is the output of a delayed feedback controller connected to a plant. The time-lag
from the controller to the plant is 1.2ms and the time-lag from the plant to the controller is 0s. The results
clearly show that any approach that compromises on fidelity (e.g. the macro-step approach in the figure)
fails to give the correct output. In contrast, CCSS while running in a fully parallelize manner produces the
exact output without loosing any fidelity.

Empirical results for scalability were obtained by using the model shown in Figure 8. The complex
control system in the figure consists of several unit control systems connected with each other via CAN.
For scalability we start with only 3 components of the model, latter we show the performance of the
proposed technique with 6 and 8 components. The 3 components model in the figure is an automobile
model consisting of an ECU, a driver, and a plant (engine). The Driver controls the accelerator pedal in
order to achieve the preset desired velocity. The ECU is responsible for calculating the throttle for the
engine. The ECU also generates the fuel injection and ignition pulses. The engine component includes
the powertrain and computes the current velocity, rpm, and crank angle pulse. It is important to remember
that the time-lags given in the figure are the natural delays that exist between these components. Note that
there is only one non-zero time-lag (LEngineECU→Engine). Conventional conservative synchronization will
fail to achieve any parallelization. CCSS on the other hand generates a fully parallelized deadlock free
synchronization with precise event handling.

Figure 9: Crank angle error accumulation in macro-
step co-simulation after just 2.5 seconds into the sim-
ulation. In contrast, CCSS exactly tracks the expected
output.

Figure 10: Simulation execution time of a 5
seconds simulation for different number of com-
ponents using CCSS, Macro-Step & Sequential
approach.
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Figure 11: Advantages of CCSS. Conventional techniques either achieve high fidelity or faster execution
speeds. CCSS performs high fidelity parallel simulation with no compromise on speed or fidelity.

Crank angle pulse is a very important signal that helps the ECU to compute the exact fuel injection and
ignition timing for the engine. A crank angle event is generated for every 15◦ turn in the engine crank. In one
complete revolution the pulse is generated 24 times. In order to empirically prove the high fidelity of CCSS we
compare the output with macro step based co-simulation (the most often used technique for parallel execution).
The nominal signal was calculated using Simulink R⃝– http://www.mathworks.com/products/simulink/. From
Figure 9, it is clear that the error accumulation is significant in case of macro-step co-simulation. In just 2.5
seconds of simulation there is a shift of 4◦ between the crank angle calculated by the macro-step approach
and the nominal results (in 5 seconds this error in crank angle reaches 20◦). In contrast, CCSS exactly
tracks the expected output. Simulation execution speed for different number of components on Intel Xeon
X5460 3.16GHz 8 cores CPU with 3GB RAM are given in Figure 10.

The scalability properties of CCSS can be deduced from Figure 9 and 10. Sequential execution
produces correct output but the execution time of the simulation increases with the increase in the number
of components. In case of macro-step approach the simulation execution time remains almost constant but
error accumulates over time hence compromising the solution fidelity. CCSS on the other hand produces
accurate results with simulation execution speed comparable to that of macro-step approach. In case of CCSS
given enough processing cores the simulation execution time is only determined by the slowest component
in the simulation (which can be reduced further by using model compiler – another tool developed by the
authors – out of the scope of this paper). Advantage of CCSS over any sequential ODE-based simulation
or commonly used parallel co-simulation techniques is shown in Figure 11.

6 RELATED WORK

The most commonly used technique employed in the automotive industry for parallel co-simulation is
known as the fixed macro-time steps approach (Figure 12). Macro-step is an approach that simulate
the communication in a simulator by fixing the synchronization points. Although this approach supports
high-speed simulations, simulation errors gradually accumulate due to the large macro-step time resolution.

Figure 12: Macro-time step approach to co-simulation.
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Figure 13: Co-simulation using functional mock-up interface (FMI)

Smaller macro-time steps can be used to increase the fidelity at the expense of simulation speed. Therefore,
this approach compromises either speed or fidelity in the simulation.

Functional mock-up interface (FMI) – http://functional-mockup-interface.org is emerging as a de facto
standard for the interface of simulation units in the automotive industry. FMI defines an open interface to
develop complex cyber-physical systems consisting of functional mock-up units (FMU). The FMI functions
are called by a simulator to create one or more instances of an FMU, called a model, and to run these models,
typically together with other models. An FMU may either be self-integrating (co-simulation) or require the
simulator to perform numerical integration. Alternatively, tools can be coupled via co-simulation. Even
though FMI is used by a large number of automotive companies, it has several drawbacks in comparison
with the approach proposed in this paper. Here are some of the trade-offs involved in the FMI:

• In sequential and staggered simulation (Figure 13(a)) the unit simulators are executed one by one
by exchanging data in a staggered manner. In this case the elapsed time of the integrated simulation
increases with the addition of new simulation units. Also, the error accumulates due to the loose
coupling between the components.

• In parallel simulation with macro time steps (Figure 13(b)) the unit simulators are executed in
parallel by exchanging the data at each macro time step. In this case the simulation fidelity may
become degraded for newly added simulation units. Also there is a need to write schedulers that
are specialized for the newly added units.

Mathworks Matlab R⃝ Simulink R⃝ is the industry standard for modeling control systems and is used in
many engineering disciplines for modeling and simulation. Simulink essentially performs continuous or
discrete-time simulation as opposed to the discrete event simulation used by the proposed CCSS framework.
All of the components in the simulation follow the same time steps. For a state event (a zero-crossing
event) all of the components in the simulation reject the current time step and retry the same step with a
finer accuracy to achieve high fidelity. This rejection and retry policy can generate significant overhead in
complex parallel simulations. Also high fidelity cannot be provided for real-time HIL simulations.

7 CONCLUSIONS & FUTURE WORK

A distributed discrete event based co-simulation technique called CCSS was proposed in this paper. CCSS
extends the conventional conservative approach to distributed discrete event simulation and exploits the
natural time-lag that exists in all complex control systems to enable on-time synchronization. In on-time
synchronization a simulation unit can report an event at the exact time it was generated. Time delayed
execution of the simulation units ensures that the receiver side simulation unit will be able to catch and
process the events without waiting for synchronization points. This exploitation of the time-lag properties
of the system helps CCSS achieve 100% parallel execution of different simulation units. The techniques
discussed in this paper achieve high fidelity without compromising the simulation speed. CCSS is designed
as a general-purpose discrete event co-simulation system with a focus on automotive industry. Although
it is out of the scope of this paper, CCSS has the potential to import existing simulation units and to run
them in high fidelity with all of the other benefits of CCSS.
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The future direction for this work includes real-time simulation for hardware-in-loop (HIL) simulations.
Accurate high-resolution real-time simulations of complex control systems will require new innovations to
be incorporated with the techniques proposed in this paper.
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