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ABSTRACT 

This paper proposes a Systems Modeling Language (SysML)-based simulation model aggregation 

framework to develop aggregated simulation models with high accuracy.  The framework consists of 

three major steps: 1) system conceptual modeling, 2) simulation modeling, and 3) additive regression 

model-based parameter estimation.  SysML is first used to construct the system conceptual model for a 

generic seedling propagation system in terms of system structure and activities in a hierarchical manner 

(i.e. low, medium and high levels).  Simulation models conforming to the conceptual model are then con-

structed in Arena.  An additive regression model-based approach is proposed to estimate parameters for 

the aggregated simulation model.  The proposed framework is demonstrated via one of the largest grafted 

seedling propagation systems in North America.  The results reveal that 1) the proposed framework al-

lows us to construct accurate but computationally affordable simulation models for seedling propagation 

system, and 2) model aggregation increases the randomness of simulation outputs. 

1 INTRODUCTION

Grafting is a horticultural technique whereby tissues from one plant are joined with another to obtain a 

combination of rootstock and scion genotypes that are more desirable than those contained in a single 

plant.  The advantage of the vegetable grafting is to improve fruit yield and quality as well as to reduce 

the environmental impact through reducing chemical fumigants utilized in traditional cropping systems.  

According to Kubota et al. (2008), many seedling propagators in North America have strong interests in 

introducing grafting into their seedling propagation systems.  For a seedling propagation system, uncer-

tainties and complexity involved in high resource (e.g. machines and labors) management  and in envi-

ronmental factors (e.g. humidity and temperature) make the system performance difficult to predict. Dis-

crete event simulation has become one of the most used analysis tools for large scale systems like 

seedling propagation system because it is one of the few tools that can take randomness into account, and 

it can address aggregate as well as very detailed models. A simulation model representing a seedling 

propagation system can be used to predict system performance, supporting various decisions in design or 

operation (e.g. production scheduling in a peak season) of the seedling propagation system.  In simula-

tion, fidelity refers to the faithfulness with which model behavior reflects modeled system behavior (Kim, 

Mcginnis and Zhou 2012).  It has been recognized that the level of detail of simulation has a significant 

impact on the fidelity (Persson 2002; Vasudevan and Devikar 2011; Venkateswaran and Son 2004).  For 

example, Venkateswaran and Son (2004) demonstrated that the dynamics and inventory level of supply 

chain are highly dependent on the level of detail of simulation models even though the models simulate 

the same process.  One principal challenge that we faced while developing a highly detailed simulation 

model (i.e. low level simulation model) for the seedling propagation system in this work, was the low ex-

ecution speed due to the large number of entities in the model.  Such high computational overhead issues 
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have also been recognized by Harmonosky and Robohn (1995).  It is important to develop a simulation 

model with an appropriate accuracy without being overly detailed to avoid wasting computational re-

sources (Huang et al. 2009). 

One way to balance the execution speed and fidelity is to aggregate the model.  There are two prima-

ry issues that need to be resolved for simulation model aggregation. One is to narrow down the set of de-

cision variables.  The other one is to reduce the total number events during simulation execution.  For the 

first issue, large number of decision variables not only increases the computation time of simulation-

based optimization, but also sometimes prevents users from focusing on more significant decision varia-

bles.  Therefore, using sensitivity analysis techniques such as ANOVA to exclude insignificant ones from 

the set of decision variables and to aggregate several decision variables can help decision makers or opti-

mization programs find the optimal or near optimal decisions more efficiently (Webster and Padgett 1984; 

Cassandras et al. 2000; Rodriguez et al. 2008).  For the second issue, the number of simulation events 

should be reduced by conceptually aggregating multiple activities into one (Madan et al. 2005; Huang et 

al. 2009).  This is often achieved by aggregating model building blocks into one or a few and objects into 

that of a larger size during the modeling stage. In this way, the simulation provides what would happen 

“on the average” instead of modeling all the detailed activities to look into what would happen “explicit-

ly”.  One important requirement for such aggregation is that the aggregated model must maintain the 

same behaviors of the low level model.  Since the first issue has been resolved using sensitivity analysis 

approach in Webster and Padgett (1984), this paper mainly focuses on resolving the second issue. 

