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ABSTRACT

An “executable architecture” is defined as the use of dynamic simulation software to evaluate archi-
tecture models (DOD AFWG 2004). By modeling an existing network in the form of an “as-is” architec-
ture, we can create a simulation model, which when stimulated with appropriate traffic, can be an execut-
able architecture.

The DOD Architecture Framework (DODAF) prescribes a modeling framework to capture high-level
system design and operational requirements. The system attributes from a DODAF-compliant architec-
ture can directly load a network simulator (Hamilton 2006).

The use of network simulation to study denial of service attacks is well known. However, modeling
and simulation techniques can be used to evaluate intrusion detection systems, place and configure securi-
ty appliances and to design appropriate access control mechanisms.

This paper will discuss the enabling technologies necessary to mainstream architecture-based network
simulation including visualization of security requirements, auto generation of network architecture arti-
facts and application of stochastic elements to the architecture.

1 INTRODUCTION

A soldier standing on a pile of sand in Southwest Asia attempts to send message traffic from his
COTS laptop to his higher headquarters using a satellite card. On a good day, he has limited connectivity.
When the soldier applies all the regulation-mandated security controls; he transitions from limited con-
nectivity to no connectivity. The simple answer to this dilemma is that the commander makes a decision
based on the situation. However, it is clear that there is a need to evaluate the performance costs associat-
ed with prescribed security appliances.

The DOD Architecture Framework is the prescribed methodology for documenting system connectiv-
ity (CJCSI 6212 2012.01F, CJCSI 3170.01H 2012, DODI 5000.02 2008). The mandatory use of the
DOD Architecture Framework is prescribed in DOD Instruction 5000.02, in which responsibility for op-
erational views is assigned to the Joint Staff, while the Under Secretary of Defense (Acquisition, Tech-
nology, and Logistics) (USD (AT&L)), leads the development of the system views in collaboration with
the Services, Agencies and Combatant Commanders. It is reasonable to use the DODAF artifacts mandat-
ed during the acquisition process to evaluate the feasibility of proposed security solutions.

This paper will present a case study modeling a notional airline reservation system using the DODAF
methodology. Then we outline how the resulting model can support a network simulation that evaluates
security architecture. The case study is based on work performed by Dr. Mark Kuhr and Dr. Derek
Sanders while they were students at Auburn University under the supervision of the author. The author
has made minor adaptions to illustrate the security architecture requirements.
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2 REQUIREMENTS TO CONNECT: THE OPERATIONAL VIEWPOINTS

As defined in the DOD Architecture Framework, an Operational Viewpoint (OV) “is a description of the
tasks and activities, operational elements, and information exchange required to accomplish DOD mis-
sions.” These viewpoints can be used to determine connectivity requirements. Default-deny is a well-
known and effective security strategy. Implementing this strategy can be resource intensive and heavy
handed. How do you decide what access is appropriate in a given scenario? The DODAF operational
viewpoints can be adapted to visualize these security requirements. In figure 1 we see the communication
nodes for an airline reservation system are defined. The needlines (labeled NDL) illustrate the require-
ment for two nodes to exchange information. The needlines are further labeled with the information type
and the activity supported. In this example the nodes are further labeled with the Mission Activity Code
(MAC) category as defined in DODI 8500.2. There are three defined MAC levels, MAC 1 being the
highest priority and MAC 3 being the lowest.
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Figure 1: OV-2 Node Connectivity Diagram (Kuhr, Sanders and Hamilton 2008)

In Figure 2 the details of information exchange elements are listed in the OV-3 Operational Infor-
mation Exchange Matrix. The matrix in Figure 2 is an extract of the complete matrix. The level of detail
is sufficient to support high-level design. Labeling the security requirement of each information element
provides useful design information at a granularity level that is not often available during system design.
In the example matrix in Figure 2 we can see that each information element across each needline is doc-
umented.
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Figure 2: OV-3 Operational Information Exchange Matrix (Kuhr and Sanders 2008)
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We do not typically think of organizational charts as part of system design. However from a cyber
security standpoint, an organization chart can help determine who has a need to know the sensitive infor-
mation identified in the OV-3. It is a simple matter to add a column to each information element detail-
ing the classification or security sensitivity of each element.