 Although simulation model aggregation has been addressed in the past, the literature lacks formal 

modeling approaches to simulation model aggregation.  Without a formal system conceptual model, the 

practice of model aggregation is ad hoc (Madan et al. 2005).  Currently, commonly used languages in sys-

tematic and formal information modeling for simulation include EXPRESS, IDEF, UML and SysML 

(Son et al. 2003; Wang et al. 2011; Meng et al. 2013; Cetinkaya et al. 2010).  In addition to the properties 

shared with other formalisms, SysML enables modelers to efficiently capture functional and performance 

requirements via Requirement diagram and to precisely define performance and quantitative constraints 

via Parametric diagram.  Besides, a common practice for estimating parameters for a higher level model 

(aggregated model) available in the literature is to mostly use the mean values of lower level model pa-

rameters.  Since the inputs and outputs of a complex system tend to have highly nonlinear relationships, 

the high level model based on this approach is likely to result in inaccurate outputs, where significant sta-

tistical information is lost during the aggregation process (Cassandras et al. 2000).  Multivariate nonlinear 

regression-based approach (e.g. additive regression model) is known to be capable of accurately identify-

ing both linear and nonlinear representation of predictors and responses (Fox 2000).  This category of sta-

tistical approach can be used to estimate the aggregated model parameters via conducting simulation ex-

periments.  Since only limited information about the relationships between predictors and responses is 

available before conducting the regression analysis, obtaining an accurate form of nonlinear regression 

model is computationally expensive in terms of the required sample size.  Therefore, an additive regres-

sion model with nonlinear partial-regression function can be used as it is also able to accurately estimate 

the relationships between predictors and responses, but is less computationally demanding.  In this paper, 

a SysML-based simulation aggregation framework is proposed for developing an aggregated simulation 

model for a seedling propagation system.  First, a formal system conceptual model is constructed in 

SysML to define system structure and activity.  The simulation models conforming to the system concep-

tual model are then constructed using Arena software.  An additive regression model-based approach is 

proposed to estimate parameters for the higher level model.  The framework is finally demonstrated via 

modeling one of the largest grafted seedling propagation systems in North America.  

The reminder of the paper is structured as follows.  In Section 2, the seedling propagation system is 

described.  In Section 3, the system conceptual model is constructed in SysML.  Then the additive regres-

sion model-based parameter estimation approach is proposed.  The proposed framework is demonstrated 

in Section 4 for one of the largest seedling propagation system in North America.  In addition, the simula-

tion results obtained from the low level model and aggregated model are compared to the considered sys-
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tem.  In Section 5, conclusions and directions for future extensions to the proposed framework are dis-

cussed. 

2 GRAFTED SEEDLING PROPAGATION SYSTEM 

In a grafted seedling propagation system considered in this paper, grafted vegetable seedlings are pro-

duced using scion and rootstock seeds via a variety of stages including: 1) seeding, 2) germination, 3) pre-

sorting grow on, 4) sorting, 5) pre-grafting grow on, 6) grafting, 7) healing, and 8) post-healing grow on.  

As depicted in Figure 1, both scion and rootstock seeds are first seeded into trays via a seeding machine in 

the seeding stage.  The seeded trays (both scion and rootstock) are then moved into germination chambers 

in a selected germination area of the greenhouse.  The germinated scions/rootstocks are moved into dif-

ferent compartments of the greenhouse and grow on until the cotyledon's full emergence.  As soon as cot-

yledons emerge, the scions/rootstocks are transplanted into different trays via a sorting machine based on 

their sizes.  The sorted scions/rootstocks are moved back to greenhouse for further grow-on before graft-

ing.  Once the size of scions/rootstocks is suitable for grafting, they are moved to grafting department 

where they are grafted by grafting workers or grafting robots.  The grafted seedlings are then put into 

healing chambers for healing.  Finally, the healed seedlings are moved back to greenhouse for further 

grow-on to reach the size that vegetable producers require.  