Airline Reservation System
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reservations
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make
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through ARS
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through Travel
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Figure 3: OV-4 Organization Relationship Chart (Kuhr and Sanders 2008)

In Figure 3, the organization chart is based on the nodes identified in the OV-2 and the organization
shows what data stores need to be accessed by what organizational nodes. A UML style activity diagram,

OV-5 is shown below in Figure 4.
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Figure 4: OV-5 Operational Activity Model (Kuhr and Sanders 2008)

The operational viewpoints are a mature methodology for illustrating requirements. By leveraging
this methodology, we can make intelligent decisions about what connections to allow and what connec-
tions not to allow. By the same token, appropriate access controls can also be visualized. OVs have their
limitations. Simply showing requirements does not equal system implementation. However, by evaluat-
ing the system against the OVs, we can determine the appropriate types of access and security appliances.
Using the DODAF methodology that brings us to the system viewpoints (SVs).

3 HOW THE CONNECTIONS ARE MADE: THE SYSTEM VIEWPOINTS

As described in the DOD Architecture Framework, “A Systems Viewpoint (SV) is a set of graphical and
textual products that describes systems and interconnections providing for, or supporting, DOD functions.
The SV associates systems resources to the OV.” In this regard, several of the key system viewpoints are
tied directly to the operational viewpoints. In Figure 5 we see the systems communication description
that is built upon the SV-1 (not shown). Each node in the OV-2 must be represented as one or more sys-
tems in SV-1/SV-2. The SV-2 builds on the SV-1 and shows how connections are realized i.e. plain old
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Figure 5: SV-2 System Communications Description (Kuhr, Sanders and Hamilton 2008)
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telephone system, for example. Of particular interest in Figure 5 is that the enabling software modules
are modeled as systems within the DODAF viewpoint.
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Figure 6: SV-4 System Function Description (Kuhr, Sanders and Hamilton 2008)

Each system is decomposed into functions in the SV-4 System Function Description as shown in
Figure 6. Again we go back to the requirements in the operational viewpoints. Just as we mapped nodes
from the OV-2 to the SV-2, we now map the system functions described on the SV-4 against the activity
diagram in the OV-5 to produce an SV-5, an extract of which is seen in Figure 7. Of interest in the SV-4
is that each function is tied to a software module. We then see in the SV-5 a clear mapping of activities to
functions. One obvious use of this documentation is tracing which software modules support which ac-
tivities. If, for example, the FAA were to mandate new reservation procedures for airlines, then an accu-
rate SV-5 could be useful in identifying which software modules will be affected by the change.

Each system is decomposed into functions in the SV-4 System Function Description as shown in Fig-
ure 6. Again we go back to the requirements in the operational viewpoints. Just as we mapped nodes
from the OV-2 to the SV-2, we now map the system functions described on the SV-4 against the activity
diagram in the OV-5 to produce an SV-5, an extract of which is seen in Figure 7. Of interest in the SV-4
is that each function is tied to a software module. We then see in the SV-5 a clear mapping of activities to
functions. One obvious use of this documentation is tracing which software modules support which ac-
tivities. If, for example, the FAA were to mandate new reservation procedures for airlines, then an accu-
rate SV-5 could be useful in identifying which software modules will be affected by the change.
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Figure 7: SV-5 System Function to Operational Activity Mapping

At this point we have cross-walked three ties between the requirements shown in the operational view-
points and the systems outlined in the systems viewpoints: OV-2 to SV-2, OV-3 to SV-6 and OV-5/SV-4
to SV-5. A major criticism of the DODAF is that is an essentially static series of line and box diagrams.
There is some truth to this. Performance insights may be gained from the SV-7 System Performance
Measures Matrix as shown in Figure 9. When done well, a list of relevant performance measures can
provide a lot of insight into potential performance costs of security appliances.

As stated in the DODAF, a Systems View (SV) is a set of graphical and textual products that de-
scribes systems and interconnections providing for, or supporting, DOD functions. The SV associates sys-
tems resources to the OV. This association can provide critical insights into the placement of security ap-
pliances as well as the performance issues associated with their placement. To fully evaluate these
performance issues, simulation is needed.
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Figure 8: SV-6 System Information Exchange Matrix (Kuhr and Sanders 2008)

Airline Reservation System
Airline Reservation System Hardware
Maintainability High High High
Availabxlity 65.00% 97.00% 69.90%
System Initialization Time 5 Minutes 4 Minutes 2minutes
Architecture Data Transfer Rate 1GBisec 1.5Gh/sec | 2 GBlsec
Program Restart Time 3 Minutes 2 Minutes 1 Minute
S/W Element 1: Travel Agent Interface
Architecture Data Capacdy (Throughput) 300/sec 500/s=c 1000/sec
Automatic Processing Responses 50.00% 75.00% ©5.00%
Qperater Interaction Response Time 30ms 20ms 5ms
Availability 99.00% 99.99% 59.99%
Effectiveness 69.00%
Mean Time Between S/W Failures 90 days 180 days 360 days
Organic Training Yes Yes Yes
SIW Element 2: Airline Manager Interface
Architecture Data Capacdy ( Throughput) 300/sec 500/sec 1000/sec
Automatic Processing Responses 50.00% 75.00% G5.00%
Qperater Interaction Response Time 30ms 20ms 5ms
Availability G9.00% G0.99% G9.99%
Effectivensss 99.00%
Mean Time Between SIW Failures 90 days 160 days 360 days
Organic Training Yes Yeos Yes

**Note: This product will be updated
throughout system lifetime

Figure 9: SV-9 System Performance Measures Matrix
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4 EXECUTABLE ARCHITECTURES

As previously noted, an “executable architecture” is defined as the use of dynamic simulation software to
evaluate architecture models (DOD AFWG 2004). The system attributes from a DODAF-compliant ar-
chitecture can be used to directly load a network simulation tool thus producing an executable architec-
ture. Such an executable architecture can be used to validate the operational and system views and check
the internal self-consistency of the DODAF compliant architecture.

By modeling an existing network in the form of an “as-is” architecture, we can create a simulation
model, which when stimulated with appropriate traffic, can be an executable architecture. One practical
example of using executable architectures to support operational planning involves defending against dis-
tributed denial of service (DDoS) attacks. A denial of service attack floods a network with so much traffic
that legitimate traffic is blocked. This is analogous to jamming a radio network. A distributed DoS attack
is one that is launched from many stations instead of a single station. (Mirkovic and Reiher 2004) classi-
fy DDoS defense mechanisms as preventive, reactive, cooperation degree and deployment location. An
executable architecture can be used to evaluate each type of mechanism. One prevention strategy is to
place “forward deployed” firewalls on the outbound ports of the main routers as described in (Chatam
2004). The performance impacts of various firewall configurations and placements are readily displayed
though an executable architecture. A typical reactive strategy is to simply reconfigure the network and re-
route traffic to a server that is (hopefully) not under a DDoS attack. One autonomous means to mitigate a
DDoS attack is to use a dual-queue system, which automatically starts dropping traffic that comes from
untrusted hosts at the onset of an attack (Fletcher and Eoff 2004). All of these partial solution strategies to
defend against DDoS attacks can be systematically evaluated through an executable architecture.

5 CONCLUSION AND FUTURE WORK

At Mississippi State University, we are working with monitoring and simulation tools developed in the
research community to develop automated architecture builders with direct feeds into network simulators.
In many cases source code is readily available which provides the capability for extensibility and better
understanding.

We need new ways to evaluate assurance of the line-of-attack and point defense components of overall
security architectures. The methodologies would consider the entire security architecture (including net-
work and perimeter defense), as part of the consideration of how much assurance is needed at the line-of-
attack and point defense level. While a lot is known about development and fielding of secure software-
intensive systems built by vetted developers in highly secure environments, it is well recognized that cost
and time-to-market are important issues for such developments. Recognizing that line-of-attack and point
defense solutions are tightly coupled to the application software in a system, practical strategies are need-
ed regarding when to apply added assurances and when not. In addition, a broader array of assurance so-
lutions and corresponding support tools are needed to provide a larger set of alternatives regarding assur-
ance levels.

It should be noted that DOD programs routinely utilize software as well as hardware subsystems from
a variety of unvetted sources. Furthermore, even when development processes and evaluations are guided
by recognized methods such as DIACAP and the Common Criteria, some low-level vulnerabilities inevi-
tably escape detection. What is needed is the capability to auto-generate software architectures that can:

1. Verify conformance with proven secure design patterns.
2. Verify conformance to high-level designs specified by the mandated DODAF views.

3. Aid traceability of security requirements and implementation as part of a Security Aware system ef-
fort.
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An effort to unify DOD information assurance and architecture framework research is the best way to
move this research forward. Working across boundaries in this manner is also likely to reduce costs and
increase acquisition efficiency.
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