 

<<allocate>>

Seeding Machine

<<allocate>>

Germination Chamber

<<allocate>>

Greenhouse

<<allocate>>

Sorting Machine

<<allocate>>

Grafting Machine/Worker

<<allocate>>

Healing Chamber

Rootstock
Seeding

Rootstock
Seeds

Seeded 
Scions

Seeded 
Rootstocks

Scion 
Seeds

Seeded 
Rootstocks

Seeded 
Scions

Germinated 
Rootstocks

Germinated 
Scions

Scion
Pre-Sorting Grow-on

Germinated 
Rootstocks

Rootstock
Post-Sorting Grow-on

Cotyledons- emerged 
Rootstocks

Germinated 
Scions

Cotyledons- emerged 
Scions

Rootstock
Sorting

Cotyledons- emerged 
Rootstocks

Sorted 
Rootstocks

Cotyledons- emerged 
Scions

Sorted 
Scions

Sorted 
Rootstocks

Graftable 
Rootstocks

Sorted Scions Graftable
 Scions

Grafting

Graftable 
Rootstocks

Graftable Scions

Grafted 
Seedlings

Healing

Grafted 
Seedling

s

Post-Healing Grow-on

Deliverable Seedlings

act Propagation Operation [Routing Flows]

Scion
Seeding

Scion
Germination

Rootstock
Germination

Rootstock
Pre-Sorting Grow-on

Scion
Post-Sorting Grow-on

Scion
Sorting

Healed 
seedlings

Healed seedlings

 

Figure 1: SysML activity diagram for material flow in seedling propagation system 

3 SIMULATION MODEL AGGREGATION FRAMEWORK 

3.1 Overview of Framework 

The proposed simulation model aggregation framework involves three main steps (see Figure 2): 1) sys-

tem conceptual modeling, 2) simulation modeling, and 3) parameter estimation.  In the first step, a 

SysML-based system conceptual model is developed to describe system structures (e.g. departments, cells 

and machines/workers), activities (e.g. object loading/unloading, transportation and processing) and pa-

rameters (e.g. loading/unloading time and processing time) in a hierarchical manner.  In the second step, 

different levels of simulation models are constructed conforming to the constructed conceptual model.  

The number of levels varies depending on the structure of the considered system.  In this paper, three lev-

els are used as the seedling propagation system can be conceptually described at each of the department, 

cell, and machine levels (high, medium and low levels).  In the third step, different levels of simulation 

model parameters (e.g. mean value u and randomness w) are used to formulate experiment settings, and 

then used as simulation inputs for experiments.  The simulation inputs (u, w) and outputs (f(u, w)) are 
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both used to construct regression models.  Finally the regression models are applied to estimate the higher 

level model parameters (u’, w’).  This procedure continues until the highest level model parameters are 

estimated. 
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Figure 2: SysML activity diagram for the proposed aggregation framework 

3.2 SysML-based System Conceptual Model 

As mentioned in Friedenthal et al. (2012), accurate presentation of system requirements and behaviors is 

essential in a robust system description.  For simulation model aggregation, it is even more important to 

model the system structure and activity in a hierarchical way such that different levels of simulation mod-

els can be constructed and parameters of higher level models can be estimated via lower level ones.  

Therefore, the SysML-based system conceptual model in this work consists of (1) a structure model and 

(2) an activity model.  The structure model is used to define the resources (e.g. grafting worker) and enti-

ties (e.g. trays), and the activity model is used to define the system activities for constructing the simula-

tion model logic.  Both models are constructed via the SysML block definition diagram.  In SysML, block 

is the modular unit of structure that is used to define a system component, an item that flows through the 

system, activities, external entities or other logical abstractions.  The block definition diagram is used to 

define blocks and the relationships between them (Friedenthal et al. 2012).  Therefore, block definition 

diagram are used in our work to define the hierarchy of the system of our interest.   

For illustration purposes, the system conceptual models are explained in a top-down manner as fol-

lows.  Figure 3 shows the structure model that has a hierarchy of three levels (i.e. high, medium and low 

levels) of system components.  In the high level, the seedling propagation system consists of six produc-

tion components including greenhouse, seeding department, germination department, sorting department, 

grafting department, healing department, and miscellaneous worker and shelf.  Shelf is the logistics 

equipment that miscellaneous workers use to transport trays of seeds/seedlings between departments.  

Each production component performs a distinct production function, and miscellaneous workers are re-

sponsible for connecting those production components together.  For example, greenhouse is the compo-

nent in which seedlings grow on (see Figure 1) to certain sizes under required temperature, humidity and 

light intensity.  In this level, the unit of material flow is order.  From the high level to the medium level, 

the departments are further decomposed into a variety of cells that have the same production function as 

the department but realized in a smaller scale.  Instead of order, the unit of material flow in the medium 

level model is tray as the trays are distributed into different cells for processing.  The number of cells each 

department possesses varies significantly.  For example, the seeding department may only have two cells 

since the cycle time is relatively short (e.g. 20 seconds/tray).  While germination department may have 

more cells since the germination time involves days.  Therefore more cells are needed to handle the trays 

from the upstream departments.  In the low level, the production cells are further decomposed into atomic 

components such as machines, chambers and workers.  The seeding cell, sorting cell and grafting cell 
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consists of corresponding machine/robot and workers respectively, and the basic material flow is seedling.  

The germination cell and healing cell consists of several chambers, and the basic material flow is tray. 
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Figure 3: SysML block definition diagram for a structure model of seedling propagation system 

While the structure model depicts the system hierarchy and the relationships between the system 

components, the activities of the system also have to be captured in a corresponding hierarchical manner.  

As depicted in Figure 4, the activities of each department are also modeled in three levels (i.e. low, medi-

um and high levels) conforming to the structure model. 
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Figure 4: SysML block definition diagram for activity model of seedling propagation system 

The high level activities are stereotyped by "high level activity", and include seeding, germination, 

pre-sorting grow on, sorting, pre-grafting grow on, grafting, healing and post-healing grow on.  The activ-

ities in this level correspond to the department level  of the structure model.  In the medium level, the high 

level activities are further decomposed into more detailed activities that are stereotyped by "medium level 
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activity" or "m/l level activity".  Here "m/l level activity" indicates that a particular activity exists in both 

medium and low level.  In the medium level, since trays are distributed to various production cells (e.g. 

trays of seeds can be placed in different germination cells) and batched in shelves for moving to the next 

department, resource allocation-related activities (e.g. seeder allocation, chamber allocation, sorter allo-

cation, spot allocation and grafting robot allocation) and group tray are considered.  The activities in this 

level correspond to the production cell level of the structure model.  Finally in the low level, more de-

tailed activities are modeled to conform to the functionalities of machines/workers within a specific pro-

duction cell.  For example, the seeding activity in the medium level is further decomposed into add load 

tray, add seeds, seeding and unload tray. 

3.3 Additive Regression Model-based Parameter Estimation 

Regression modeling is one of the most widely used statistical techniques since it identifies the relation-

ships between independent variables (also called predictors) and dependent variables (also called respons-

es) (Montgomery et al. 2012).  In this paper, an additive regression model is used to estimate simulation 

model parameters.  As depicted in Figure 5, the regression model formulation procedure can be described 

as follows.  The predictors xi={xij,j=1,…,n} are specified as simulation inputs to obtain corresponding 

target response ti (simulation outputs) via running a low level simulation model.  Here the target response 

is defined as the higher level model parameter that we want to estimate.  The predictors xi and target re-

sponse ti are then used to formulate the regression model f(∙).  Finally, the response yi obtained from the 

formulated regression model f(∙) is used as the corresponding higher level model parameter.  

 

 

Figure 5: Regression model formulation procedure 

The additive regression model with nonlinear partial-regression function fj(∙)is formulated as follows: 

      2
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where, yi is the response, xik is the kth predictor for the ith of n observations and i  is an error of the 

model.  
jijp  is a weight for the jth predictor with pjth order and 01

iJ

i ijj
 


  is a constant value.  To 

obtain the coefficients of the model, we need to find an appropriate order pj for each partial-regression 

function fj(∙) with weight vector 0 1, , ,
j

T

ij ij ij ijp    
 

 under the additive regression model.  For this, 

we further define the augmented data matrix and response as follows: 
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where  N is the number of simulation output samples.  Thus, the response yi is subject to normal distribu-

tion as follows: 
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Since we use additive regression model, the weight βij can be represented as: 
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and its maximum likelihood can be expressed as:  
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Similarly, 
2
ij can be represented as: 
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Thus, the estimated response ˆ
iy  is subject to normal distribution as follows: 
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In addition, we adopt K-fold cross validation (CV) to find the most promising order pj of each partial-

regression function fj(∙) with estimated response ˆ
iy .  The K-fold CV splits the data into K equally sized 

blocks, and each block takes its turn as a validation set for a training set comprised of the other K-1 

blocks (Rogers and Girolami 2011).  Although the K-fold CV is computation demanding, it prevents the 

model over-fitting in terms of the order pj and also gives better accuracy than a bootstrap method.  Figure 

6 shows the overall process of the proposed parameter estimation approach.  Moreover, in this research, 

the Leave-One-Out Cross Validation (LOOCV) is used to find the most probable which has the lowest 

mean LOOCV error.  The following equation shows the average squared validation loss for LOOCV: 

   
1

ˆ ˆ
TCV

i i i i iL y y y y
N

       (12) 
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Figure 6: Pseudo code for simulation parameter estimation procedure 

4 EXPERIMENT 

The proposed framework is demonstrated in this section via one of the largest grafted seedling propaga-

tion system in North America.  As discussed in Section 3.2, three levels of simulation models were con-

structed in Arena conforming to the structure and activity hierarchies described in Figures 3 and 4, and 

Figures 7(a)-(b) compare the complexity of the low level model (left figure) with the high level model 

(right figure).  Then two steps of parameter estimation experiments were conducted in this section.  The 

first step was to estimate the medium level model parameters using the low level models.  Similarly, the 

second step was to estimate the high level model parameters using the medium level model whose param-

eters were estimated in the first step.  In the experiments, our primary focus was on time-related parame-

ters since the outputs (e.g. throughput and cost) of our interests mainly depend on time.  The low level 

model parameters that were used to estimate the medium level model parameters are specified in Table 1.  

In the table, stochasticity refers to the ratio of the standard deviation (std.) to the mean.  For example, the 

ratio of std. and mean of tray preparation time in seeding department was set to 0.1, 0.3 and 0.5 in the ex-

periment.  For each simulation parameter (or predictor in regression model), three levels were selected 

based on real data, and 33=27 experiment settings were formulated for each department.   

 

  

                                    (a) Low level model                                       (b) High level model 

Figures 7: Model complexity comparison between low level and high level models 

 

 

1:    CALL input and output DATA from a simulation model 

2:    SPLIT the DATA into K equally sized blocks  

3:    REPEAT 

4:        SELECT order combination set },...,,{ 21 Jii pppp   

5:        REPEAT 

6:            SELECT K-1 blocks as a training set  

7:            COMPUTE 2

1

iJ

i ijj
 


  and  2

1

iJ

i ijj
 


  

8:            COMPUTE 
CV
iL  with validation data set 

9:        UNTIL the number of iteration equals to K 

10:  UNTIL average of 
CV
iL does not have significant improvement than threshold θ 

11:  RETURN the model 
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Table 1: Parameter specification for low level model 

Seeding dept. Tray preparation time (sec/tray) Stochasticity of tray preparation time Seeding speed (sec/tray) 

Parameter values (5, 7, 10) (0.1, 0.3, 0.5) (15, 20, 25) 

Germination dept. Tray transportation time (sec/tray) Stochasticity of tray transportation time Germination duration (day) 

Parameter values (5, 7, 10) (0.1, 0.3, 0.5) (2.5, 3, 3.6) 

Greenhouse dept. Tray transportation time (sec/tray) Stochasticity of tray transportation time Grow on duration (day) 

Parameter values (5, 7, 10) (0.1, 0.3, 0.5) (6, 7, 8) 

Sorting dept. 
Tray loading/unloading time 

(sec/tray) 
Stochasticity of tray loading/unloading 

time 
Sorting speed (sec/plant) 

Parameter values (5, 7, 10) (0.1, 0.3, 0.5) (0.7, 1, 1.5) 

Grafting dept. Scion/rootstock cut speed (sec/plant) Plant joining speed (sec/plant) 
Stochasticity of sci-

on/rootstock cut speed 

Parameter values (3, 4, 5) (9, 12, 15) (0.1, 0.3, 0.5) 

Healing dept. Tray transportation time (sec/tray) Stochasticity of tray transportation time Healing duration (day) 

Parameter values (5, 7, 10) (0.1, 0.3, 0.5) (2.5, 3, 3.6) 

 

Based on the simulation outputs obtained from the low level and medium level simulation models, six ad-

ditive regression models (that correspond to six types of cells/departments) were formulated in each level 

using the procedures described in Figure 6.  The outputs from regression models were validated against 

corresponding simulation results.  Figure 8(a) depicts the sorting cell cycle time for one tray, and Figure 

8(b) depicts the sorting department cycle time for one order (i.e. 180 trays).  The paired t-test results (with 

the significance level of 0.05) showed that there was no significance difference in the results from the re-

gression model and the simulation model (p-value=0.1120 for sorting cell cycle time; and p-value=0.2173 

for the sorting department cycle time).  Thus, the formulated additive regression models for the consid-

ered case were accurate enough to estimate higher level model parameters.  

 

 

(a) Sorting cell cycle time                                      (b) Sorting department cycle time 

Figures 8: Output comparison between regression and simulation models 

To validate the high level model and the estimated parameters under different experimental settings, the 

simulation results from the low level model were used as references. Table 2 shows the parameter values 

used for formulating the 16 experiment settings.  Figures 9(a)-(b) show the means and standard deviation 

of propagation cycle time (i.e. time to complete the propagation operation) for 900 trays, respectively.  As 

shown in Figure 9(a), two models produced the same trend of propagation cycle time over 16 experiment 

settings, and the results from high level model had higher mean (7.2% on average).  The execution speed 

of the high level model was observed to be 10 times faster than that of the low level model on average.  

This observation demonstrates that although minor information loss (e.g. smaller size entity and more de-

tailed parameters) during aggregation is not inevitable, the high level model maintains the same essential 

behavior as the low level model but achieves significant execution speed improvement.  Besides, as 

shown in Figure 9(b), the high level model had higher randomness in terms of output standard deviation 

than that of the low level model.  The reason is that as the entities were aggregated from small size (e.g. 
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one plant/tray in the low level model) to large size (e.g. 180 trays in the high level model), randomness 

within each department of the simulation model was accordingly increased (see Figures 9(a)-(b)).  It im-

plies that the high level model has higher uncertainty of prediction results than that of the low level model 

even though the both models can generate similar trend of results.  

Table 2: Experiment setting parameters for high level model validation 

Seeding dept. Tray preparation time (sec/tray) Stochasticity of tray preparation time Seeding speed (sec/tray) 

Parameter values 7 0.1 20 

Germination dept. Tray transportation time (sec/tray) Stochasticity of tray transportation time Germination duration (day) 

Parameter values 7 0.1 (2.5, 3.6) 

Greenhouse dept. 
Pre-sorting grow on duration 

(days) 
Pre-grafting grow on duration (days) 

Post-healing grow on duration 

(days) 

Parameter values (2, 3) (10, 14) 1 

Sorting dept. 
Tray loading/unloading time 

(sec/tray) 

Stochasticity of tray loading/unloading 

time 
Sorting speed (sec/plant) 

Parameter values 7 0.1 1 

Grafting dept. 
Scion/rootstock cut speed 

(sec/plant) 
Plant joining speed (sec/plant) 

Stochasticity of sci-

on/rootstock cut speed 

Parameter values 3 12 0.1 

Healing dept. Tray transportation time (sec/tray) Stochasticity of tray transportation time Healing duration (day) 

Parameter values 7 0.1 (1.5, 2.6) 

 

  

                 (a) Mean of propagation cycle time              (b) Standard deviation of propagation cycle time 

Figure 9: Propagation cycle time comparison between low and high level simulation models 

5 CONCLUSION 

In this paper, a SysML-based simulation model aggregation framework is first proposed for vegetable 

seedling propagation system.  In the proposed framework, SysML is used to build a system conceptual 

model in terms of system structures and activities in a hierarchical manner.  Additive regression model-

based approach is also proposed to estimate parameters for a higher level model.  The proposed frame-

work is then demonstrated via one of the largest vegetable seedling propagation system in North America.  

In the conducted experiments, the simulation model aggregated based on the proposed framework has 

produced output with same accuracy as that of a detailed simulation model, achieving significant execu-

tion speed improvement.  Our future research works are to study the impact of parameter ranges on the 

accuracy of the estimation, and to develop algorithms to determine an appropriate aggregative level con-

sidering the required accuracy and computational requirements. 
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